Beispiel #1
0
		void construct(WeakString &wstr)
		{
			construct_key(wstr);
			construct_properties(wstr);

			if (construct_value(wstr) == true)
				construct_children(wstr);
		};
Beispiel #2
0
nir_alu_instr *
nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
                  const nir_search_value *replace, void *mem_ctx)
{
    uint8_t swizzle[4] = { 0, 0, 0, 0 };

    for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
        swizzle[i] = i;

    assert(instr->dest.dest.is_ssa);

    struct match_state state;
    state.variables_seen = 0;

    if (!match_expression(search, instr, instr->dest.dest.ssa.num_components,
                          swizzle, &state))
        return NULL;

    /* Inserting a mov may be unnecessary.  However, it's much easier to
     * simply let copy propagation clean this up than to try to go through
     * and rewrite swizzles ourselves.
     */
    nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
    mov->dest.write_mask = instr->dest.write_mask;
    nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
                      instr->dest.dest.ssa.num_components, NULL);

    mov->src[0] = construct_value(replace, nir_op_infos[instr->op].output_type,
                                  instr->dest.dest.ssa.num_components, &state,
                                  &instr->instr, mem_ctx);
    nir_instr_insert_before(&instr->instr, &mov->instr);

    nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
                             nir_src_for_ssa(&mov->dest.dest.ssa), mem_ctx);

    /* We know this one has no more uses because we just rewrote them all,
     * so we can remove it.  The rest of the matched expression, however, we
     * don't know so much about.  We'll just let dead code clean them up.
     */
    nir_instr_remove(&instr->instr);

    return mov;
}
Beispiel #3
0
struct expr *eval_binary_op(struct evaluator_state *state, struct expr* e, struct env_node *env) {
    assert(e->type == EXPR_BINARY);
    switch (e->binary_op.op) {
    case BIN_MEMBER: {
        // if left is union:
        //     return eval(x.right_ident for x in left_union)
        // else:
        //     return lookup(left_obj, right_ident)
        assert(e->binary_op.right->type == EXPR_IDENT);
        struct expr *left = eval_footprint_expr(state, e->binary_op.left, env);
        if (left->type == EXPR_UNION) {
            char *loop_var_name = new_ident_not_in(env, "loop_var");

            struct expr *loop_var_ident = expr_new_with(e->direction, EXPR_IDENT);
            loop_var_ident->ident = loop_var_name;

            struct expr *loop_body = expr_new();
            memcpy(loop_body, e, sizeof(struct expr));
            loop_body->binary_op.left = loop_var_ident;

            struct expr *loop = expr_new_with(e->direction, EXPR_FOR);
            loop->for_loop.body = loop_body;
            loop->for_loop.ident = loop_var_name;
            loop->for_loop.over = left;

            return eval_footprint_expr(state, loop, env);
        } else if (left->type == EXPR_OBJECT) {
            return lookup_in_object(&left->object, e->binary_op.right->ident, e->direction);
        } else {
            assert(false);
        }
    }
    break;
    case BIN_APP: {
        struct expr *left = eval_footprint_expr(state, e->binary_op.left, env);
        struct expr *right = e->binary_op.right;
        assert(left->type == EXPR_FUNCTION);
        assert(right->type == EXPR_FUNCTION_ARGS);
        struct function func = left->func;
        struct env_node *function_env = env;
        struct string_node *current_arg_name = func.args;
        struct union_node *current_arg_value = e->binary_op.right->unioned;
        while (current_arg_value != NULL) {
            assert(current_arg_name != NULL); // not too many arguments
            struct expr *e = eval_footprint_expr(state, current_arg_value->expr, env);
            function_env = env_new_with(current_arg_name->value, e, function_env);
            current_arg_name = current_arg_name->next;
            current_arg_value = current_arg_value->next;
        }
        assert(current_arg_name == NULL); // not too few arguments
        function_env = env_new_with(func.name, construct_function(func, e->direction), function_env);
        struct expr *new_expr = expr_clone(func.expr);
        set_direction_recursive(new_expr, e->direction);
        return eval_footprint_expr(state, new_expr, function_env);
    }
    break;
    default: {
        int64_t left, right;
        _Bool left_success, right_success;
        struct expr *partial_left, *partial_right;
        left_success = eval_to_value(state, e->binary_op.left, env, &partial_left, &left);
        right_success = eval_to_value(state, e->binary_op.right, env, &partial_right, &right);
        if (!left_success || !right_success) {
            // cache miss, state modified
            struct expr *new_expr = expr_clone(e);
            if (left_success) {
                new_expr->binary_op.left = construct_value(left, e->direction);
            } else {
                new_expr->binary_op.left = partial_left;
            }
            if (right_success) {
                new_expr->binary_op.right = construct_value(right, e->direction);
            } else {
                new_expr->binary_op.right = partial_right;
            }
            return new_expr;
        }
        switch (e->binary_op.op) {
        case BIN_GT: {
            return construct_value(left > right ? 1 : 0, e->direction);
        }
        break;
        case BIN_LT: {
            return construct_value(left < right ? 1 : 0, e->direction);
        }
        break;
        case BIN_GTE: {
            return construct_value(left >= right ? 1 : 0, e->direction);
        }
        break;
        case BIN_LTE: {
            return construct_value(left <= right ? 1 : 0, e->direction);
        }
        break;
        case BIN_EQ: {
            return construct_value(left == right ? 1 : 0, e->direction);
        }
        break;
        case BIN_NE: {
            return construct_value(left != right ? 1 : 0, e->direction);
        }
        break;
        case BIN_AND: {
            return construct_value(!!left && !!right ? 1 : 0, e->direction);
        }
        break;
        case BIN_OR: {
            return construct_value(!!left || !!right ? 1 : 0, e->direction);
        }
        break;
        case BIN_ADD: {
            return construct_value(left + right, e->direction);
        }
        break;
        case BIN_SUB: {
            return construct_value(left - right, e->direction);
        }
        break;
        case BIN_MUL: {
            return construct_value(left * right, e->direction);
        }
        break;
        case BIN_DIV: {
            return construct_value(left / right, e->direction);
        }
        break;
        case BIN_MOD: {
            return construct_value(left % right, e->direction);
        }
        break;
        case BIN_SHL: {
            return construct_value(left << right, e->direction);
        }
        break;
        case BIN_SHR: {
            return construct_value(left >> right, e->direction);
        }
        break;
        case BIN_BITAND: {
            return construct_value(left & right, e->direction);
        }
        break;
        case BIN_BITOR: {
            return construct_value(left | right, e->direction);
        }
        break;
        case BIN_BITXOR: {
            return construct_value(left ^ right, e->direction);
        }
        break;
        default:
            assert(false);
            break;
        }
    }
    break;
    }
}
Beispiel #4
0
static nir_alu_src
construct_value(const nir_search_value *value, nir_alu_type type,
                unsigned num_components, struct match_state *state,
                nir_instr *instr, void *mem_ctx)
{
    switch (value->type) {
    case nir_search_value_expression: {
        const nir_search_expression *expr = nir_search_value_as_expression(value);

        if (nir_op_infos[expr->opcode].output_size != 0)
            num_components = nir_op_infos[expr->opcode].output_size;

        nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode);
        nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components, NULL);
        alu->dest.write_mask = (1 << num_components) - 1;
        alu->dest.saturate = false;

        for (unsigned i = 0; i < nir_op_infos[expr->opcode].num_inputs; i++) {
            /* If the source is an explicitly sized source, then we need to reset
             * the number of components to match.
             */
            if (nir_op_infos[alu->op].input_sizes[i] != 0)
                num_components = nir_op_infos[alu->op].input_sizes[i];

            alu->src[i] = construct_value(expr->srcs[i],
                                          nir_op_infos[alu->op].input_types[i],
                                          num_components,
                                          state, instr, mem_ctx);
        }

        nir_instr_insert_before(instr, &alu->instr);

        nir_alu_src val;
        val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
        val.negate = false;
        val.abs = false,
            memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);

        return val;
    }

    case nir_search_value_variable: {
        const nir_search_variable *var = nir_search_value_as_variable(value);
        assert(state->variables_seen & (1 << var->variable));

        nir_alu_src val = { NIR_SRC_INIT };
        nir_alu_src_copy(&val, &state->variables[var->variable], mem_ctx);

        assert(!var->is_constant);

        return val;
    }

    case nir_search_value_constant: {
        const nir_search_constant *c = nir_search_value_as_constant(value);
        nir_load_const_instr *load = nir_load_const_instr_create(mem_ctx, 1);

        switch (type) {
        case nir_type_float:
            load->def.name = ralloc_asprintf(mem_ctx, "%f", c->data.f);
            load->value.f[0] = c->data.f;
            break;
        case nir_type_int:
            load->def.name = ralloc_asprintf(mem_ctx, "%d", c->data.i);
            load->value.i[0] = c->data.i;
            break;
        case nir_type_unsigned:
        case nir_type_bool:
            load->value.u[0] = c->data.u;
            break;
        default:
            unreachable("Invalid alu source type");
        }

        nir_instr_insert_before(instr, &load->instr);

        nir_alu_src val;
        val.src = nir_src_for_ssa(&load->def);
        val.negate = false;
        val.abs = false,
            memset(val.swizzle, 0, sizeof val.swizzle);

        return val;
    }

    default:
        unreachable("Invalid search value type");
    }
}