Beispiel #1
0
vec2_t world_gravity(World_t *aWorld)
{
    cpVect gravity = cpSpaceGetGravity(aWorld->cpSpace);
    return CPV_TO_VEC2(gravity);
}
Beispiel #2
0
Vec2 physics_get_gravity()
{
    return vec2_of_cpv(cpSpaceGetGravity(space));
}
Beispiel #3
0
cpBool Buoyancy::WaterPreSolve(cpArbiter *arb, cpSpace *space, void *ptr)
{
    CP_ARBITER_GET_SHAPES(arb, water, poly);
    cpBody *body = cpShapeGetBody(poly);

    // Get the top of the water sensor bounding box to use as the water level.
    cpFloat level = cpShapeGetBB(water).t;

    // Clip the polygon against the water level
    int count = cpPolyShapeGetCount(poly);
    int clippedCount = 0;
#ifdef _MSC_VER
    // MSVC is pretty much the only compiler in existence that doesn't support variable sized arrays.
    cpVect clipped[10];
#else
    cpVect clipped[count + 1];
#endif

    for(int i=0, j=count-1; i<count; j=i, i++){
        cpVect a = cpBodyLocalToWorld(body, cpPolyShapeGetVert(poly, j));
        cpVect b = cpBodyLocalToWorld(body, cpPolyShapeGetVert(poly, i));

        if(a.y < level){
            clipped[clippedCount] = a;
            clippedCount++;
        }

        cpFloat a_level = a.y - level;
        cpFloat b_level = b.y - level;

        if(a_level*b_level < 0.0f){
            cpFloat t = cpfabs(a_level)/(cpfabs(a_level) + cpfabs(b_level));

            clipped[clippedCount] = cpvlerp(a, b, t);
            clippedCount++;
        }
    }

    // Calculate buoyancy from the clipped polygon area
    cpFloat clippedArea = cpAreaForPoly(clippedCount, clipped, 0.0f);
    cpFloat displacedMass = clippedArea*FLUID_DENSITY;
    cpVect centroid = cpCentroidForPoly(clippedCount, clipped);

    cpDataPointer data = ptr;
    DrawPolygon(clippedCount, clipped, 0.0f, RGBAColor(0, 0, 1, 1), RGBAColor(0, 0, 1, 0.1f), data);
    DrawDot(5, centroid, RGBAColor(0, 0, 1, 1), data);

    cpFloat dt = cpSpaceGetCurrentTimeStep(space);
    cpVect g = cpSpaceGetGravity(space);

    // Apply the buoyancy force as an impulse.
    cpBodyApplyImpulseAtWorldPoint(body, cpvmult(g, -displacedMass*dt), centroid);

    // Apply linear damping for the fluid drag.
    cpVect v_centroid = cpBodyGetVelocityAtWorldPoint(body, centroid);
    cpFloat k = k_scalar_body(body, centroid, cpvnormalize(v_centroid));
    cpFloat damping = clippedArea*FLUID_DRAG*FLUID_DENSITY;
    cpFloat v_coef = cpfexp(-damping*dt*k); // linear drag
    //	cpFloat v_coef = 1.0/(1.0 + damping*dt*cpvlength(v_centroid)*k); // quadratic drag
    cpBodyApplyImpulseAtWorldPoint(body, cpvmult(cpvsub(cpvmult(v_centroid, v_coef), v_centroid), 1.0/k), centroid);

    // Apply angular damping for the fluid drag.
    cpVect cog = cpBodyLocalToWorld(body, cpBodyGetCenterOfGravity(body));
    cpFloat w_damping = cpMomentForPoly(FLUID_DRAG*FLUID_DENSITY*clippedArea, clippedCount, clipped, cpvneg(cog), 0.0f);
    cpBodySetAngularVelocity(body, cpBodyGetAngularVelocity(body)*cpfexp(-w_damping*dt/cpBodyGetMoment(body)));

    return cpTrue;
}