Beispiel #1
0
static void opencl_detect()
{
	int i;

	nDevs = clDevicesNum();
	if (nDevs < 0) {
		applog(LOG_ERR, "clDevicesNum returned error, no GPUs usable");
		nDevs = 0;
	}

	if (!nDevs)
		return;

	for (i = 0; i < nDevs; ++i) {
		struct cgpu_info *cgpu;

		cgpu = &gpus[i];
		cgpu->deven = DEV_ENABLED;
		cgpu->api = &opencl_api;
		cgpu->device_id = i;
		cgpu->threads = opt_g_threads;
		cgpu->virtual_gpu = i;
		add_cgpu(cgpu);
	}

	if (!opt_noadl)
		init_adl(nDevs);
}
static void opencl_detect(bool hotplug)
{
	int i;

	if (opt_nogpu || hotplug)
		return;
	nDevs = clDevicesNum();
	if (nDevs < 0) {
		applog(LOG_ERR, "clDevicesNum returned error, no GPUs usable");
		nDevs = 0;
	}

	if (!nDevs)
		return;

	/* If opt_g_threads is not set, use default 1 thread on scrypt and
	 * 2 for regular mining */
	if (opt_g_threads == -1) {
		if (opt_scrypt)
			opt_g_threads = 1;
		else
			opt_g_threads = 2;
	}

	if (opt_scrypt)
		opencl_drv.max_diff = 65536;

	for (i = 0; i < nDevs; ++i) {
		struct cgpu_info *cgpu;

		cgpu = &gpus[i];
		cgpu->deven = DEV_ENABLED;
		cgpu->drv = &opencl_drv;
		cgpu->device_id = i;
#ifndef HAVE_ADL
		cgpu->threads = opt_g_threads;
#else
		if (cgpu->threads < 1)
			cgpu->threads = 1;
#endif
		cgpu->virtual_gpu = i;
		add_cgpu(cgpu);
	}

	if (!opt_noadl)
		init_adl(nDevs);
}
Beispiel #3
0
static void opencl_detect(void)
{
  int i;

  nDevs = clDevicesNum();
  if (nDevs < 0) {
    applog(LOG_ERR, "clDevicesNum returned error, no GPUs usable");
    nDevs = 0;
  }

  if (!nDevs)
    return;

  /* If opt_g_threads is not set, use default 1 thread */
  if (opt_g_threads == -1)
    opt_g_threads = 1;

  opencl_drv.max_diff = 65536;

  for (i = 0; i < nDevs; ++i) {
    struct cgpu_info *cgpu;

    cgpu = &gpus[i];
    cgpu->deven = DEV_ENABLED;
    cgpu->drv = &opencl_drv;
    cgpu->thr = NULL;
    cgpu->device_id = i;
#ifndef HAVE_ADL
    cgpu->threads = opt_g_threads;
#else
    if (cgpu->threads < 1)
      cgpu->threads = 1;
#endif
    cgpu->virtual_gpu = i;
    cgpu->algorithm = default_profile.algorithm;
    add_cgpu(cgpu);
  }

  if (!opt_noadl)
    init_adl(nDevs);
}
Beispiel #4
0
/* We have only one thread that ever re-initialises GPUs, thus if any GPU
 * init command fails due to a completely wedged GPU, the thread will never
 * return, unable to harm other GPUs. If it does return, it means we only had
 * a soft failure and then the reinit_gpu thread is ready to tackle another
 * GPU */
void *reinit_gpu(void *userdata)
{
	struct thr_info *mythr = userdata;
	struct cgpu_info *cgpu;
	struct thr_info *thr;
	struct timeval now;
	char name[256];
	int thr_id;
	int gpu;

	pthread_detach(pthread_self());

select_cgpu:
	cgpu = tq_pop(mythr->q, NULL);
	if (!cgpu)
		goto out;

	if (clDevicesNum() != nDevs) {
		applog(LOG_WARNING, "Hardware not reporting same number of active devices, will not attempt to restart GPU");
		goto out;
	}

	gpu = cgpu->device_id;

	for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
		thr = &thr_info[thr_id];
		cgpu = thr->cgpu;
		if (cgpu->api != &opencl_api)
			continue;
		if (dev_from_id(thr_id) != gpu)
			continue;

		thr = &thr_info[thr_id];
		if (!thr) {
			applog(LOG_WARNING, "No reference to thread %d exists", thr_id);
			continue;
		}

		thr->rolling = thr->cgpu->rolling = 0;
		/* Reports the last time we tried to revive a sick GPU */
		gettimeofday(&thr->sick, NULL);
		if (!pthread_cancel(thr->pth)) {
			applog(LOG_WARNING, "Thread %d still exists, killing it off", thr_id);
		} else
			applog(LOG_WARNING, "Thread %d no longer exists", thr_id);
	}

	for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
		int virtual_gpu;

		thr = &thr_info[thr_id];
		cgpu = thr->cgpu;
		if (cgpu->api != &opencl_api)
			continue;
		if (dev_from_id(thr_id) != gpu)
			continue;

		virtual_gpu = cgpu->virtual_gpu;
		/* Lose this ram cause we may get stuck here! */
		//tq_freeze(thr->q);

		thr->q = tq_new();
		if (!thr->q)
			quit(1, "Failed to tq_new in reinit_gpu");

		/* Lose this ram cause we may dereference in the dying thread! */
		//free(clState);

		applog(LOG_INFO, "Reinit GPU thread %d", thr_id);
		clStates[thr_id] = initCl(virtual_gpu, name, sizeof(name));
		if (!clStates[thr_id]) {
			applog(LOG_ERR, "Failed to reinit GPU thread %d", thr_id);
			goto select_cgpu;
		}
		applog(LOG_INFO, "initCl() finished. Found %s", name);

		if (unlikely(thr_info_create(thr, NULL, miner_thread, thr))) {
			applog(LOG_ERR, "thread %d create failed", thr_id);
			return NULL;
		}
		applog(LOG_WARNING, "Thread %d restarted", thr_id);
	}

	gettimeofday(&now, NULL);
	get_datestamp(cgpu->init, &now);

	for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
		thr = &thr_info[thr_id];
		cgpu = thr->cgpu;
		if (cgpu->api != &opencl_api)
			continue;
		if (dev_from_id(thr_id) != gpu)
			continue;

		tq_push(thr->q, &ping);
	}

	goto select_cgpu;
out:
	return NULL;
}
Beispiel #5
0
_clState *initCl(int platform_id, unsigned int gpu, char *name, size_t nameSize)
{
	_clState *clState = (_clState *)calloc(1, sizeof(_clState));
	bool patchbfi = false, prog_built = false;
	struct cgpu_info *cgpu = &gpus[gpu];
	cl_platform_id platform = NULL;
	char pbuff[256], vbuff[255];
	cl_platform_id* platforms;
	cl_uint preferred_vwidth;
	cl_device_id *devices;
	cl_uint numPlatforms;
	cl_uint numDevices;
	cl_int status;

	if (opt_platform_id < 0) {
		clDevicesNum();
	}

    if (opt_platform_id < 0) {
		applog(LOG_ERR, "Unable to find a OpenCL platform to run on");
        return NULL;
    }

	status = clGetPlatformIDs(0, NULL, &numPlatforms);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Getting Platforms. (clGetPlatformsIDs)", status);
		return NULL;
	}

	platforms = (cl_platform_id *)alloca(numPlatforms*sizeof(cl_platform_id));
	status = clGetPlatformIDs(numPlatforms, platforms, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Getting Platform Ids. (clGetPlatformsIDs)", status);
		return NULL;
	}

	if (platform_id >= (int)numPlatforms) {
		applog(LOG_ERR, "Specified platform that does not exist");
		return NULL;
	}

	status = clGetPlatformInfo(platforms[platform_id], CL_PLATFORM_VENDOR, sizeof(pbuff), pbuff, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Getting Platform Info. (clGetPlatformInfo)", status);
		return NULL;
	}
	platform = platforms[platform_id];

	if (platform == NULL) {
		perror("NULL platform found!\n");
		return NULL;
	}

	applog(LOG_INFO, "CL Platform vendor: %s", pbuff);
	status = clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(pbuff), pbuff, NULL);
	if (status == CL_SUCCESS)
		applog(LOG_INFO, "CL Platform name: %s", pbuff);
	status = clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof(vbuff), vbuff, NULL);
	if (status == CL_SUCCESS)
		applog(LOG_INFO, "CL Platform version: %s", vbuff);

	status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Getting Device IDs (num)", status);
		return NULL;
	}

	if (numDevices > 0 ) {
		devices = (cl_device_id *)malloc(numDevices*sizeof(cl_device_id));

		/* Now, get the device list data */

		status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error %d: Getting Device IDs (list)", status);
			return NULL;
		}

		applog(LOG_INFO, "List of devices:");

		unsigned int i;
		for (i = 0; i < numDevices; i++) {
			status = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
			if (status != CL_SUCCESS) {
				applog(LOG_ERR, "Error %d: Getting Device Info", status);
				return NULL;
			}

			applog(LOG_INFO, "\t%i\t%s", i, pbuff);
		}

		if (cgpu->device_id < numDevices) {
			status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
			if (status != CL_SUCCESS) {
				applog(LOG_ERR, "Error %d: Getting Device Info", status);
				return NULL;
			}

			applog(LOG_INFO, "Selected %i: %s", cgpu->device_id, pbuff);
			strncpy(name, pbuff, nameSize);
		} else {
			applog(LOG_ERR, "Invalid GPU %d %d", cgpu->platform_id, cgpu->device_id);
			return NULL;
		}

	} else return NULL;

	cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0 };

	clState->context = clCreateContextFromType(cps, CL_DEVICE_TYPE_GPU, NULL, NULL, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Creating Context. (clCreateContextFromType)", status);
		return NULL;
	}

	/////////////////////////////////////////////////////////////////
	// Create an OpenCL command queue
	/////////////////////////////////////////////////////////////////
	clState->commandQueue = clCreateCommandQueue(clState->context, devices[cgpu->device_id],
						     CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &status);
	if (status != CL_SUCCESS) /* Try again without OOE enable */
		clState->commandQueue = clCreateCommandQueue(clState->context, devices[cgpu->device_id], 0 , &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Creating Command Queue. (clCreateCommandQueue)", status);
		return NULL;
	}

	/* Check for BFI INT support. Hopefully people don't mix devices with
	 * and without it! */
	char * extensions = (char *)malloc(1024);
	const char * camo = "cl_amd_media_ops";
	char *find;

	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_EXTENSIONS, 1024, (void *)extensions, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_EXTENSIONS", status);
		return NULL;
	}
	find = strstr(extensions, camo);
	if (find)
		clState->hasBitAlign = true;

	/* Check for OpenCL >= 1.0 support, needed for global offset parameter usage. */
	char * devoclver = (char *)malloc(1024);
	const char * ocl10 = "OpenCL 1.0";
	const char * ocl11 = "OpenCL 1.1";

	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_VERSION, 1024, (void *)devoclver, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_VERSION", status);
		return NULL;
	}
	find = strstr(devoclver, ocl10);
	if (!find) {
		clState->hasOpenCL11plus = true;
		find = strstr(devoclver, ocl11);
		if (!find)
			clState->hasOpenCL12plus = true;
	}

	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), (void *)&preferred_vwidth, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT", status);
		return NULL;
	}
	applog(LOG_DEBUG, "Preferred vector width reported %d", preferred_vwidth);

	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&clState->max_work_size, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_WORK_GROUP_SIZE", status);
		return NULL;
	}
	applog(LOG_DEBUG, "Max work group size reported %d", (int)(clState->max_work_size));

	size_t compute_units = 0;
	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(size_t), (void *)&compute_units, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_COMPUTE_UNITS", status);
		return NULL;
	}
	// AMD architechture got 64 compute shaders per compute unit.
	// Source: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
	clState->compute_shaders = compute_units * 64;
	applog(LOG_DEBUG, "Max shaders calculated %d", (int)(clState->compute_shaders));

	status = clGetDeviceInfo(devices[cgpu->device_id], CL_DEVICE_MAX_MEM_ALLOC_SIZE , sizeof(cl_ulong), (void *)&cgpu->max_alloc, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_MEM_ALLOC_SIZE", status);
		return NULL;
	}
	applog(LOG_DEBUG, "Max mem alloc size is %lu", (long unsigned int)(cgpu->max_alloc));

	/* Create binary filename based on parameters passed to opencl
	 * compiler to ensure we only load a binary that matches what would
	 * have otherwise created. The filename is:
	 * name + kernelname +/- g(offset) + v + vectors + w + work_size + l + sizeof(long) + .bin
	 * For scrypt the filename is:
	 * name + kernelname + g + lg + lookup_gap + tc + thread_concurrency + w + work_size + l + sizeof(long) + .bin
	 */
	char binaryfilename[255];
	char filename[255];
	char strbuf[32];

	if (cgpu->kernelname == NULL) {
		applog(LOG_INFO, "No kernel specified, defaulting to ckolivas");
		cgpu->kernelname = strdup("ckolivas");
	}

	sprintf(strbuf, "%s.cl", cgpu->kernelname);
	strcpy(filename, strbuf);
	strcpy(binaryfilename, cgpu->kernelname);

	if ((strcmp(cgpu->kernelname, "zuikkis") == 0) && (cgpu->lookup_gap != 2)) {
		applog(LOG_WARNING, "Kernel zuikkis only supports lookup-gap = 2, forcing.");
		cgpu->lookup_gap = 2;
	}

	/* For some reason 2 vectors is still better even if the card says
	 * otherwise, and many cards lie about their max so use 256 as max
	 * unless explicitly set on the command line. Tahiti prefers 1 */
	if (strstr(name, "Tahiti"))
		preferred_vwidth = 1;
	else if (preferred_vwidth > 2)
		preferred_vwidth = 2;

	/* All available kernels only support vector 1 */
	cgpu->vwidth = 1;

	/* Vectors are hard-set to 1 above. */
	if (likely(cgpu->vwidth))
		clState->vwidth = cgpu->vwidth;
	else {
		clState->vwidth = preferred_vwidth;
		cgpu->vwidth = preferred_vwidth;
	}

	clState->goffset = true;

	if (cgpu->work_size && cgpu->work_size <= clState->max_work_size)
		clState->wsize = cgpu->work_size;
	else
		clState->wsize = 256;

	if (!cgpu->opt_lg) {
		applog(LOG_DEBUG, "GPU %d: selecting lookup gap of 2", cgpu->virtual_gpu);
		cgpu->lookup_gap = 2;
	} else
		cgpu->lookup_gap = cgpu->opt_lg;

	if (!cgpu->opt_tc) {
		unsigned int sixtyfours;

		sixtyfours =  cgpu->max_alloc / 131072 / 64 / (algorithm->n/1024) - 1;
		cgpu->thread_concurrency = sixtyfours * 64;
		if (cgpu->shaders && cgpu->thread_concurrency > cgpu->shaders) {
			cgpu->thread_concurrency -= cgpu->thread_concurrency % cgpu->shaders;
			if (cgpu->thread_concurrency > cgpu->shaders * 5)
				cgpu->thread_concurrency = cgpu->shaders * 5;
		}
		applog(LOG_DEBUG, "GPU %d: selecting thread concurrency of %d", cgpu->virtual_gpu, (int)(cgpu->thread_concurrency));
	} else
		cgpu->thread_concurrency = cgpu->opt_tc;


	FILE *binaryfile;
	size_t *binary_sizes;
	char **binaries;
	int pl;
	char *source = file_contents(filename, &pl);
	size_t sourceSize[] = {(size_t)pl};
	cl_uint slot, cpnd;

	slot = cpnd = 0;

	if (!source)
		return NULL;

	binary_sizes = (size_t *)calloc(sizeof(size_t) * MAX_GPUDEVICES * 4, 1);
	if (unlikely(!binary_sizes)) {
		applog(LOG_ERR, "Unable to calloc binary_sizes");
		return NULL;
	}
	binaries = (char **)calloc(sizeof(char *) * MAX_GPUDEVICES * 4, 1);
	if (unlikely(!binaries)) {
		applog(LOG_ERR, "Unable to calloc binaries");
		return NULL;
	}

	strcat(binaryfilename, name);
	if (clState->goffset)
		strcat(binaryfilename, "g");

	sprintf(strbuf, "lg%utc%unf%u", cgpu->lookup_gap, (unsigned int)cgpu->thread_concurrency, algorithm->nfactor);
	strcat(binaryfilename, strbuf);

	sprintf(strbuf, "w%d", (int)clState->wsize);
	strcat(binaryfilename, strbuf);
	sprintf(strbuf, "l%d", (int)sizeof(long));
	strcat(binaryfilename, strbuf);
	strcat(binaryfilename, ".bin");

	binaryfile = fopen(binaryfilename, "rb");
	if (!binaryfile) {
		applog(LOG_DEBUG, "No binary found, generating from source");
	} else {
		struct stat binary_stat;

		if (unlikely(stat(binaryfilename, &binary_stat))) {
			applog(LOG_DEBUG, "Unable to stat binary, generating from source");
			fclose(binaryfile);
			goto build;
		}
		if (!binary_stat.st_size)
			goto build;

		binary_sizes[slot] = binary_stat.st_size;
		binaries[slot] = (char *)calloc(binary_sizes[slot], 1);
		if (unlikely(!binaries[slot])) {
			applog(LOG_ERR, "Unable to calloc binaries");
			fclose(binaryfile);
			return NULL;
		}

		if (fread(binaries[slot], 1, binary_sizes[slot], binaryfile) != binary_sizes[slot]) {
			applog(LOG_ERR, "Unable to fread binaries");
			fclose(binaryfile);
			free(binaries[slot]);
			goto build;
		}

		clState->program = clCreateProgramWithBinary(clState->context, 1, &devices[cgpu->device_id], &binary_sizes[slot], (const unsigned char **)binaries, &status, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error %d: Loading Binary into cl_program (clCreateProgramWithBinary)", status);
			fclose(binaryfile);
			free(binaries[slot]);
			goto build;
		}

		fclose(binaryfile);
		applog(LOG_DEBUG, "Loaded binary image %s", binaryfilename);

		goto built;
	}

	/////////////////////////////////////////////////////////////////
	// Load CL file, build CL program object, create CL kernel object
	/////////////////////////////////////////////////////////////////

build:
	applog(LOG_NOTICE, "Building binary %s", binaryfilename);

	clState->program = clCreateProgramWithSource(clState->context, 1, (const char **)&source, sourceSize, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Loading Binary into cl_program (clCreateProgramWithSource)", status);
		return NULL;
	}

	/* create a cl program executable for all the devices specified */
	char *CompilerOptions = (char *)calloc(1, 256);

	sprintf(CompilerOptions, "-D LOOKUP_GAP=%d -D CONCURRENT_THREADS=%d -D WORKSIZE=%d -D NFACTOR=%d",
			cgpu->lookup_gap, (unsigned int)cgpu->thread_concurrency, (int)clState->wsize, (unsigned int)algorithm->nfactor);

	applog(LOG_DEBUG, "Setting worksize to %d", (int)(clState->wsize));
	if (clState->vwidth > 1)
		applog(LOG_DEBUG, "Patched source to suit %d vectors", clState->vwidth);

	if (clState->hasBitAlign) {
		strcat(CompilerOptions, " -D BITALIGN");
		applog(LOG_DEBUG, "cl_amd_media_ops found, setting BITALIGN");
		if (!clState->hasOpenCL12plus &&
		    (strstr(name, "Cedar") ||
		     strstr(name, "Redwood") ||
		     strstr(name, "Juniper") ||
		     strstr(name, "Cypress" ) ||
		     strstr(name, "Hemlock" ) ||
		     strstr(name, "Caicos" ) ||
		     strstr(name, "Turks" ) ||
		     strstr(name, "Barts" ) ||
		     strstr(name, "Cayman" ) ||
		     strstr(name, "Antilles" ) ||
		     strstr(name, "Wrestler" ) ||
		     strstr(name, "Zacate" ) ||
		     strstr(name, "WinterPark" )))
			patchbfi = true;
	} else
		applog(LOG_DEBUG, "cl_amd_media_ops not found, will not set BITALIGN");

	if (patchbfi) {
		strcat(CompilerOptions, " -D BFI_INT");
		applog(LOG_DEBUG, "BFI_INT patch requiring device found, patched source with BFI_INT");
	} else
		applog(LOG_DEBUG, "BFI_INT patch requiring device not found, will not BFI_INT patch");

	if (clState->goffset)
		strcat(CompilerOptions, " -D GOFFSET");

	if (!clState->hasOpenCL11plus)
		strcat(CompilerOptions, " -D OCL1");

	applog(LOG_DEBUG, "CompilerOptions: %s", CompilerOptions);
	status = clBuildProgram(clState->program, 1, &devices[cgpu->device_id], CompilerOptions , NULL, NULL);
	free(CompilerOptions);

	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Building Program (clBuildProgram)", status);
		size_t logSize;
		status = clGetProgramBuildInfo(clState->program, devices[cgpu->device_id], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);

		char *log = (char *)malloc(logSize);
		status = clGetProgramBuildInfo(clState->program, devices[cgpu->device_id], CL_PROGRAM_BUILD_LOG, logSize, log, NULL);
		applog(LOG_ERR, "%s", log);
		return NULL;
	}

	prog_built = true;

#ifdef __APPLE__
	/* OSX OpenCL breaks reading off binaries with >1 GPU so always build
	 * from source. */
	goto built;
#endif

	status = clGetProgramInfo(clState->program, CL_PROGRAM_NUM_DEVICES, sizeof(cl_uint), &cpnd, NULL);
	if (unlikely(status != CL_SUCCESS)) {
		applog(LOG_ERR, "Error %d: Getting program info CL_PROGRAM_NUM_DEVICES. (clGetProgramInfo)", status);
		return NULL;
	}

	status = clGetProgramInfo(clState->program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t)*cpnd, binary_sizes, NULL);
	if (unlikely(status != CL_SUCCESS)) {
		applog(LOG_ERR, "Error %d: Getting program info CL_PROGRAM_BINARY_SIZES. (clGetProgramInfo)", status);
		return NULL;
	}

	/* The actual compiled binary ends up in a RANDOM slot! Grr, so we have
	 * to iterate over all the binary slots and find where the real program
	 * is. What the heck is this!? */
	for (slot = 0; slot < cpnd; slot++)
		if (binary_sizes[slot])
			break;

	/* copy over all of the generated binaries. */
	applog(LOG_DEBUG, "Binary size for gpu %d found in binary slot %d: %d", cgpu->virtual_gpu, slot, (int)(binary_sizes[slot]));
	if (!binary_sizes[slot]) {
		applog(LOG_ERR, "OpenCL compiler generated a zero sized binary, FAIL!");
		return NULL;
	}
	binaries[slot] = (char *)calloc(sizeof(char)* binary_sizes[slot], 1);
	status = clGetProgramInfo(clState->program, CL_PROGRAM_BINARIES, sizeof(char *) * cpnd, binaries, NULL );
	if (unlikely(status != CL_SUCCESS)) {
		applog(LOG_ERR, "Error %d: Getting program info. CL_PROGRAM_BINARIES (clGetProgramInfo)", status);
		return NULL;
	}

	/* Patch the kernel if the hardware supports BFI_INT but it needs to
	 * be hacked in */
	if (patchbfi) {
		unsigned remaining = binary_sizes[slot];
		char *w = binaries[slot];
		unsigned int start, length;

		/* Find 2nd incidence of .text, and copy the program's
		* position and length at a fixed offset from that. Then go
		* back and find the 2nd incidence of \x7ELF (rewind by one
		* from ELF) and then patch the opcocdes */
		if (!advance(&w, &remaining, ".text"))
			goto build;
		w++; remaining--;
		if (!advance(&w, &remaining, ".text")) {
			/* 32 bit builds only one ELF */
			w--; remaining++;
		}
		memcpy(&start, w + 285, 4);
		memcpy(&length, w + 289, 4);
		w = binaries[slot]; remaining = binary_sizes[slot];
		if (!advance(&w, &remaining, "ELF"))
			goto build;
		w++; remaining--;
		if (!advance(&w, &remaining, "ELF")) {
			/* 32 bit builds only one ELF */
			w--; remaining++;
		}
		w--; remaining++;
		w += start; remaining -= start;
		applog(LOG_DEBUG, "At %p (%u rem. bytes), to begin patching",
			w, remaining);
		patch_opcodes(w, length);

		status = clReleaseProgram(clState->program);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error %d: Releasing program. (clReleaseProgram)", status);
			return NULL;
		}

		clState->program = clCreateProgramWithBinary(clState->context, 1, &devices[cgpu->device_id], &binary_sizes[slot], (const unsigned char **)&binaries[slot], &status, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error %d: Loading Binary into cl_program (clCreateProgramWithBinary)", status);
			return NULL;
		}

		/* Program needs to be rebuilt */
		prog_built = false;
	}

	free(source);

	/* Save the binary to be loaded next time */
	binaryfile = fopen(binaryfilename, "wb");
	if (!binaryfile) {
		/* Not fatal, just means we build it again next time */
		applog(LOG_DEBUG, "Unable to create file %s", binaryfilename);
	} else {
		if (unlikely(fwrite(binaries[slot], 1, binary_sizes[slot], binaryfile) != binary_sizes[slot])) {
			applog(LOG_ERR, "Unable to fwrite to binaryfile");
			return NULL;
		}
		fclose(binaryfile);
	}
built:
	if (binaries[slot])
		free(binaries[slot]);
	free(binaries);
	free(binary_sizes);

	applog(LOG_NOTICE, "Initialising kernel %s with%s bitalign, %spatched BFI",
	       filename, clState->hasBitAlign ? "" : "out", patchbfi ? "" : "un");

	if (!prog_built) {
		/* create a cl program executable for all the devices specified */
		status = clBuildProgram(clState->program, 1, &devices[cgpu->device_id], NULL, NULL, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error %d: Building Program (clBuildProgram)", status);
			size_t logSize;
			status = clGetProgramBuildInfo(clState->program, devices[cgpu->device_id], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);

			char *log = (char *)malloc(logSize);
			status = clGetProgramBuildInfo(clState->program, devices[cgpu->device_id], CL_PROGRAM_BUILD_LOG, logSize, log, NULL);
			applog(LOG_ERR, "%s", log);
			return NULL;
		}
	}

	/* get a kernel object handle for a kernel with the given name */
	clState->kernel = clCreateKernel(clState->program, "search", &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: Creating Kernel from program. (clCreateKernel)", status);
		return NULL;
	}

	size_t ipt = (algorithm->n / cgpu->lookup_gap +
		      (algorithm->n % cgpu->lookup_gap > 0));
	size_t bufsize = 128 * ipt * cgpu->thread_concurrency;

	/* Use the max alloc value which has been rounded to a power of
	 * 2 greater >= required amount earlier */
	if (bufsize > cgpu->max_alloc) {
		applog(LOG_WARNING, "Maximum buffer memory device %d supports says %lu",
			   cgpu->virtual_gpu, (unsigned long)(cgpu->max_alloc));
		applog(LOG_WARNING, "Your scrypt settings come to %lu", (unsigned long)bufsize);
	}
	applog(LOG_DEBUG, "Creating scrypt buffer sized %lu", (unsigned long)bufsize);
	clState->padbufsize = bufsize;

	/* This buffer is weird and might work to some degree even if
	 * the create buffer call has apparently failed, so check if we
	 * get anything back before we call it a failure. */
	clState->padbuffer8 = NULL;
	clState->padbuffer8 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, bufsize, NULL, &status);
	if (status != CL_SUCCESS && !clState->padbuffer8) {
		applog(LOG_ERR, "Error %d: clCreateBuffer (padbuffer8), decrease TC or increase LG", status);
		return NULL;
	}

	clState->CLbuffer0 = clCreateBuffer(clState->context, CL_MEM_READ_ONLY, 128, NULL, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: clCreateBuffer (CLbuffer0)", status);
		return NULL;
	}
	clState->outputBuffer = clCreateBuffer(clState->context, CL_MEM_WRITE_ONLY, BUFFERSIZE, NULL, &status);

	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error %d: clCreateBuffer (outputBuffer)", status);
		return NULL;
	}

	return clState;
}
Beispiel #6
0
/* We have only one thread that ever re-initialises GPUs, thus if any GPU
 * init command fails due to a completely wedged GPU, the thread will never
 * return, unable to harm other GPUs. If it does return, it means we only had
 * a soft failure and then the reinit_gpu thread is ready to tackle another
 * GPU */
void *reinit_gpu(void *userdata)
{
  struct thr_info *mythr = (struct thr_info *)userdata;
  struct cgpu_info *cgpu;
  struct thr_info *thr;
  struct timeval now;
  char name[256];
  int thr_id;
  int gpu;

  pthread_detach(pthread_self());

select_cgpu:
  cgpu = (struct cgpu_info *)tq_pop(mythr->q, NULL);
  if (!cgpu)
    goto out;

  if (clDevicesNum() != nDevs) {
    applog(LOG_WARNING, "Hardware not reporting same number of active devices, will not attempt to restart GPU");
    goto out;
  }

  gpu = cgpu->device_id;

  rd_lock(&mining_thr_lock);
  for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
    thr = mining_thr[thr_id];
    cgpu = thr->cgpu;
    if (cgpu->drv->drv_id != DRIVER_opencl)
      continue;
    if (dev_from_id(thr_id) != gpu)
      continue;

    thr->rolling = thr->cgpu->rolling = 0;
    /* Reports the last time we tried to revive a sick GPU */
    cgtime(&thr->sick);
    if (!pthread_kill(thr->pth, 0)) {
      applog(LOG_WARNING, "Thread %d still exists, killing it off", thr_id);
      cg_completion_timeout(&thr_info_cancel_join, thr, 5000);
      thr->cgpu->drv->thread_shutdown(thr);
    } else
      applog(LOG_WARNING, "Thread %d no longer exists", thr_id);
  }
  rd_unlock(&mining_thr_lock);

  rd_lock(&mining_thr_lock);
  for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
    int virtual_gpu;

    thr = mining_thr[thr_id];
    cgpu = thr->cgpu;
    if (cgpu->drv->drv_id != DRIVER_opencl)
      continue;
    if (dev_from_id(thr_id) != gpu)
      continue;

    virtual_gpu = cgpu->virtual_gpu;
    /* Lose this ram cause we may get stuck here! */
    //tq_freeze(thr->q);

    thr->q = tq_new();
    if (!thr->q)
      quit(1, "Failed to tq_new in reinit_gpu");

    /* Lose this ram cause we may dereference in the dying thread! */
    //free(clState);

    applog(LOG_INFO, "Reinit GPU thread %d", thr_id);
    clStates[thr_id] = initCl(virtual_gpu, name, sizeof(name), &cgpu->algorithm);
    if (!clStates[thr_id]) {
      applog(LOG_ERR, "Failed to reinit GPU thread %d", thr_id);
      goto select_cgpu;
    }
    applog(LOG_INFO, "initCl() finished. Found %s", name);

    if (unlikely(thr_info_create(thr, NULL, miner_thread, thr))) {
      applog(LOG_ERR, "thread %d create failed", thr_id);
      return NULL;
    }
    applog(LOG_WARNING, "Thread %d restarted", thr_id);
  }
  rd_unlock(&mining_thr_lock);

  cgtime(&now);
  get_datestamp(cgpu->init, sizeof(cgpu->init), &now);

  rd_lock(&mining_thr_lock);
  for (thr_id = 0; thr_id < mining_threads; ++thr_id) {
    thr = mining_thr[thr_id];
    cgpu = thr->cgpu;
    if (cgpu->drv->drv_id != DRIVER_opencl)
      continue;
    if (dev_from_id(thr_id) != gpu)
      continue;

    cgsem_post(&thr->sem);
  }
  rd_unlock(&mining_thr_lock);

  goto select_cgpu;
out:
  return NULL;
}
Beispiel #7
0
_clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *algorithm)
{
  _clState *clState = (_clState *)calloc(1, sizeof(_clState));
  struct cgpu_info *cgpu = &gpus[gpu];
  cl_platform_id platform = NULL;
  char pbuff[256];
  build_kernel_data *build_data = (build_kernel_data *) alloca(sizeof(struct _build_kernel_data));
  cl_uint preferred_vwidth;
  cl_device_id *devices;
  cl_uint numDevices;
  cl_int status;

  if (!get_opencl_platform(opt_platform_id, &platform)) {
    return NULL;
  }

  numDevices = clDevicesNum();

  if (numDevices <= 0 ) return NULL;

  devices = (cl_device_id *)alloca(numDevices*sizeof(cl_device_id));

  /* Now, get the device list data */

  status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Getting Device IDs (list)", status);
    return NULL;
  }

  applog(LOG_INFO, "List of devices:");

  unsigned int i;
  for (i = 0; i < numDevices; i++) {
    status = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
    if (status != CL_SUCCESS) {
      applog(LOG_ERR, "Error %d: Getting Device Info", status);
      return NULL;
    }

    applog(LOG_INFO, "\t%i\t%s", i, pbuff);

    if (i == gpu) {
      applog(LOG_INFO, "Selected %i: %s", gpu, pbuff);
      strncpy(name, pbuff, nameSize);
    }
  }

  if (gpu >= numDevices) {
    applog(LOG_ERR, "Invalid GPU %i", gpu);
    return NULL;
  }

  status = create_opencl_context(&clState->context, &platform);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Creating Context. (clCreateContextFromType)", status);
    return NULL;
  }

  status = create_opencl_command_queue(&clState->commandQueue, &clState->context, &devices[gpu], cgpu->algorithm.cq_properties);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Creating Command Queue. (clCreateCommandQueue)", status);
    return NULL;
  }

  clState->hasBitAlign = get_opencl_bit_align_support(&devices[gpu]);

  status = clGetDeviceInfo(devices[gpu], CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), (void *)&preferred_vwidth, NULL);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT", status);
    return NULL;
  }
  applog(LOG_DEBUG, "Preferred vector width reported %d", preferred_vwidth);

  status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&clState->max_work_size, NULL);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_WORK_GROUP_SIZE", status);
    return NULL;
  }
  applog(LOG_DEBUG, "Max work group size reported %d", (int)(clState->max_work_size));

  size_t compute_units = 0;
  status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(size_t), (void *)&compute_units, NULL);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_COMPUTE_UNITS", status);
    return NULL;
  }
  // AMD architechture got 64 compute shaders per compute unit.
  // Source: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
  clState->compute_shaders = compute_units * 64;
  applog(LOG_DEBUG, "Max shaders calculated %d", (int)(clState->compute_shaders));

  status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_MEM_ALLOC_SIZE , sizeof(cl_ulong), (void *)&cgpu->max_alloc, NULL);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_MEM_ALLOC_SIZE", status);
    return NULL;
  }
  applog(LOG_DEBUG, "Max mem alloc size is %lu", (long unsigned int)(cgpu->max_alloc));

  /* Create binary filename based on parameters passed to opencl
   * compiler to ensure we only load a binary that matches what
   * would have otherwise created. The filename is:
   * name + g + lg + lookup_gap + tc + thread_concurrency + nf + nfactor + w + work_size + l + sizeof(long) + .bin
   */
  char filename[255];
  char strbuf[32];

  if (cgpu->kernelname == NULL) {
    applog(LOG_INFO, "No kernel specified, defaulting to %s", algorithm->kernelname);
    cgpu->kernelname = algorithm->kernelname;
  }

  sprintf(strbuf, "%s.cl", cgpu->kernelname);
  strcpy(filename, strbuf);

  /* For some reason 2 vectors is still better even if the card says
   * otherwise, and many cards lie about their max so use 256 as max
   * unless explicitly set on the command line. Tahiti prefers 1 */
  if (strstr(name, "Tahiti"))
    preferred_vwidth = 1;
  else if (preferred_vwidth > 2)
    preferred_vwidth = 2;

  /* All available kernels only support vector 1 */
  cgpu->vwidth = 1;

  /* Vectors are hard-set to 1 above. */
  if (likely(cgpu->vwidth))
    clState->vwidth = cgpu->vwidth;
  else {
    clState->vwidth = preferred_vwidth;
    cgpu->vwidth = preferred_vwidth;
  }

  clState->goffset = true;

  if (cgpu->work_size && cgpu->work_size <= clState->max_work_size)
    clState->wsize = cgpu->work_size;
  else
    clState->wsize = 256;

  if (!cgpu->opt_lg) {
    applog(LOG_DEBUG, "GPU %d: selecting lookup gap of 2", gpu);
    cgpu->lookup_gap = 2;
  } else
    cgpu->lookup_gap = cgpu->opt_lg;

  if ((strcmp(cgpu->kernelname, "zuikkis") == 0) && (cgpu->lookup_gap != 2)) {
    applog(LOG_WARNING, "Kernel zuikkis only supports lookup-gap = 2 (currently %d), forcing.", cgpu->lookup_gap);
    cgpu->lookup_gap = 2;
  }

  if ((strcmp(cgpu->kernelname, "bufius") == 0) && ((cgpu->lookup_gap != 2) && (cgpu->lookup_gap != 4) && (cgpu->lookup_gap != 8))) {
    applog(LOG_WARNING, "Kernel bufius only supports lookup-gap of 2, 4 or 8 (currently %d), forcing to 2", cgpu->lookup_gap);
    cgpu->lookup_gap = 2;
  }

  if (!cgpu->opt_tc) {
    unsigned int sixtyfours;

    sixtyfours =  cgpu->max_alloc / 131072 / 64 / (algorithm->n/1024) - 1;
    cgpu->thread_concurrency = sixtyfours * 64;
    if (cgpu->shaders && cgpu->thread_concurrency > cgpu->shaders) {
      cgpu->thread_concurrency -= cgpu->thread_concurrency % cgpu->shaders;
      if (cgpu->thread_concurrency > cgpu->shaders * 5)
        cgpu->thread_concurrency = cgpu->shaders * 5;
    }
    applog(LOG_DEBUG, "GPU %d: selecting thread concurrency of %d", gpu, (int)(cgpu->thread_concurrency));
  } else
    cgpu->thread_concurrency = cgpu->opt_tc;


  cl_uint slot, cpnd;

  slot = cpnd = 0;

  build_data->context = clState->context;
  build_data->device = &devices[gpu];

  // Build information
  strcpy(build_data->source_filename, filename);
  strcpy(build_data->platform, name);
  strcpy(build_data->sgminer_path, sgminer_path);
  if (opt_kernel_path && *opt_kernel_path) {
    build_data->kernel_path = opt_kernel_path;
  }
  else {
    build_data->kernel_path = NULL;
  }

  build_data->work_size = clState->wsize;
  build_data->has_bit_align = clState->hasBitAlign;

  build_data->opencl_version = get_opencl_version(devices[gpu]);
  build_data->patch_bfi = needs_bfi_patch(build_data);

  strcpy(build_data->binary_filename, cgpu->kernelname);
  strcat(build_data->binary_filename, name);
  if (clState->goffset)
    strcat(build_data->binary_filename, "g");

  set_base_compiler_options(build_data);
  if (algorithm->set_compile_options)
    algorithm->set_compile_options(build_data, cgpu, algorithm);

  strcat(build_data->binary_filename, ".bin");

  // Load program from file or build it if it doesn't exist
  if (!(clState->program = load_opencl_binary_kernel(build_data))) {
    applog(LOG_NOTICE, "Building binary %s", build_data->binary_filename);

    if (!(clState->program = build_opencl_kernel(build_data, filename)))
      return NULL;

    if (save_opencl_kernel(build_data, clState->program)) {
      /* Program needs to be rebuilt, because the binary was patched */
      if (build_data->patch_bfi) {
        clReleaseProgram(clState->program);
        clState->program = load_opencl_binary_kernel(build_data);
      }
    } else {
      if (build_data->patch_bfi)
        quit(1, "Could not save kernel to file, but it is necessary to apply BFI patch");
    }
  }

  // Load kernels
  applog(LOG_NOTICE, "Initialising kernel %s with%s bitalign, %spatched BFI, nfactor %d, n %d",
         filename, clState->hasBitAlign ? "" : "out", build_data->patch_bfi ? "" : "un",
         algorithm->nfactor, algorithm->n);

  /* get a kernel object handle for a kernel with the given name */
  clState->kernel = clCreateKernel(clState->program, "search", &status);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: Creating Kernel from program. (clCreateKernel)", status);
    return NULL;
  }


  clState->n_extra_kernels = algorithm->n_extra_kernels;
  if (clState->n_extra_kernels > 0) {
    unsigned int i;
    char kernel_name[9]; // max: search99 + 0x0

    clState->extra_kernels = (cl_kernel *)malloc(sizeof(cl_kernel) * clState->n_extra_kernels);

    for (i = 0; i < clState->n_extra_kernels; i++) {
      snprintf(kernel_name, 9, "%s%d", "search", i + 1);
      clState->extra_kernels[i] = clCreateKernel(clState->program, kernel_name, &status);
      if (status != CL_SUCCESS) {
        applog(LOG_ERR, "Error %d: Creating ExtraKernel #%d from program. (clCreateKernel)", status, i);
        return NULL;
      }
    }
  }

  size_t bufsize;

  if (algorithm->rw_buffer_size < 0) {
    size_t ipt = (algorithm->n / cgpu->lookup_gap +
            (algorithm->n % cgpu->lookup_gap > 0));
    bufsize = 128 * ipt * cgpu->thread_concurrency;
  } else
    bufsize = (size_t) algorithm->rw_buffer_size;

  clState->padbuffer8 = NULL;

  if (bufsize > 0) {
    /* Use the max alloc value which has been rounded to a power of
     * 2 greater >= required amount earlier */
    if (bufsize > cgpu->max_alloc) {
      applog(LOG_WARNING, "Maximum buffer memory device %d supports says %lu",
           gpu, (unsigned long)(cgpu->max_alloc));
      applog(LOG_WARNING, "Your settings come to %lu", (unsigned long)bufsize);
    }
    applog(LOG_DEBUG, "Creating buffer sized %lu", (unsigned long)bufsize);

    /* This buffer is weird and might work to some degree even if
     * the create buffer call has apparently failed, so check if we
     * get anything back before we call it a failure. */
    clState->padbuffer8 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, bufsize, NULL, &status);
    if (status != CL_SUCCESS && !clState->padbuffer8) {
      applog(LOG_ERR, "Error %d: clCreateBuffer (padbuffer8), decrease TC or increase LG", status);
      return NULL;
    }
  }

  clState->CLbuffer0 = clCreateBuffer(clState->context, CL_MEM_READ_ONLY, 128, NULL, &status);
  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: clCreateBuffer (CLbuffer0)", status);
    return NULL;
  }
  clState->outputBuffer = clCreateBuffer(clState->context, CL_MEM_WRITE_ONLY, BUFFERSIZE, NULL, &status);

  if (status != CL_SUCCESS) {
    applog(LOG_ERR, "Error %d: clCreateBuffer (outputBuffer)", status);
    return NULL;
  }

  return clState;
}