Beispiel #1
0
/*
 * clique_unweighted_max_weight()
 *
 * Returns the size of the maximum (sized) clique in g (or 0 if search
 * was aborted).
 *
 *   g    - the graph
 *   opts - time printing options
 *
 * Note: As we don't have an algorithm faster than actually finding
 *       a maximum clique, we use clique_unweighted_find_single().
 *       This incurs only very small overhead.
 */
int clique_unweighted_max_weight(graph_t *g, clique_options *opts) {
	set_t s;
	int size;

	ASSERT((sizeof(setelement)*8)==ELEMENTSIZE);
	ASSERT(g!=NULL);

	s=clique_unweighted_find_single(g,0,0,FALSE,opts);
	if (s==NULL) {
		/* Search was aborted. */
		return 0;
	}
	size=set_size(s);
	set_free(s);
	return size;
}
Beispiel #2
0
// Computes a maximum clique of the graph g and return its size
// The table list contains the ID of the vertices
int sage_clique_max(graph_t *g,int **list){
  sage_reset_global_variables();
  quiet++;
  set_t s;
  int i,l;
  clique_options *opts = sage_init_clique_opt();
  s=clique_unweighted_find_single(g,/*min_weight*/0,
				  /*max_weight*/0,/*maximal*/TRUE,
				  opts);
  free(opts);

  // Writing the answer into a int [] to be read by Sage
  int size=set_size(s);
  *list=malloc(sizeof(int)*size);
  l=0;
  for (i=0; i<SET_MAX_SIZE(s); i++) {
    if (SET_CONTAINS(s,i)) {
      *((*list)+l)=i;
      l++;
    }
  }
  return size;
}
Beispiel #3
0
/*
 * clique_find_single()
 *
 * Returns a clique with weight at least min_weight and at most max_weight.
 *
 *   g          - the graph
 *   min_weight - minimum weight of clique to search for.  If min_weight==0,
 *                searches for a maximum weight clique.
 *   max_weight - maximum weight of clique to search for.  If max_weight==0,
 *                no upper limit is used.  If min_weight==0, max_weight must
 *                also be 0.
 *   maximal    - require returned clique to be maximal
 *   opts       - time printing options
 *
 * Returns the set of vertices forming the clique, or NULL if a clique
 * of requested weight/maximality does not exist in the graph  (or if
 * opts->time_function() requests abort).
 *
 * The returned clique is newly allocated and can be freed by set_free().
 *
 * Note: Does NOT use opts->user_function() or opts->clique_list[].
 * Note: Automatically uses clique_unweighted_find_single if all vertex
 *       weights are the same.
 */
set_t clique_find_single(graph_t *g,int min_weight,int max_weight,
			 boolean maximal, clique_options *opts) {
	int i;
	int *table;
	set_t s;

	ENTRANCE_SAVE();
	entrance_level++;

	if (opts==NULL)
		opts=clique_default_options;

	ASSERT((sizeof(setelement)*8)==ELEMENTSIZE);
	ASSERT(g!=NULL);
	ASSERT(min_weight>=0);
	ASSERT(max_weight>=0);
	ASSERT((max_weight==0) || (min_weight <= max_weight));
	ASSERT(!((min_weight==0) && (max_weight>0)));
	ASSERT((opts->reorder_function==NULL) || (opts->reorder_map==NULL));

	if ((max_weight>0) && (min_weight>max_weight)) {
		/* state was not changed */
		entrance_level--;
		return NULL;
	}

	if (clocks_per_sec==0)
		clocks_per_sec=sysconf(_SC_CLK_TCK);
	ASSERT(clocks_per_sec>0);

	/* Check whether we can use unweighted routines. */
	if (!graph_weighted(g)) {
		min_weight=DIV_UP(min_weight,g->weights[0]);
		if (max_weight) {
			max_weight=DIV_DOWN(max_weight,g->weights[0]);
			if (max_weight < min_weight) {
				/* state was not changed */
				entrance_level--;
				return NULL;
			}
		}

		weight_multiplier = g->weights[0];
		entrance_level--;
		s=clique_unweighted_find_single(g,min_weight,max_weight,
						maximal,opts);
		ENTRANCE_RESTORE();
		return s;
	}

	/* Dynamic allocation */
	current_clique=set_new(g->n);
	best_clique=set_new(g->n);
	clique_size=malloc(g->n * sizeof(int));
	memset(clique_size, 0, g->n * sizeof(int));
	/* table allocated later */
	temp_list=malloc((g->n+2)*sizeof(int *));
	temp_count=0;

	clique_list_count=0;

	/* "start clock" */
	gettimeofday(&realtimer,NULL);
	times(&cputimer);

	/* reorder */
	if (opts->reorder_function) {
		table=opts->reorder_function(g,TRUE);
	} else if (opts->reorder_map) {
		table=reorder_duplicate(opts->reorder_map,g->n);
	} else {
		table=reorder_ident(g->n);
	}
	ASSERT(reorder_is_bijection(table,g->n));

	if (max_weight==0)
		max_weight=INT_MAX;

	if (weighted_clique_search_single(table,min_weight,max_weight,
					  g,opts)==0) {
		/* Requested clique has not been found. */
		set_free(best_clique);
		best_clique=NULL;
		goto cleanreturn;
	}
	if (maximal && (min_weight>0)) {
		maximalize_clique(best_clique,g);
		if (graph_subgraph_weight(g,best_clique) > max_weight) {
			clique_options localopts;

			localopts.time_function = opts->time_function;
			localopts.output = opts->output;
			localopts.user_function = false_function;
			localopts.clique_list = &best_clique;
			localopts.clique_list_length = 1;

			for (i=0; i < g->n-1; i++)
				if ((clique_size[table[i]] >= min_weight) ||
				    (clique_size[table[i]] == 0))
					break;
			if (!weighted_clique_search_all(table,i,min_weight,
							max_weight,maximal,
							g,&localopts)) {
				set_free(best_clique);
				best_clique=NULL;
			}
		}
	}

 cleanreturn:
	s=best_clique;

	/* Free resources */
	for (i=0; i < temp_count; i++)
		free(temp_list[i]);
	free(temp_list);
	temp_list=NULL;
	temp_count=0;
	free(table);
	set_free(current_clique);
	current_clique=NULL;
	free(clique_size);
	clique_size=NULL;

	ENTRANCE_RESTORE();
	entrance_level--;

	return s;
}