Beispiel #1
0
/* $Procedure      CKGP ( C-kernel, get pointing ) */
/* Subroutine */ int ckgp_(integer *inst, doublereal *sclkdp, doublereal *tol,
	 char *ref, doublereal *cmat, doublereal *clkout, logical *found, 
	ftnlen ref_len)
{
    logical pfnd, sfnd;
    integer sclk;
    extern /* Subroutine */ int sct2e_(integer *, doublereal *, doublereal *);
    integer type1, type2;
    char segid[40];
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    doublereal descr[5];
    extern /* Subroutine */ int dafus_(doublereal *, integer *, integer *, 
	    doublereal *, integer *), ckbss_(integer *, doublereal *, 
	    doublereal *, logical *), ckpfs_(integer *, doublereal *, 
	    doublereal *, doublereal *, logical *, doublereal *, doublereal *,
	     doublereal *, logical *), moved_(doublereal *, integer *, 
	    doublereal *), cksns_(integer *, doublereal *, char *, logical *, 
	    ftnlen);
    logical gotit;
    extern logical failed_(void);
    doublereal av[3], et;
    integer handle;
    extern /* Subroutine */ int refchg_(integer *, integer *, doublereal *, 
	    doublereal *);
    logical needav;
    extern /* Subroutine */ int ckmeta_(integer *, char *, integer *, ftnlen);
    integer refseg, center;
    extern /* Subroutine */ int namfrm_(char *, integer *, ftnlen), frinfo_(
	    integer *, integer *, integer *, integer *, logical *);
    integer refreq, typeid;
    extern /* Subroutine */ int chkout_(char *, ftnlen);
    doublereal tmpmat[9]	/* was [3][3] */;
    extern logical return_(void);
    doublereal dcd[2];
    integer icd[6];
    extern /* Subroutine */ int mxm_(doublereal *, doublereal *, doublereal *)
	    ;
    doublereal rot[9]	/* was [3][3] */;

/* $ Abstract */

/*     Get pointing (attitude) for a specified spacecraft clock time. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     CK */
/*     SCLK */

/* $ Keywords */

/*     POINTING */

/* $ Declarations */
/* $ Abstract */

/*     The parameters below form an enumerated list of the recognized */
/*     frame types.  They are: INERTL, PCK, CK, TK, DYN.  The meanings */
/*     are outlined below. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     INERTL      an inertial frame that is listed in the routine */
/*                 CHGIRF and that requires no external file to */
/*                 compute the transformation from or to any other */
/*                 inertial frame. */

/*     PCK         is a frame that is specified relative to some */
/*                 INERTL frame and that has an IAU model that */
/*                 may be retrieved from the PCK system via a call */
/*                 to the routine TISBOD. */

/*     CK          is a frame defined by a C-kernel. */

/*     TK          is a "text kernel" frame.  These frames are offset */
/*                 from their associated "relative" frames by a */
/*                 constant rotation. */

/*     DYN         is a "dynamic" frame.  These currently are */
/*                 parameterized, built-in frames where the full frame */
/*                 definition depends on parameters supplied via a */
/*                 frame kernel. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */
/*     W.L. Taber      (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 3.0.0, 28-MAY-2004 (NJB) */

/*       The parameter DYN was added to support the dynamic frame class. */

/* -    SPICELIB Version 2.0.0, 12-DEC-1996 (WLT) */

/*        Various unused frames types were removed and the */
/*        frame time TK was added. */

/* -    SPICELIB Version 1.0.0, 10-DEC-1995 (WLT) */

/* -& */
/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     INST       I   NAIF ID of instrument, spacecraft, or structure. */
/*     SCLKDP     I   Encoded spacecraft clock time. */
/*     TOL        I   Time tolerance. */
/*     REF        I   Reference frame. */
/*     CMAT       O   C-matrix pointing data. */
/*     CLKOUT     O   Output encoded spacecraft clock time. */
/*     FOUND      O   True when requested pointing is available. */

/* $ Detailed_Input */

/*     INST       is the NAIF integer ID for the instrument, spacecraft, */
/*                or other structure for which pointing is requested. */
/*                For brevity we will refer to this object as the */
/*                "instrument," and the frame fixed to this object as */
/*                the "instrument frame" or "instrument-fixed" frame. */

/*     SCLKDP     is the encoded spacecraft clock time for which */
/*                pointing is requested. */

/*                The SPICELIB routines SCENCD and SCE2C respectively */
/*                convert spacecraft clock strings and ephemeris time to */
/*                encoded spacecraft clock.  The inverse conversions are */
/*                performed by SCDECD and SCT2E. */

/*     TOL        is a time tolerance in ticks, the units of encoded */
/*                spacecraft clock time. */

/*                The SPICELIB routine SCTIKS converts a spacecraft */
/*                clock tolerance duration from its character string */
/*                representation to ticks.  SCFMT performs the inverse */
/*                conversion. */

/*                The C-matrix returned by CKGP is the one whose time */
/*                tag is closest to SCLKDP and within TOL units of */
/*                SCLKDP.  (More in Particulars, below.) */

/*                In general, because using a non-zero tolerance */
/*                affects selection of the segment from which the */
/*                data is obtained, users are strongly discouraged */
/*                from using a non-zero tolerance when reading CKs */
/*                with continuous data. Using a non-zero tolerance */
/*                should be reserved exclusively to reading CKs with */
/*                discrete data because in practice obtaining data */
/*                from such CKs using a zero tolerance is often not */
/*                possible due to time round off. */

/*     REF        is the desired reference frame for the returned */
/*                pointing.  The returned C-matrix CMAT gives the */
/*                orientation of the instrument designated by INST */
/*                relative to the frame designated by REF.  When a */
/*                vector specified relative to frame REF is left- */
/*                multiplied by CMAT, the vector is rotated to the */
/*                frame associated with INST.  See the discussion of */
/*                CMAT below for details. */

/*                Consult the SPICE document "Frames" for a discussion */
/*                of supported reference frames. */

/* $ Detailed_Output */

/*     CMAT       is a rotation matrix that transforms the components of */
/*                a vector expressed in the reference frame specified by */
/*                REF to components expressed in the frame tied to the */
/*                instrument, spacecraft, or other structure at time */
/*                CLKOUT (see below). */

/*                Thus, if a vector v has components x,y,z in the REF */
/*                reference frame, then v has components x',y',z' in the */
/*                instrument fixed frame at time CLKOUT: */

/*                     [ x' ]     [          ] [ x ] */
/*                     | y' |  =  |   CMAT   | | y | */
/*                     [ z' ]     [          ] [ z ] */

/*                If you know x', y', z', use the transpose of the */
/*                C-matrix to determine x, y, z as follows: */

/*                     [ x ]      [          ]T    [ x' ] */
/*                     | y |  =   |   CMAT   |     | y' | */
/*                     [ z ]      [          ]     [ z' ] */
/*                              (Transpose of CMAT) */


/*     CLKOUT     is the encoded spacecraft clock time associated with */
/*                the returned C-matrix. This value may differ from the */
/*                requested time, but never by more than the input */
/*                tolerance TOL. */

/*                The particulars section below describes the search */
/*                algorithm used by CKGP to satisfy a pointing */
/*                request.  This algorithm determines the pointing */
/*                instance (and therefore the associated time value) */
/*                that is returned. */

/*     FOUND      is true if a record was found to satisfy the pointing */
/*                request.  FOUND will be false otherwise. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1)  If a C-kernel file has not been loaded using FURNSH prior to */
/*         a call to this routine, an error is signaled by a routine in */
/*         the call tree of this routine. */

/*     2)  If TOL is negative, found is set to .FALSE. */

/*     3)  If REF is not a supported reference frame, an error is */
/*         signaled by a routine in the call tree of this routine and */
/*         FOUND is set to .FALSE. */

/* $ Files */

/*     CKGP searches through files loaded by FURNSH to locate a */
/*     segment that can satisfy the request for pointing for instrument */
/*     INST at time SCLKDP.  You must load a C-kernel file using FURNSH */
/*     prior to calling this routine. */

/* $ Particulars */

/*     How the tolerance argument is used */
/*     ================================== */


/*     Reading a type 1 CK segment (discrete pointing instances) */
/*     --------------------------------------------------------- */

/*     In the diagram below */

/*        - "0" is used to represent discrete pointing instances */
/*          (quaternions and associated time tags). */

/*        - "( )" are used to represent the end points of the time */
/*          interval covered by a segment in a CK file. */

/*        - SCLKDP is the time at which you requested pointing. */
/*          The location of SCLKDP relative to the time tags of the */
/*          pointing instances is indicated by the "+" sign. */

/*        - TOL is the time tolerance specified in the pointing */
/*          request.  The square brackets "[ ]" represent the */
/*          endpoints of the time interval */

/*             SCLKDP-TOL : SCLKDP+TOL */

/*        - The quaternions occurring in the segment need not be */
/*          evenly spaced in time. */


/*     Case 1:  pointing is available */
/*     ------------------------------ */

/*                              SCLKDP */
/*                                   \   TOL */
/*                                    | / */
/*                                    |/\ */
/*     Your request                [--+--] */
/*                                 .  .  . */
/*     Segment      (0-----0--0--0--0--0--0---0--0------------0--0--0--0) */
/*                                     ^ */
/*                                     | */
/*                         CKGP returns this instance. */


/*     Case 2:  pointing is not available */
/*     ---------------------------------- */

/*                                                   SCLKDP */
/*                                                      \   TOL */
/*                                                       | / */
/*                                                       |/\ */
/*     Your request                                   [--+--] */
/*                                                    .  .  . */
/*     Segment      (0-----0--0--0--0--0--0---0--0--0---------0--0--0--0) */


/*                         CKGP returns no pointing; the output */
/*                         FOUND flag is set to .FALSE. */



/*     Reading a type 2, 3, 4, or 5 CK segment (continuous pointing) */
/*     ------------------------------------------------------------- */

/*     In the diagrams below */

/*        - "==" is used to represent periods of continuous pointing. */

/*        - "--" is used to represent gaps in the pointing coverage. */

/*        - "( )" are used to represent the end points of the time */
/*          interval covered by a segment in a CK file. */

/*        - SCLKDP is the time at which you requested pointing. */
/*          The location of SCLKDP relative to the time tags of the */
/*          pointing instances is indicated by the "+" sign. */

/*        - TOL is the time tolerance specified in the pointing */
/*          request.  The square brackets "[ ]" represent the */
/*          endpoints of the time interval */

/*             SCLKDP-TOL : SCLKDP+TOL */

/*        - The quaternions occurring in the periods of continuous */
/*          pointing need not be evenly spaced in time. */


/*     Case 1:  pointing is available at the request time */
/*     -------------------------------------------------- */

/*                             SCLKDP */
/*                                   \   TOL */
/*                                    | / */
/*                                    |/\ */
/*     Your request                [--+--] */
/*                                 .  .  . */
/*                                 .  .  . */
/*                                 .  .  . */
/*     Segment            (==---===========---=======----------===--) */
/*                                    ^ */
/*                                    | */

/*                   The request time lies within an interval where */
/*                   continuous pointing is available. CKGP returns */
/*                   pointing at the requested epoch. */


/*     Case 2:  pointing is available "near" the request time */
/*     ------------------------------------------------------ */

/*                                    SCLKDP */
/*                                          \   TOL */
/*                                           | / */
/*                                           |/\ */
/*     Your request                       [--+--] */
/*                                        .  .  . */
/*     Segment            (==---===========----=======---------===--) */
/*                                             ^ */
/*                                             | */

/*                   The request time lies in a gap:  an interval where */
/*                   continuous pointing is *not* available.  CKGP */
/*                   returns pointing for the epoch closest to the */
/*                   request time SCLKDP. */


/*     Case 3:  pointing is not available */
/*     ---------------------------------- */

/*                                                 SCLKDP */
/*                                                       \   TOL */
/*                                                        | / */
/*                                                        |/\ */
/*     Your request                                    [--+--] */
/*                                                     .  .  . */
/*     Segment            (==---===========----=======---------===--) */

/*                         CKGP returns no pointing; the output */
/*                         FOUND flag is set to .FALSE. */



/*     Tolerance and segment priority */
/*     ============================== */

/*     CKGP searches through loaded C-kernels to satisfy a pointing */
/*     request. Last-loaded files are searched first. Individual files */
/*     are searched in backwards order, so that between competing */
/*     segments (segments containing data for the same object, for */
/*     overlapping time ranges), the one closest to the end of the file */
/*     has highest priority. */

/*     The search ends when a segment is found that can provide pointing */
/*     for the specified instrument at a time falling within the */
/*     specified tolerance on either side of the request time. Within */
/*     that segment, the instance closest to the input time is located */
/*     and returned. */

/*     The following four cases illustrate this search procedure. */
/*     Segments A and B are in the same file, with segment A located */
/*     further towards the end of the file than segment B. Both segments */
/*     A and B contain discrete pointing data, indicated by the number */
/*     0. */


/*     Case 1:  Pointing is available in the first segment searched. */
/*              Because segment A has the highest priority and can */
/*              satisfy the request, segment B is not searched. */


/*                                  SCLKDP */
/*                                        \  TOL */
/*                                         | / */
/*                                         |/\ */
/*     Your request                     [--+--] */
/*                                      .  .  . */
/*     Segment A          (0-----------------0--------0--0-----0) */
/*                                           ^ */
/*                                           | */
/*                                           | */
/*                               CKGP returns this instance */

/*     Segment B     (0--0--0--0--0--0--0--0--0--0--0--0--0--0--0--0--0) */



/*     Case 2:  Pointing is not available in the first segment searched. */
/*              Because segment A cannot satisfy the request, segment B */
/*              is searched. */


/*                             SCLKDP */
/*                                  \   TOL */
/*                                   | / */
/*                                   |/\ */
/*     Your request               [--+--] */
/*                                .  .  . */
/*     Segment A          (0-----------------0--------0--0-----0) */
/*                                .  .  . */
/*     Segment B     (0--0--0--0--0--0--0--0--0--0--0--0--0--0--0--0--0) */
/*                                   ^ */
/*                                   | */
/*                       CKGP returns this instance */


/*     Segments that contain continuous pointing data are searched in */
/*     the same manner as segments containing discrete pointing data. */
/*     For request times that fall within the bounds of continuous */
/*     intervals, CKGP will return pointing at the request time. When */
/*     the request time does not fall within an interval, then a time at */
/*     an endpoint of an interval may be returned if it is the closest */
/*     time in the segment to the user request time and is also within */
/*     the tolerance. */

/*     In the following examples, segment A is located further towards */
/*     the end of the file than segment C. Segment A contains discrete */
/*     pointing data and segment C contains continuous data, indicated */
/*     by the "=" character. */


/*     Case 3:  Pointing is not available in the first segment searched. */
/*              Because segment A cannot satisfy the request, segment C */
/*              is searched. */

/*                             SCLKDP */
/*                                   \  TOL */
/*                                    | / */
/*                                    |/\ */
/*     Your request                [--+--] */
/*                                 .  .  . */
/*                                 .  .  . */
/*     Segment A          (0-----------------0--------0--0-----0) */
/*                                 .  .  . */
/*                                 .  .  . */
/*     Segment C          (---=============-----====--------==--) */
/*                                    ^ */
/*                                    | */
/*                                    | */
/*                         CKGP returns this instance */


/*     In the next case, assume that the order of segments A and C in the */
/*     file is reversed:  A is now closer to the front, so data from */
/*     segment C are considered first. */


/*     Case 4:  Pointing is available in the first segment searched. */
/*              Because segment C has the highest priority and can */
/*              satisfy the request, segment A is not searched. */

/*                                             SCLKDP */
/*                                            / */
/*                                           |  TOL */
/*                                           | / */
/*                                           |/\ */
/*     Your request                       [--+--] */
/*                                        .  .  . */
/*                                        .  .  . */
/*     Segment C          (---=============-----====--------==--) */
/*                                             ^ */
/*                                             | */
/*                                CKGP returns this instance */

/*     Segment A          (0-----------------0--------0--0-----0) */
/*                                           ^ */
/*                                           | */
/*                                     "Best" answer */


/*     The next case illustrates an unfortunate side effect of using */
/*     a non-zero tolerance when reading multi-segment CKs with */
/*     continuous data. In all cases when the look-up interval */
/*     formed using tolerance overlaps a segment boundary and */
/*     the request time falls within the coverage of the lower */
/*     priority segment, the data at the end of the higher priority */
/*     segment will be picked instead of the data from the lower */
/*     priority segment. */


/*     Case 5:  Pointing is available in the first segment searched. */
/*              Because segment C has the highest priority and can */
/*              satisfy the request, segment A is not searched. */

/*                                             SCLKDP */
/*                                            / */
/*                                           |  TOL */
/*                                           | / */
/*                                           |/\ */
/*     Your request                       [--+--] */
/*                                        .  .  . */
/*                                        .  .  . */
/*     Segment C                                (===============) */
/*                                              ^ */
/*                                              | */
/*                                CKGP returns this instance */

/*     Segment A          (=====================) */
/*                                           ^ */
/*                                           | */
/*                                     "Best" answer */

/* $ Examples */

/*     Suppose you have two C-kernel files containing data for the */
/*     Voyager 2 narrow angle camera.  One file contains predict values, */
/*     and the other contains corrected pointing for a selected group */
/*     of images, that is, for a subset of images from the first file. */

/*     The following example program uses CKGP to get C-matrices for a */
/*     set of images whose SCLK counts (un-encoded character string */
/*     versions) are contained in the array SCLKCH. */

/*     If available, the program will get the corrected pointing values. */
/*     Otherwise, predict values will be used. */

/*     For each C-matrix, a unit  pointing vector is constructed */
/*     and printed. */


/*     C */
/*     C     Constants for this program. */
/*     C */
/*     C     -- The code for the Voyager 2 spacecraft clock is -32 */
/*     C */
/*     C     -- The code for the narrow angle camera on the Voyager 2 */
/*     C        spacecraft is -32001. */
/*     C */
/*     C    --  Spacecraft clock times for successive Voyager images */
/*     C        always differ by more than 0:0:400.  This is an */
/*     C        acceptable tolerance, and must be converted to "ticks" */
/*     C        (units of encoded SCLK) for input to CKGP. */
/*     C */
/*     C     -- The reference frame we want is FK4. */
/*     C */
/*     C     -- The narrow angle camera boresight defines the third */
/*     C        axis of the instrument-fixed coordinate system. */
/*     C        Therefore, the vector ( 0, 0, 1 ) represents */
/*     C        the boresight direction in the camera-fixed frame. */
/*     C */
/*           IMPLICIT NONE */

/*           INTEGER               FILEN */
/*           PARAMETER           ( FILEN  = 255 ) */

/*           INTEGER               NPICS */
/*           PARAMETER           ( NPICS  = 2 ) */

/*           INTEGER               TIMLEN */
/*           PARAMETER           ( TIMLEN = 30 ) */

/*           INTEGER               REFLEN */
/*           PARAMETER           ( REFLEN = 32 ) */

/*           CHARACTER*(TIMLEN)    CLKCH */
/*           CHARACTER*(FILEN)     CKPRED */
/*           CHARACTER*(FILEN)     CKCORR */
/*           CHARACTER*(REFLEN)    REF */
/*           CHARACTER*(FILEN)     SCLK */
/*           CHARACTER*(TIMLEN)    SCLKCH ( NPICS ) */
/*           CHARACTER*(TIMLEN)    TOLVGR */

/*           DOUBLE PRECISION      CLKOUT */
/*           DOUBLE PRECISION      CMAT   ( 3, 3 ) */
/*           DOUBLE PRECISION      SCLKDP */
/*           DOUBLE PRECISION      TOLTIK */
/*           DOUBLE PRECISION      VCFIX  ( 3 ) */
/*           DOUBLE PRECISION      VINERT ( 3 ) */

/*           INTEGER               SC */
/*           INTEGER               I */
/*           INTEGER               INST */

/*           LOGICAL               FOUND */

/*           CKPRED     = 'voyager2_predict.bc' */
/*           CKCORR     = 'voyager2_corrected.bc' */
/*           SCLK       = 'voyager2_sclk.tsc' */
/*           SC         = -32 */
/*           INST       = -32001 */
/*           SCLKCH(1)  = '4/08966:30:768' */
/*           SCLKCH(2)  = '4/08970:58:768' */
/*           TOLVGR     = '0:0:400' */
/*           REF        = 'FK4' */
/*           VCFIX( 1 ) =  0.D0 */
/*           VCFIX( 2 ) =  0.D0 */
/*           VCFIX( 3 ) =  1.D0 */

/*     C */
/*     C     Loading the files in this order ensures that the */
/*     C     corrected file will get searched first. */
/*     C */
/*           CALL FURNSH ( CKPRED ) */
/*           CALL FURNSH ( CKCORR ) */

/*     C */
/*     C     Need to load a Voyager 2 SCLK kernel to convert from */
/*     C     clock strings to ticks. */
/*     C */
/*           CALL FURNSH ( SCLK ) */

/*     C */
/*     C     Convert tolerance from VGR formatted character string */
/*     C     SCLK to ticks which are units of encoded SCLK. */
/*     C */
/*           CALL SCTIKS ( SC, TOLVGR, TOLTIK ) */


/*           DO I = 1, NPICS */
/*     C */
/*     C        CKGP requires encoded spacecraft clock. */
/*     C */
/*              CALL SCENCD ( SC, SCLKCH( I ), SCLKDP ) */

/*              CALL CKGP ( INST,   SCLKDP, TOLTIK, REF, CMAT, */
/*          .               CLKOUT, FOUND                      ) */

/*              IF ( FOUND ) THEN */

/*     C */
/*     C           Use the transpose of the C-matrix to transform the */
/*     C           boresight vector from camera-fixed to reference */
/*     C           coordinates. */
/*     C */
/*                 CALL MTXV   ( CMAT, VCFIX,  VINERT ) */
/*                 CALL SCDECD ( SC,   CLKOUT, CLKCH  ) */

/*                 WRITE (*,*) 'VGR 2 SCLK Time:         ', CLKCH */
/*                 WRITE (*,*) 'VGR 2 NA ISS boresight ' */
/*          .      //          'pointing vector: ',         VINERT */

/*              ELSE */

/*                 WRITE (*,*) 'Pointing not found for time ', SCLKCH(I) */

/*              END IF */

/*           END DO */

/*           END */


/* $ Restrictions */

/*     None. */

/* $ Literature_References */

/*     None. */

/* $ Author_and_Institution */

/*     C.H. Acton     (JPL) */
/*     N.J. Bachman   (JPL) */
/*     W.L. Taber     (JPL) */
/*     J.M. Lynch     (JPL) */
/*     B.V. Semenov   (JPL) */
/*     M.J. Spencer   (JPL) */
/*     R.E. Thurman   (JPL) */
/*     I.M. Underwood (JPL) */

/* $ Version */

/* -    SPICELIB Version 5.3.1, 09-JUN-2010 (BVS) */

/*        Header update: description of the tolerance and Particulars */
/*        section were expanded to address some problems arising from */
/*        using a non-zero tolerance. */

/* -    SPICELIB Version 5.3.0, 23-APR-2010 (NJB) */

/*        Bug fix: this routine now obtains the rotation */
/*        from the request frame to the applicable CK segment's */
/*        base frame via a call to REFCHG. Formerly the routine */
/*        used FRMCHG, which required that angular velocity data */
/*        be available for this transformation. */

/* -    SPICELIB Version 5.2.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/* -    SPICELIB Version 5.1.2, 29-JAN-2004 (NJB) */

/*        Header update:  description of input argument REF was */
/*        expanded. */

/* -    SPICELIB Version 5.1.1, 27-JUL-2003 (CHA) (NJB) */

/*        Various header corrections were made. */

/* -    SPICELIB Version 3.2.0, 23-FEB-1999 (WLT) */

/*        The previous editions of this routine did not properly handle */
/*        the case when TOL was negative.  The routine now returns a */
/*        value of .FALSE. for FOUND as is advertised above. */

/* -    SPICELIB Version 3.1.0, 13-APR-1998 (WLT) */

/*        The call to CHKOUT in the case when FAILED returned the */
/*        value TRUE used to check out with the name 'CKGPAV'.  This */
/*        has been changed to a CKGP. */

/* -    SPICELIB Version 3.0.0, 19-SEP-1994 (WLT) */

/*        The routine was upgraded to support non-inertial frames. */

/* -    SPICELIB Version 2.0.1, 10-MAR-1992 (WLT) */

/*        Comment section for permuted index source lines was added */
/*        following the header. */

/* -    SPICELIB Version 2.0.0, 30-AUG-1991 (JML) */

/*        The Particulars section was updated to show how the */
/*        search algorithm processes segments with continuous */
/*        pointing data. */

/*        The example program now loads an SCLK kernel. */

/*        FAILED is checked after the call to IRFROT to handle the */
/*        case where the reference frame is invalid and the error */
/*        handling is not set to abort. */

/*        FAILED is checked in the DO WHILE loop to handle the case */
/*        where an error is detected by a SPICELIB routine inside the */
/*        loop and the error handling is not set to abort. */

/* -    SPICELIB Version 1.0.1, 02-NOV-1990 (JML) */

/*        The restriction that a C-kernel file must be loaded */
/*        was explicitly stated. */


/* -    SPICELIB Version 1.0.0, 07-SEP-1990 (RET) (IMU) */

/* -& */
/* $ Index_Entries */

/*     get ck pointing */

/* -& */
/* $ Revisions */

/* -    SPICELIB Version 5.2.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/* -    SPICELIB Version 3.1.0, 20-DEC-1995 (WLT) */

/*        A call to FRINFO did not have enough arguments and */
/*        went undetected until Howard Taylor of ACT.  Many */
/*        thanks go out to Howard for tracking down this error. */

/* -    SPICELIB Version 3.0.0, 19-SEP-1994 (WLT) */

/*        The routine was upgraded to support non-inertial frames. */

/*        Calls to NAMIRF and IRFROT were replaced with calls to */
/*        NAMFRM and FRMCHG respectively. */


/* -    SPICELIB Version 1.0.2, 30-AUG-1991 (JML) */

/*        1) The Particulars section was updated to show how the */
/*           search algorithm processes segments with continuous */
/*           pointing data. */

/*        2) The example program now loads an SCLK kernel. */

/*        3) FAILED is checked after the call to IRFROT to handle the */
/*           case where the reference frame is invalid and the error */
/*           handling is not set to abort. */

/*        4) FAILED is checked in the DO WHILE loop to handle the case */
/*           where an error is detected by a SPICELIB routine inside the */
/*           loop and the error handling is not set to abort. */

/* -    SPICELIB Version 1.0.1, 02-NOV-1990 (JML) */

/*        1) The restriction that a C-kernel file must be loaded */
/*           was explicitly stated. */
/*        2) Minor changes were made to the wording of the header. */


/* -    Beta Version 1.1.0, 29-AUG-1990 (MJS) */

/*        The following changes were made as a result of the */
/*        NAIF CK Code and Documentation Review: */

/*        1) The variable SCLK was changed to SCLKDP. */
/*        2) The variable INSTR was changed to INST. */
/*        3) The variable IDENT was changed to SEGID. */
/*        4) The declarations for the parameters NDC, NIC, NC, and */
/*           IDLEN were moved from the "Declarations" section of the */
/*           header to the "Local parameters" section of the code below */
/*           the header. These parameters are not meant to modified by */
/*           users. */
/*        5) The header was updated to reflect the changes. */

/* -    Beta Version 1.0.0, 04-MAY-1990 (RET) (IMU) */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */

/*        NDC        is the number of double precision components in an */
/*                   unpacked C-kernel segment descriptor. */

/*        NIC        is the number of integer components in an unpacked */
/*                   C-kernel segment descriptor. */

/*        NC         is the number of components in a packed C-kernel */
/*                   descriptor.  All DAF summaries have this formulaic */
/*                   relationship between the number of its integer and */
/*                   double precision components and the number of packed */
/*                   components. */

/*        IDLEN      is the length of the C-kernel segment identifier. */
/*                   All DAF names have this formulaic relationship */
/*                   between the number of summary components and */
/*                   the length of the name (You will notice that */
/*                   a name and a summary have the same length in bytes.) */


/*     Local variables */


/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("CKGP", (ftnlen)4);
    }

/*     Don't need angular velocity data. */
/*     Assume the segment won't be found until it really is. */

    needav = FALSE_;
    *found = FALSE_;

/*     If the tolerance is less than zero, we go no further. */

    if (*tol < 0.) {
	chkout_("CKGP", (ftnlen)4);
	return 0;
    }

/*     Begin a search for this instrument and time, and get the first */
/*     applicable segment. */

    ckbss_(inst, sclkdp, tol, &needav);
    cksns_(&handle, descr, segid, &sfnd, (ftnlen)40);

/*     Keep trying candidate segments until a segment can produce a */
/*     pointing instance within the specified time tolerance of the */
/*     input time. */

/*     Check FAILED to prevent an infinite loop if an error is detected */
/*     by a SPICELIB routine and the error handling is not set to abort. */

    while(sfnd && ! failed_()) {
	ckpfs_(&handle, descr, sclkdp, tol, &needav, cmat, av, clkout, &pfnd);
	if (pfnd) {

/*           Found one. If the C-matrix doesn't already rotate from the */
/*           requested frame, convert it to one that does. */

	    dafus_(descr, &c__2, &c__6, dcd, icd);
	    refseg = icd[1];

/*           Look up the id code for the requested reference frame. */

	    namfrm_(ref, &refreq, ref_len);
	    if (refreq != refseg) {

/*              We may need to convert the output ticks CLKOUT to ET */
/*              so that we can get the needed state transformation */
/*              matrix.  This is the case if either of the frames */
/*              is non-inertial. */

		frinfo_(&refreq, &center, &type1, &typeid, &gotit);
		frinfo_(&refseg, &center, &type2, &typeid, &gotit);
		if (type1 == 1 && type2 == 1) {

/*                 Any old value of ET will do in this case.  We'll */
/*                 use zero. */

		    et = 0.;
		} else {

/*                 Look up the spacecraft clock id to use to convert */
/*                 the output CLKOUT to ET. */

		    ckmeta_(inst, "SCLK", &sclk, (ftnlen)4);
		    sct2e_(&sclk, clkout, &et);
		}

/*              Get the transformation from the requested frame to */
/*              the segment frame at ET. */

		refchg_(&refreq, &refseg, &et, rot);

/*              If REFCHG detects that the reference frame is invalid */
/*              then return from this routine with FOUND equal to false. */

		if (failed_()) {
		    chkout_("CKGP", (ftnlen)4);
		    return 0;
		}

/*              Transform the attitude information: convert CMAT so that */
/*              it maps from request frame to C-matrix frame. */

		mxm_(cmat, rot, tmpmat);
		moved_(tmpmat, &c__9, cmat);
	    }
	    *found = TRUE_;
	    chkout_("CKGP", (ftnlen)4);
	    return 0;
	}
	cksns_(&handle, descr, segid, &sfnd, (ftnlen)40);
    }
Beispiel #2
0
/* $Procedure      CKFROT ( C-kernel, find rotation ) */
/* Subroutine */ int ckfrot_(integer *inst, doublereal *et, doublereal *
	rotate, integer *ref, logical *found)
{
    logical have, pfnd, sfnd;
    doublereal time;
    extern /* Subroutine */ int sce2c_(integer *, doublereal *, doublereal *);
    char segid[40];
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    doublereal descr[5];
    extern /* Subroutine */ int dafus_(doublereal *, integer *, integer *, 
	    doublereal *, integer *), ckbss_(integer *, doublereal *, 
	    doublereal *, logical *), ckpfs_(integer *, doublereal *, 
	    doublereal *, doublereal *, logical *, doublereal *, doublereal *,
	     doublereal *, logical *), cksns_(integer *, doublereal *, char *,
	     logical *, ftnlen), xpose_(doublereal *, doublereal *);
    extern logical failed_(void);
    doublereal av[3];
    integer handle;
    extern /* Subroutine */ int ckhave_(logical *);
    logical needav;
    extern /* Subroutine */ int ckmeta_(integer *, char *, integer *, ftnlen);
    integer sclkid;
    extern /* Subroutine */ int chkout_(char *, ftnlen);
    doublereal clkout;
    extern logical return_(void), zzsclk_(integer *, integer *);
    doublereal dcd[2];
    integer icd[6];
    doublereal tol, rot[9]	/* was [3][3] */;

/* $ Abstract */

/*     Find the rotation from a C-kernel Id to the native */
/*     frame at the time requested. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     CK */

/* $ Keywords */

/*     POINTING */

/* $ Declarations */
/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     INST       I   NAIF instrument ID. */
/*     ET         I   Epoch measured in seconds past J2000. */
/*     ROTATE     O   rotation from CK platform to frame REF. */
/*     REF        O   Reference frame. */
/*     FOUND      O   True when requested pointing is available. */

/* $ Detailed_Input */

/*     INST       is the unique NAIF integer ID for the spacecraft */
/*                instrument for which data is being requested. */

/*     ET         is the epoch for which the state rotation */
/*                is desired. ET should be given in seconds past the */
/*                epoch of J2000. */


/* $ Detailed_Output */

/*     ROTATE     is a rotation matrix that converts */
/*                positions relative to the input frame (given by INST) */
/*                to positions relative to the frame REF. */

/*                Thus, if a state S has components x,y,z,dx,dy,dz */
/*                in the frame of INST, frame, then S has components */
/*                x', y', z', dx', dy', dz' in frame REF. */

/*                     [  x' ]     [           ] [  x ] */
/*                     |  y' |  =  |   ROTATE  | |  y | */
/*                     [  z' ]     [           ] [  z ] */


/*     REF        is the id-code reference frame to which ROTATE will */
/*                transform states. */

/*     FOUND      is true if a record was found to satisfy the pointing */
/*                request.  FOUND will be false otherwise. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1)  If a C-kernel file is not loaded using CKLPF prior to calling */
/*         this routine, an error is signalled by a routine that this */
/*         routine calls. */


/* $ Files */

/*     CKFROT searches through files loaded by CKLPF to locate a segment */
/*     that can satisfy the request for position rotation */
/*     for instrument INST at time ET.  You must load a C-kernel */
/*     file using CKLPF before calling this routine. */

/* $ Particulars */

/*     CKFROT searches through files loaded by CKLPF to satisfy a */
/*     pointing request. Last-loaded files are searched first, and */
/*     individual files are searched in backwards order, giving */
/*     priority to segments that were added to a file later than the */
/*     others. CKFROT considers only those segments that contain */
/*     angular velocity data. */

/*     The search ends when a segment is found that can give pointing */
/*     for the specified instrument at the request time. */

/* $ Examples */

/*     None. */

/* $ Restrictions */

/*     A C-kernel file should have been loaded by CKLPF. */

/*     In addition it is helpful to load a CK-info file into the */
/*     Kernel pool.  This file should have the following variables */
/*     defined. */

/*       CK_<INST>_SCLK = SCLK idcode that yields SCLK mapping for INST. */
/*       CK_<INST>_SPK  = SPK idcode  that yields ephemeris for INST. */

/*     where <INST> is the integer string corresponding to INST. */

/* $ Literature_References */

/*     None. */

/* $ Author_and_Institution */

/*     W.L. Taber (JPL) */

/* $ Version */

/* -    SPICELIB Version 1.2.0, 17-FEB-2000 (WLT) */

/*        The routine now checks to make sure convert ET to TICKS */
/*        and that at least one C-kernel is loaded before trying */
/*        to look up the transformation.  Also the routine now calls */
/*        SCE2C instead of SCE2T. */

/* -    SPICELIB Version 1.0.0, 03-MAR-1999 (WLT) */

/* -& */
/* $ Index_Entries */

/*     get instrument frame rotation and reference frame */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */

/*        NDC        is the number of double precision components in an */
/*                   unpacked C-kernel segment descriptor. */

/*        NIC        is the number of integer components in an unpacked */
/*                   C-kernel segment descriptor. */

/*        NC         is the number of components in a packed C-kernel */
/*                   descriptor.  All DAF summaries have this formulaic */
/*                   relationship between the number of its integer and */
/*                   double precision components and the number of packed */
/*                   components. */

/*        IDLEN      is the length of the C-kernel segment identifier. */
/*                   All DAF names have this formulaic relationship */
/*                   between the number of summary components and */
/*                   the length of the name (You will notice that */
/*                   a name and a summary have the same length in bytes.) */


/*     Local variables */


/*     Set FOUND to FALSE right now in case we end up */
/*     returning before doing any work. */

    *found = FALSE_;
    *ref = 0;

/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("CKFROT", (ftnlen)6);
    }

/*     We don't need angular velocity data. */
/*     Assume the segment won't be found until it really is. */

    needav = FALSE_;
    tol = 0.;

/*     Begin a search for this instrument and time, and get the first */
/*     applicable segment. */

    ckhave_(&have);
    ckmeta_(inst, "SCLK", &sclkid, (ftnlen)4);
    if (! have) {
	chkout_("CKFROT", (ftnlen)6);
	return 0;
    } else if (! zzsclk_(inst, &sclkid)) {
	chkout_("CKFROT", (ftnlen)6);
	return 0;
    }
    sce2c_(&sclkid, et, &time);
    ckbss_(inst, &time, &tol, &needav);
    cksns_(&handle, descr, segid, &sfnd, (ftnlen)40);

/*     Keep trying candidate segments until a segment can produce a */
/*     pointing instance within the specified time tolerance of the */
/*     input time. */

/*     Check FAILED to prevent an infinite loop if an error is detected */
/*     by a SPICELIB routine and the error handling is not set to abort. */

    while(sfnd && ! failed_()) {
	ckpfs_(&handle, descr, &time, &tol, &needav, rot, av, &clkout, &pfnd);
	if (pfnd) {

/*           Found one. Fetch the ID code of the reference frame */
/*           from the descriptor. */

	    dafus_(descr, &c__2, &c__6, dcd, icd);
	    *ref = icd[1];
	    *found = TRUE_;

/*           We now have the rotation matrix from */
/*           REF to INS. We invert ROT to get the rotation */
/*           from INST to REF. */

	    xpose_(rot, rotate);
	    chkout_("CKFROT", (ftnlen)6);
	    return 0;
	}
	cksns_(&handle, descr, segid, &sfnd, (ftnlen)40);
    }
    chkout_("CKFROT", (ftnlen)6);
    return 0;
} /* ckfrot_ */