Beispiel #1
0
//------------------------------Ideal------------------------------------------
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
  }

  // Floating point additions are not associative because of boundary conditions (infinity)
  return commute(this,
                 phase->type( in(1) )->singleton(),
                 phase->type( in(2) )->singleton() ) ? this : NULL;
}
Beispiel #2
0
bool
can_pull (patch p1, patch p2) {
  return commute (p2, p1);
}
Beispiel #3
0
//------------------------------Idealize---------------------------------------
// If we get here, we assume we are associative!
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  int con_left  = t1->singleton();
  int con_right = t2->singleton();

  // Check for commutative operation desired
  if( commute(this,con_left,con_right) ) return this;

  AddNode *progress = NULL;             // Progress flag

  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
  // constant, and the left input is an add of a constant, flatten the
  // expression tree.
  Node *add1 = in(1);
  Node *add2 = in(2);
  int add1_op = add1->Opcode();
  int this_op = Opcode();
  if( con_right && t2 != Type::TOP && // Right input is a constant?
      add1_op == this_op ) { // Left input is an Add?

    // Type of left _in right input
    const Type *t12 = phase->type( add1->in(2) );
    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
      // Check for rare case of closed data cycle which can happen inside
      // unreachable loops. In these cases the computation is undefined.
#ifdef ASSERT
      Node *add11    = add1->in(1);
      int   add11_op = add11->Opcode();
      if( (add1 == add1->in(1))
         || (add11_op == this_op && add11->in(1) == add1) ) {
        assert(false, "dead loop in AddNode::Ideal");
      }
#endif
      // The Add of the flattened expression
      Node *x1 = add1->in(1);
      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
      PhaseIterGVN *igvn = phase->is_IterGVN();
      if( igvn ) {
        set_req_X(2,x2,igvn);
        set_req_X(1,x1,igvn);
      } else {
        set_req(2,x2);
        set_req(1,x1);
      }
      progress = this;            // Made progress
      add1 = in(1);
      add1_op = add1->Opcode();
    }
  }

  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
  if( add1_op == this_op && !con_right ) {
    Node *a12 = add1->in(2);
    const Type *t12 = phase->type( a12 );
    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
       !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
      assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
      add2 = add1->clone();
      add2->set_req(2, in(2));
      add2 = phase->transform(add2);
      set_req(1, add2);
      set_req(2, a12);
      progress = this;
      add2 = a12;
    }
  }

  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
  int add2_op = add2->Opcode();
  if( add2_op == this_op && !con_left ) {
    Node *a22 = add2->in(2);
    const Type *t22 = phase->type( a22 );
    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
       !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
      assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
      Node *addx = add2->clone();
      addx->set_req(1, in(1));
      addx->set_req(2, add2->in(1));
      addx = phase->transform(addx);
      set_req(1, addx);
      set_req(2, a22);
      progress = this;
      PhaseIterGVN *igvn = phase->is_IterGVN();
      if (add2->outcnt() == 0 && igvn) {
        // add disconnected.
        igvn->_worklist.push(add2);
      }
    }
  }

  return progress;
}
Beispiel #4
0
bool
can_pull (modification m1, modification m2) {
  return commute (m2, m1);
}