Beispiel #1
0
void cpgstart_ps(const char *filenm, const char *orientation)
{
    char tmp[100];
    if (0 == strcmp(orientation, "portrait")) {
        sprintf(tmp, "%s/VCPS", filenm);
        if (cpgopen(tmp) <= 0)
            exit(EXIT_FAILURE);
    } else {
        sprintf(tmp, "%s/CPS", filenm);
        if (cpgopen(tmp) <= 0)
            exit(EXIT_FAILURE);
    }
}
Beispiel #2
0
void display_particles(NBody *data, double max, int n)
/*assume a top-down view (i.e. ignore the z-component*/
{
#ifdef PGPLOT
   int npix=256;
   float tr[6];
   static int firsttime=1;

   if (firsttime)
   {
      assert(NDIM>=2);
      cpgopen("?");
      cpgenv(1,npix,1,npix,0,1);
      firsttime=0;
   }
   tr[0]=0;tr[1]=1;tr[2]=0;tr[3]=0;tr[4]=0;tr[5]=1;
   float **mat=fmatrix(npix,npix);
   for (int i=0;i<npix;i++)
      for (int j=0;j<npix;j++)
         mat[i][j]=0;
  
   for (int i=0;i<n;i++)
   {
      int ii= npix*((data[i].x[0]+max)/(2*max));
      int jj= npix*((data[i].x[1]+max)/(2*max));
      if ((ii>=0)&&(ii<npix)&&(jj>=0)&&(jj<npix))
         mat[ii][jj]++;
   }

   cpgimag(mat[0],npix,npix,1,npix,1,npix,0,5.0,tr);
#endif
  
}
void plot_channel_data()
{
  int samp=0;
  int pg_id;

  pg_id = cpgopen("/XSERVE");
  cpgpap(8.0, 0.8);
  cpgask(0);
  cpgpage();
  cpgslct(pg_id);
  cpgsci(3);
  cpgeras();
  cpgsvp(0.15f, 0.95f, 0.2f, 0.8f);
  cpgupdt();
  cpgsch(2.0);
  cpgswin(0, read_count, -0.1f, 0.1f);
  cpgbox("BC1NST",0.0,0,"BCNST",0.0,0);
  cpglab("Time [samples]", "Voltage [volts]", "Antenna Measurement Receiver");
  cpgmove(samp, voltarray[0]);
  for (samp=2; samp<read_count; samp++)
	 {
	   cpgdraw(samp, voltarray[samp]);
	 }
  return 0;
}
Beispiel #4
0
int main(int argc, char** argv)
{
  if(argc!=2)
    {
      perror("Invalid arguements : SMROStats <file.lba>\n");
      exit(1);
    }

  // Get the filename from the command line
  char* filename = argv[1];

  // Get stats for input file
  struct stat file_stats;
  if(stat(filename,&file_stats))
    {
      perror("Couldn't retrieve file information.\n");
      exit(1);
    }

  // Check length of input file
  int max=1024; // No. of blocks to read. When max=1024;64MB of input used 
  if(file_stats.st_size<(BLK_SIZE*max))
    max=file_stats.st_size/BLK_SIZE;

  // Data loader
  dsp::SMROFile* loader = new dsp::SMROFile;
  loader->open( filename );
  loader->set_output( new dsp::BitSeries );
  loader->set_block_size( BLK_SIZE );

  // Convert to a dsp::TimeSeries
  dsp::SMROTwoBitCorrection* unpacker = new dsp::SMROTwoBitCorrection;
  unpacker->set_input( loader->get_output() );
  unpacker->set_output( new dsp::TimeSeries );

  // Go to work
  int count;
  for(count=0;count<max;count++)  // Load and unpack (BLK_SIZE*max) bytes
    {
      loader->operate();
      unpacker->operate();
    }
  loader->close();

  // Plot Histogram
  cpgopen("?");
  cpglab("","","SMRO Sampler Statistics");
  cpgsvp(0.1,0.9,0.1,0.9);
  dsp::TwoBitStatsPlotter* plot = new dsp::TwoBitStatsPlotter;
  plot->set_data(unpacker);
  plot->plot();
  cpgclos();

  // Free memory
  delete loader,unpacker;
}
Beispiel #5
0
void cpgstart_x(const char *orientation)
{
    if (cpgopen("/XWIN") <= 0)
        exit(EXIT_FAILURE);
    if (0 == strcmp(orientation, "portrait")) {
        cpgpap(8.5, 11.0 / 8.5);
    } else {
        cpgpap(11.0, 8.5 / 11.0);
    }
    cpgask(1);
}
Beispiel #6
0
static int _pgopen (char *dev)
{
   int id;

   if (*dev == 0)
     dev = DEFAULT_DEVICE;

   id = cpgopen (dev);

   return id;          /* <= 0 is error */
}
int main(void)
{
  if ((ipass=fopen(scans,"r"))==NULL)
    {
      printf("Cannot open file. \n");
      exit(1);
    }
  fscanf(ipass,"%i", &Ptotal);
 
   for (Pindex=1; Pindex<=Ptotal; Pindex++)
    {
      fscanf(ipass,"%s", powerfile);
      //      printf("%s\n",powerfile);
      if ((fp=fopen(powerfile,"r"))==NULL)
	{
      	  printf("Cannot open file. \n");
	  exit(1);
	}
      strcpy(passfile,"");
      strcat(passfile,prefix);
      p=strpbrk(powerfile,"2");
      strcat(passfile,p);
      //     printf("%s\n",passfile);
  if ((fpass=fopen(passfile,"r"))==NULL)
    {
      printf("Cannot open file. \n");
      exit(1);
    }
  printf("\nReading data file %s \n",powerfile);

  for (acqcount=1; acqcount < (numofacqs+1); acqcount++) read_data();
  read_pass_file();
  //  test_data();
  fclose(fpass);
  fclose(fp);
    }
  group_data();
  pg_id = cpgopen("/XSERVE");

  while (sat_choice <100)
    {
      printf("\nPlot Satellite: ");
      scanf("%i", &sat_choice);
      if (sat_choice<40) plot_map();
    }
      
  write_map();
  fclose(ipass);
  printf("End of Program\n");
  return 0;
}
/*
 * Class:     pulsarhunter_PgplotInterface
 * Method:    pgopen
 * Signature: (Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL Java_pulsarhunter_PgplotInterface_pgopen
(JNIEnv *env, jclass cl, jstring device){
	
	int one=1,zero=0;
	jint strlen =  (*env)->GetStringUTFLength(env,device);

	char *deviceStr = (char*) (*env)->GetStringUTFChars(env,device,NULL);

	

//	pgbeg__(&zero,deviceStr,&one,&one,strlen);
	cpgopen(deviceStr);

	(*env)->ReleaseStringUTFChars(env,device,deviceStr);
}
Beispiel #9
0
/** 
 * This method opens a graphic panel for plotting. All the subsequent plotting will be put in this panel.
 * 
 * @return The PGPLOT graphic Id just in case.
 */
int opengr()
{
	char aux[8];
	int i = 5;
	int GRid;

	cpgqinf("STATE", aux, &i);
	if (strncmp(aux, "OPEN", i) != 0) {
		GRid = cpgopen("/xwindow");
		cpgask(0);
		resizemax(0.85);
		return (GRid);
	} else {
		fprintf(stderr, "Device alredy open !!");
		return -1;
	}
}
Beispiel #10
0
void plot_image(struct image img,struct transformation t,struct catalog c,char *filename,float mmin)
{
  int i;
  float tr[]={-0.5,1.0,0.0,-0.5,0.0,1.0};
  float heat_l[]={0.0,0.2,0.4,0.6,1.0};
  float heat_r[]={0.0,0.5,1.0,1.0,1.0};
  float heat_g[]={0.0,0.0,0.5,1.0,1.0};
  float heat_b[]={0.0,0.0,0.0,0.3,1.0};
  float zmin,zmax,zavg,zstd;

  for (i=0,zavg=0.0;i<img.naxis1*img.naxis2;i++)
    zavg+=img.zavg[i];
  zavg/=(float) img.naxis1*img.naxis2;
  for (i=0,zstd=0.0;i<img.naxis1*img.naxis2;i++)
    zstd+=pow(img.zavg[i]-zavg,2);
  zstd=sqrt(zstd/(float) (img.naxis1*img.naxis2));
  zmin=zavg-2*zstd;
  zmax=zavg+6*zstd;

  cpgopen("1/xs");
  cpgwnad(0.0,img.naxis1,0.0,img.naxis2);
  cpgctab (heat_l,heat_r,heat_g,heat_b,5,1.0,0.5);
    
  cpgimag(img.zavg,img.naxis1,img.naxis2,1,img.naxis1,1,img.naxis2,zmin,zmax,tr);
  cpgbox("BCTSNI",0.,0,"BCTSNI",0.,0);

  cpgsci(3);
  plot_pixel_catalog(filename);

  cpgsci(4);
  plot_astrometric_catalog(t,img,mmin);
  cpgsci(2);
  for (i=0;i<c.n;i++)
    cpgpt1(c.x[i]+t.x0,c.y[i]+t.y0,24);

  cpgend();

  return;
}
int main(void)
{
  int j, jj;
  int sleep_sec=2;
  char bufD[128];
  int ind, Mcount;
  int M=50;
  int plan;

  pg_id = cpgopen("/XSERVE");
  cpgpap(6.00, 0.8);

  timedata = fftw_malloc(sizeof(double) * (N+1));
  freqdata = fftw_malloc(sizeof(fftw_complex) * (N+1));
  read_count=N*M;
  mem_size=read_count * 2;
  ai_buf = (I16*)malloc(mem_size);
 
  if ((fp=fopen("SatPosData","w"))==NULL)
    {
      printf("Cannot open file. \n");
      exit(1);
    }

  for (j=1; j<=max_scans; j++)
    {
      printf("\nPause %d seconds ...",sleep_sec);
      sleep(sleep_sec);
      printf("\n\nAcquisition %d\n",j);
      fprintf(fp,"\nAcquisition: %d\n",j);
      strcpy(bufD, send_command0("Apollo","GET_TIME$"));
      printf("Universal Time: %s",bufD);
      fprintf(fp, "UT: %s",bufD);
      printf("Satellites above local horizon:\n");
      getSatInfo0();
      getSatInfo1();
      acquire_data();
      transfer_and_scale((U16*)ai_buf, channel+1);

           for (k=0; k<(N/2)+1; k++) accumFreqData[k]=0;      
      printf("Integrating ... %i %i-blocks",M,N);
      for (Mcount=1; Mcount<=M; Mcount++)
	{
	  for (ind=0; ind<N; ind++)
	    {
	      timedata[ind]=voltarray[ind+(N*(Mcount-1))];
	    }
	  //	      printf("%i ",Mcount);
	  plan=(j==1)&(Mcount==1);
	  if (plan)
	    {
	      p=fftw_plan_dft_r2c_1d(N, timedata, freqdata, FFTW_FORWARD);
	    }

	  fftw_execute(p);


	  for (k=0; k<(N/2)+1; k++)
	    {
	      accumFreqData[k]+=(sqrt(freqdata[k][0]*freqdata[k][0]+freqdata[k][1]*freqdata[k][1])/(M*256));	  
	    } 

	}
      fprintf(fp, "Bin Voltages \n");
      for (jj=0; jj<=240; jj+=10)
	{
	  for (k=jj; k<(jj+10); k++) fprintf(fp, "%f ", accumFreqData[k]);
	  fprintf(fp, "\n");
	}

      //      plot_channel_data();
           plot_freq_data();
      
    }
  int fclose(FILE *fp);
  postfft();
  free( ai_buf );
  printf("\n\nEnd of program. "); 
  //getch(); 
  putchar('\n');
  return 0;
}
Beispiel #12
0
int main(int argc, char **argv) {
	float lm, hm;
	int ID;
	float x1, y1, x2, y2;
	char ch;
	char filename[1024];
	int enhanceid = -1;
	int sectionmode = LON;
	int histmode = DEP;
	float binw = 10.0;

	reset(&mainset);
	load(&mainset);

	rangeadjust(&control, &mainset, NULL, NULL, NULL, NULL);

	ID = cpgopen("/xwindow");
	resizemax(0.85);
	cpgask(0);

	/*
	 * This a bug-fix for the gmt command that outputs the borders wrapped.
	 */
	int i;
	for(i=0; i < nborders; i++)
		if (borders[i][0] != -999 && borders[i][0] > 180)
			borders[i][0] = borders[i][0] - 360.0;

	lm = hm = -1.0;
	while (ch != 'Q') {
		if (control.printout) {
			lerchar("Entre com o nome do arquivo", filename, 1000);
			if (strlen(filename) == 0) {
				strcpy(message, "Nome invalido.");
				alert(ERROR);
				control.printout = 0;
			} else {
				if (strlen(filename) < 3 || strncasecmp( &filename[strlen(filename)-3], ".ps", 3) != 0) {
					sprintf(filename,"%s.ps/cps",filename);
				} else {
					sprintf(filename,"%s/cps",filename);
				}
				cpgopen(filename);
				cpgask(0);
			}
		}

		plot(&control, &mainset);

		if (control.printout == 0 && enhanceid != -1) {
			enhanceid = enhance(&control, &mainset, enhanceid);
		}

		if (mainset.region) {
			plotsection(&mainset, &control, sectionmode);
			plothistogram(&mainset, binw, histmode, lm, hm);
		}

		if (control.printout) {
			cpgclos();
			cpgslct(ID);
			control.printout = 0;

			filename[strlen(filename) - 4] = '\0';
			sprintf(message, "Print Out saved to file %s", filename);
			alert(INFO);

			continue;
		}

		// Restore default map position
		cpgsvp(0.07, 0.93, 0.35, 0.9);
		cpgswin(control.xmin, control.xmax, control.ymin, control.ymax);
		ch = getonechar(&x1, &y1, 0);
		switch(ch) {
		case('='): {
			control.printout = 1;
			break;
		}
		case('R'): {
			reset(&mainset);
			load(&mainset);
			break;
		}

		case('B'): {
			binw = lerfloat("Entre com o valor da largura do bin?");
			break;
		}

		case('A'): {
			enhanceid = findpt(&mainset, x1, y1);
			break;
		}

		case('2'): {
			control.hasplates = (control.hasplates == 1) ? 0 : 1;
			break;
		}

		case('1'): {
			control.hascontinents++;
			if (control.hascontinents > 2) control.hascontinents = 0;
			break;
		}

		case ('W'): {
			control.xmax = 180;
			control.xmin = -180;
			control.ymax = 90;
			control.ymin = -90;
			break;
		}

		case('0'): {
			mainset.lon1 = -180;
			mainset.lon2 = 180;
			mainset.lat1 = -90;
			mainset.lat2 = 90;
			load(&mainset);
			mainset.region = 0;
			break;
		}

		case ('L'): {
			sectionmode = (sectionmode == LAT) ? LON : LAT;
			break;
		}

		case ('H'): {
			histmode = (histmode == MAG) ? DEP : MAG;
			binw = (histmode == MAG) ? 0.1 : 10.0;
			break;
		}

		case ('S'): {
			x2 = x1;
			y2 = y1;
			getonechar(&x2, &y2, 1);
			order(&x1,&x2);
			order(&y1,&y2);
			mainset.lon1 = x1;
			mainset.lon2 = x2;
			mainset.lat1 = y1;
			mainset.lat2 = y2;
			load(&mainset);
			mainset.region = 1;
			break;
		}

		case('X'): { // ZOOM
			x2 = x1;
			y2 = y1;
			getonechar(&x2, &y2, 1);
			order(&x1,&x2);
			order(&y1,&y2);
			rangeadjust(&control, &mainset, &x1, &x2, &y1, &y2);
			break;
		}

		case('C'): { // Color mode
			control.colormode ++;
			if (control.colormode>COLORMAG) control.colormode = COLORNONE;
			break;
		}

		case('N'): { /* Ano */
			int y1, y2;
			y1 = lerint("Entre com ano inicial?");
			y2 = lerint("Entre com ano final?");
			orderint(&y1,&y2);
			mainset.y1 = y1;
			mainset.y2 = y2;
			load(&mainset);
			break;
		}

		case('M'): { /* Magnitude */
			float m1, m2;
			m1 = lerfloat("Entre com a Magnitude Inicial?");
			m2 = lerfloat("Entre com a Magnitude Final?");
			order(&m1,&m2);
			mainset.m1 = m1;
			mainset.m2 = m2;
			load(&mainset);
			break;
		}

		case('J'): { /* Ajuste */
			lm = lerfloat("Entre com o menor valor de mag. para ajuste.");
			hm = lerfloat("Entre com o maior valor de mag. para ajuste.");
			if (lm == hm) {
				lm = hm = -1;
			}
			break;
		}
		case('P'): { /* Profundidade */
			float d1, d2;
			d1 = lerfloat("Entre com a Profundidade Minima?");
			d2 = lerfloat("Entre com a Profundidade Maxima?");
			order(&d1,&d2);
			mainset.d1 = d1;
			mainset.d2 = d2;
			load(&mainset);
			break;
		}

		}
	}

	cpgclos();
}
Beispiel #13
0
void Plotter2::open() {
    cpgopen((filename + "/" + device).c_str());
    hasDevice = true;
}
Beispiel #14
0
int main()
{
	//
	printf("\n====================================================================\n");
	printf("This program is able to simulate a variety of ecological\n");
	printf("situations in a 2D lattice\n");
	printf("====================================================================\n");

	//==========================================================================
	//--------------------------SYSTEM INITIALIZATIONS--------------------------
	//==========================================================================
	
	// initialize random seed
	srand(time(NULL));

	// force print all outputs (remove stdout buffer)
	setbuf(stdout, NULL);

	// initialize pgplot window
	if (!cpgopen("/XWINDOW"))
		errorCase(ERR_PGPLOT);
	cpgpap(20.0, 0.33);						// set window size
	cpgsubp(3,1);							// subdivide window into panels

	// color indexes (R, G, B)
	cpgscr(0, 0.0, 0.0, 0.0);				// empty space, black
	cpgscr(1, 1.0, 1.0, 1.0);
	cpgscr(10, 0.0, 0.0, 0.0);				// empty space, black
	cpgscr(11, 0.5, 0.5, 0.5);				// Trophic 1, gray
	cpgscr(12, 0.5, 1.0, 1.0);				// Trophic 2, cyan
	cpgscr(13, 1.0, 0.5, 0.0);				// Trophic 3, orange
	cpgscr(14, 1.0, 0.0, 0.0);
	cpgscir(10,NUMB_TROPHIC+10);


	//==========================================================================
	//--------------------------VARIABLE INITIALIZATIONS------------------------
	//==========================================================================

	// generic variables
	int i, j, k;						// counters

	// simulation environment
	int** simEnv = allocateArray2DInt(ENV_SIZE_X, ENV_SIZE_Y);
	int** simEnvAge = allocateArray2DInt(ENV_SIZE_X, ENV_SIZE_Y);
	int* simLocal = allocateArray1DInt(5);

	// inputs
	char input;

	// current location and time
	int x,y;
	int tGlobal,t;
	int flagUpdate;

	// rates
	float predationRates[NUMB_TROPHIC-1] = RATE_PRED;
	float deathRates[NUMB_TROPHIC] = RATE_DEATH;

	//float aBirth = 0;			// A+0 -> A+A
//	float abPred = 0;			// B+A -> B+B
//	float bDeath = 0;			//   B ->   0

//	int aFlag; int abFlag; int bFlag;

	// population counts;
	int popCount[NUMB_TROPHIC];
	float popDens[NUMB_TROPHIC];
	float popDensOld[NUMB_TROPHIC];
	for (i=0; i<NUMB_TROPHIC; i++){
		popCount[i] = 0;
		popDens[i] = 0.0;
		popDensOld[i] = 1.0/(float)INIT_DENSITY;
	}
	float* ageStructure = allocateArray1D(ENV_SIZE_TOTAL);


	// pgplot variables
	float* plotImg = allocateArray1D(ENV_SIZE_TOTAL);
	//float TR[6] = {0, 1, 0, 0, 0, 1};
	float TR[6] = {0, 0, 1, ENV_SIZE_Y, -1, 0};
	float plotMinBound = 0.0;
	float plotMaxBound = (float)NUMB_TROPHIC;


	//==========================================================================
	//--------------------------ACTUAL CODE-------------------------------------
	//==========================================================================
	
	// environment initialization
	randomizeArray2DInt(simEnv, ENV_SIZE_X, ENV_SIZE_Y, NUMB_TROPHIC);

	// load initial display
	for (i=0; i<ENV_SIZE_X; i++)
		for (j=0; j<ENV_SIZE_Y; j++)
			plotImg[i*ENV_SIZE_Y+j] = (float)(simEnv[i][j]);
	cpgpanl(1,1);
	cpgswin(0, ENV_SIZE_X-1, 0, ENV_SIZE_Y-1);
	cpgsvp(0.01, 0.99, 0.01, 0.99);
	cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);

	// Load graph labels
	// Population Density vs Time Plot
	cpgpanl(2,1);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(0, ENV_SIZE_X, 0, 1);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Population Density", "");

	// Phase Portrait Plot
	cpgpanl(3,1);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(0, 1, 0, 1);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("", "", "Phase Portrait");
	cpgsci(11);
	cpglab("Population Density SpA", "", "");
	cpgsci(12);
	cpglab("", "Population Density SpB", "");
	
	// initial delay to visualize starting matrix
	for (t=0; t<500000000; t++){}

	tGlobal = 1;
	while(1){
		//aFlag = 0; abFlag = 0; bFlag = 0;

		// run simulation for a full Monte Carlo timestep (ENV_SIZE_X*ENV_SIZE_Y)
		for (t=0; t<ENV_SIZE_TOTAL; t++){
			ecoRun(simEnv, simEnvAge, simLocal, predationRates, deathRates);
		}
		incrementAge(simEnvAge);

	

		// plot stuffs
		if ((tGlobal%1) == 0){

			// calculate population densities
			updatePopDens(simEnv, popCount, popDens);

			// PLOT population densities
			cpgpanl(2,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, ENV_SIZE_X, 0, 1);
			for (i=0; i<NUMB_TROPHIC; i++){
				cpgsls(1); cpgsci(i+11);				// line style and color
				cpgmove((tGlobal-1), popDensOld[i]);
				cpgdraw(tGlobal, popDens[i]);
			}

			//printArray2DInt(simEnvAge, ENV_SIZE_X, ENV_SIZE_Y);

			// PLOT age structure
			/*updateAgeStructure(simEnv, simEnvAge, ageStructure, 1);
			cpgpanl(3,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, 10, 0, (ENV_SIZE_TOTAL/10));
			cpgsls(1); cpgsci(1);						// line style and color
			cpgeras();
			cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
			cpglab("Age", "Number of Individuals", "Age Structure");
			cpghist(popCount[1], ageStructure, 0, 10, 10, 1);*/

			
			// PLOT phase portrait
			cpgpanl(3,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, 1, 0, 1);
			cpgsls(1); cpgsci(1);						// line style and color
			cpgmove(popDensOld[0], popDensOld[1]);
			cpgdraw(popDens[0], popDens[1]);

			for (i=0; i<NUMB_TROPHIC; i++)
				popDensOld[i] = popDens[i];
		}

		// load array and display on pgplot
		if ((tGlobal%1) == 0){
			cpgpanl(1,1);
			cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
			cpgsvp(0.01, 0.99, 0.01, 0.99);
			for (i=0; i<ENV_SIZE_X; i++)
				for (j=0; j<ENV_SIZE_Y; j++)
					plotImg[i*ENV_SIZE_Y+j] = (float)(simEnv[i][j]);
			cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		}


		tGlobal++;
		//for (t=0; t<10000000; t++){}
	}
}
Beispiel #15
0
int main(int argc, char** argv){
	float tr[6];

	const float ZAP=32;
	const uint64_t TSIZE=18;
	const uint64_t zapE=64;
	fftwf_init_threads();
	fftwf_plan_with_nthreads(omp_get_max_threads());

	logmsg("Open file '%s'",argv[1]);
	FILE* f = fopen(argv[1],"r");

	int hdr_bytes = read_header(f);
	const uint64_t nskip = hdr_bytes;
	const uint64_t nchan = nchans;
	logmsg("Nchan=%"PRIu64", tsamp=%f",nchan,tsamp);
	mjk_rand_t *random = mjk_rand_init(12345);

	rewind(f);
	FILE* of = fopen("clean.fil","w");
	uint8_t hdr[nskip];
	fread(hdr,1,nskip,f);
	fwrite(hdr,1,nskip,of);
	const uint64_t nsamp_per_block=round(pow(2,TSIZE));

	logmsg("Tblock = %f",nsamp_per_block*tsamp);

	mjk_clock_t *t_all = init_clock();
	start_clock(t_all);

	mjk_clock_t *t_read = init_clock();
	mjk_clock_t *t_trns= init_clock();
	mjk_clock_t *t_rms = init_clock();
	mjk_clock_t *t_fft = init_clock();
	mjk_clock_t *t_spec = init_clock();

	const uint64_t bytes_per_block = nchan*nsamp_per_block;

	uint8_t *buffer = calloc(bytes_per_block,1);
	float **data = malloc_2df(nchan,nsamp_per_block);
	float **clean = malloc_2df(nchan,nsamp_per_block);
	float *bpass = calloc(nchan,sizeof(float));
	float  *ch_var=NULL;
	float  *ch_mean=NULL;
	float  *ch_fft_n=NULL;
	float  *ch_fft_p=NULL;


	logmsg("Planning FFT - this will take a long time the first time it is run!");
	start_clock(t_fft);
	FILE * wisfile;
	if(wisfile=fopen("wisdom.txt","r")){
		fftwf_import_wisdom_from_file(wisfile);
		fclose(wisfile);
	}
	const int fftX=nsamp_per_block;
	const int fftY=nchan;
	const int fftXo=nsamp_per_block/2+1;

	float *X = fftwf_malloc(sizeof(float)*fftX);

	for (uint64_t i = 0; i < nsamp_per_block ; i++){
		X[i]=i;
	}
	float *tseries = fftwf_malloc(sizeof(float)*fftX);
	float complex *fseries = fftwf_malloc(sizeof(float complex)*fftXo);
	float *pseries = fftwf_malloc(sizeof(float)*fftXo);
	uint8_t *mask = malloc(sizeof(uint8_t)*fftXo);
	fftwf_plan fft_1d = fftwf_plan_dft_r2c_1d(fftX,tseries,fseries,FFTW_MEASURE|FFTW_DESTROY_INPUT);

	complex float * fftd = fftwf_malloc(sizeof(complex float)*(fftXo*fftY));
	fftwf_plan fft_plan = fftwf_plan_many_dft_r2c(
			1,&fftX,fftY,
			data[0] ,&fftX,1,fftX,
			fftd    ,&fftXo,1,fftXo,
			FFTW_MEASURE|FFTW_PRESERVE_INPUT);
	logmsg("Planning iFFT - this will take a long time the first time it is run!");
	fftwf_plan ifft_plan = fftwf_plan_many_dft_c2r(
			1,&fftX,fftY,
			fftd ,&fftXo,1,fftXo,
			clean[0] ,&fftX,1,fftX,
			FFTW_MEASURE|FFTW_PRESERVE_INPUT);

	if(!fft_plan){
		logmsg("Error - could not do FFT plan");
		exit(2);
	}

	wisfile=fopen("wisdom.txt","w");
	fftwf_export_wisdom_to_file(wisfile);
	fclose(wisfile);
	stop_clock(t_fft);
	logmsg("T(planFFT)= %.2lfs",read_clock(t_fft));
	reset_clock(t_fft);



	float min_var=1e9;
	float max_var=0;

	float min_fft_n=1e9;
	float max_fft_n=0;


	float min_fft_p=1e9;
	float max_fft_p=0;

	float min_mean=1e9;
	float max_mean=0;
	uint64_t nblocks=0;
	uint64_t totread=0;
	while(!feof(f)){
		nblocks++;
		ch_var = realloc(ch_var,nchan*nblocks*sizeof(float));
		ch_mean = realloc(ch_mean,nchan*nblocks*sizeof(float));
		ch_fft_n = realloc(ch_fft_n,nchan*nblocks*sizeof(float));
		ch_fft_p = realloc(ch_fft_p,nchan*nblocks*sizeof(float));
		start_clock(t_read);
		uint64_t read = fread(buffer,1,bytes_per_block,f);
		stop_clock(t_read);
		if (read!=bytes_per_block){
			nblocks--;
			break;
		}
		totread+=read;
		logmsg("read=%"PRIu64" bytes. T=%fs",read,totread*tsamp/(float)nchan);
		uint64_t offset = (nblocks-1)*nchan;
		start_clock(t_trns);
		// transpose with small blocks in order to increase cache efficiency.
#define BLK 8
#pragma omp parallel for schedule(static,2) shared(buffer,data)
		for (uint64_t j = 0; j < nchan ; j+=BLK){
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				for (uint64_t k = 0; k < BLK ; k++){
					data[j+k][i] = buffer[i*nchan+j+k];
				}
			}
		}

#pragma omp parallel for shared(data)
		for (uint64_t j = 0; j < nchan ; j++){
			if(j<zapE || (nchan-j) < zapE){ 
				for (uint64_t i = 0; i < nsamp_per_block ; i++){
					data[j][i]=ZAP;
				}
			}
		}

		if(nblocks==1){
#pragma omp parallel for shared(data,bpass)
			for (uint64_t j = 0; j < nchan ; j++){
				for (uint64_t i = 0; i < nsamp_per_block ; i++){
					bpass[j]+=data[j][i];
				}
				bpass[j]/=(float)nsamp_per_block;
				bpass[j]-=ZAP;
			}
		}
#pragma omp parallel for shared(data,bpass)
		for (uint64_t j = 0; j < nchan ; j++){
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				data[j][i]-=bpass[j];
			}
		}




		stop_clock(t_trns);

		start_clock(t_rms);
#pragma omp parallel for shared(data,ch_mean,ch_var)
		for (uint64_t j = 0; j < nchan ; j++){
			float mean=0;
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				mean+=data[j][i];
			}
			mean/=(float)nsamp_per_block;
			if(mean > ZAP+5 || mean < ZAP-5){
				logmsg("ZAP ch=%"PRIu64,j);
				for (uint64_t i = 0; i < nsamp_per_block ; i++){
					data[j][i]=ZAP;
				}
			}

			float ss=0;
			float x=0;
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				x = data[j][i]-mean;
				ss+=x*x;
			}
			float var=ss/(float)nsamp_per_block;
			if (var > 0){
				for (uint64_t i = 0; i < nsamp_per_block ; i++){
					float v = (data[j][i]-mean)/sqrt(var);
					if(v > 3 || v < -3){
						data[j][i]=mjk_rand_gauss(random)*sqrt(var)+mean;
					}
				}
			}

			ch_var[offset+j] = var;
			ch_mean[offset+j] = mean;

		}
		stop_clock(t_rms);

		for (uint64_t i = 0; i < nsamp_per_block ; i++){
			tseries[i]=0;
		}

		float tmean=0;
		float tvar=0;
		float max=0;
		float min=1e99;
		//#pragma omp parallel for shared(data,tseries)
		// NOT THREAD SAFE
		for (uint64_t j = 0; j < nchan ; j++){
			tmean+=ch_mean[offset+j];
			tvar+=ch_var[offset+j];
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				tseries[i]+=data[j][i];
				if(data[j][i]>max)max=data[j][i];
				if(data[j][i]<min)min=data[j][i];
			}
		}
		float ss=0;
		float mm=0;
		for (uint64_t i = 0; i < nsamp_per_block ; i++){
			float x=tseries[i]-tmean;
			mm+=tseries[i];
			ss+=x*x;
		}
		float rvar=ss/(float)nsamp_per_block;
		logmsg("var=%g tvar=%g",ss/(float)nsamp_per_block,tvar);
		logmsg("mean=%g tmean=%g",mm/(float)nsamp_per_block,tmean);
		cpgopen("3/xs");
		cpgsvp(0.1,0.9,0.1,0.9);
		cpgswin(0,fftX,tmean-sqrt(tvar)*30,tmean+sqrt(tvar)*30);
		cpgbox("ABN",0,0,"ABN",0,0);
		cpgline(fftX,X,tseries);
		cpgsci(2);
		cpgclos();
		tr[0] = 0.0 ;
		tr[1] = 1;
		tr[2] = 0;
		tr[3] = 0.5;
		tr[4] = 0;
		tr[5] = 1;

		logmsg("max=%g min=%g",max,min);

		cpgopen("4/xs");
		cpgsvp(0.1,0.9,0.1,0.9);
		cpgswin(0,nsamp_per_block,0,nchan);
		cpgbox("ABN",0,0,"ABN",0,0);
		cpggray(*data,nsamp_per_block,nchan,1,nsamp_per_block,1,nchan,tmean/(float)nchan+sqrt(rvar/(float)nchan),tmean/(float)nchan-sqrt(rvar/(float)nchan),tr);
		cpgclos();




		start_clock(t_fft);
		fftwf_execute(fft_1d);
		fftwf_execute(fft_plan);
		stop_clock(t_fft);

		{
			float T = sqrt(fftXo*tvar)*12;
			logmsg("Zap T=%.2e",T);

			float fx[fftXo];
			float fT[fftXo];
#pragma omp parallel for shared(fseries,pseries,mask)
			for (uint64_t i = 0; i < fftXo ; i++){
				mask[i]=1;
			}
#pragma omp parallel for shared(fseries,pseries,mask)
			for (uint64_t i = 0; i < fftXo ; i++){
				pseries[i]=camp(fseries[i]);
				fx[i]=i;
				float TT = T;
				if (i>512)TT=T/2.0;
				if(i>32){
					fT[i]=TT;
					if (pseries[i] > TT) {
						mask[i]=0;
					}
				} else fT[i]=0;
			}

			uint64_t nmask=0;
			for (uint64_t i = 0; i < fftXo ; i++){
				if (mask[i]==0){
					nmask++;
				}
			}
			logmsg("masked=%d (%.2f%%)",nmask,100*nmask/(float)fftXo);
			cpgopen("1/xs");
			cpgsvp(0.1,0.9,0.1,0.9);
			cpgswin(0,fftXo,0,T*10);
			cpgbox("ABN",0,0,"ABN",0,0);
			cpgline(fftXo,fx,pseries);
			cpgsci(2);
			cpgline(fftXo,fx,fT);
			cpgclos();

		}


		//		exit(1);

		start_clock(t_spec);

		//FILE* ff=fopen("plot","w");
#pragma omp parallel for shared(fftd,ch_mean,ch_fft_n,ch_fft_p)
		for (uint64_t j = 0; j < nchan ; j++){
			float var = ch_var[offset+j];
			float m=sqrt(var*fftXo/2.0);
			float T = sqrt(var*fftXo)*3;
			uint64_t n=0;
			float p=0;
			float complex *fftch = fftd + fftXo*j;
			for(uint64_t i = 1; i < fftXo; i++){
				if (camp(fftch[i]) > T) {
					n++;
					p+=camp(fftch[i]);
				}
				//	 if(j==512)fprintf(ff,"%f ",camp(fftch[i]));
				if(mask[i]==0){
					fftch[i]=m*(mjk_rand_gauss(random) + I*mjk_rand_gauss(random)); 
				}
				//	 if(j==512)fprintf(ff,"%f\n",camp(fftch[i]));
			}
			ch_fft_n[offset+j]=n;
			ch_fft_p[offset+j]=p;
		}
		// fclose(ff);

		logmsg("iFFT");
		fftwf_execute(ifft_plan);

#pragma omp parallel for schedule(static,2) shared(buffer,clean)
		for (uint64_t j = 0; j < nchan ; j+=BLK){
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				for (uint64_t k = 0; k < BLK ; k++){
					clean[j+k][i]/=(float)fftX;
					buffer[i*nchan+j+k] = round(clean[j+k][i]);
				}
			}

			if(j==512){
				cpgopen("2/xs");
				cpgsvp(0.1,0.9,0.1,0.9);
				cpgswin(0,fftX,ch_mean[j]-sqrt(ch_var[j])*10,ch_mean[j]+sqrt(ch_var[j])*10);
				cpgbox("ABN",0,0,"ABN",0,0);
				cpgline(fftX,X,data[j]);
				cpgsci(2);
				cpgline(fftX,X,clean[j]);
				cpgclos();

			}

		}
		fwrite(buffer,1,bytes_per_block,of);


		for (uint64_t i = 0; i < nsamp_per_block ; i++){
			tseries[i]=0;
		}

		tmean=0;
		tvar=0;
		max=0;
		min=1e99;
		//#pragma omp parallel for shared(clean,tseries)
		// NOT THREAD SAFE
		for (uint64_t j = 0; j < nchan ; j++){
			tmean+=ch_mean[offset+j];
			tvar+=ch_var[offset+j];
			for (uint64_t i = 0; i < nsamp_per_block ; i++){
				tseries[i]+=clean[j][i];
				if(clean[j][i]>max)max=clean[j][i];
				if(clean[j][i]<min)min=clean[j][i];
			}
		}
		ss=0;
		mm=0;
		for (uint64_t i = 0; i < nsamp_per_block ; i++){
			float x=tseries[i]-tmean;
			mm+=tseries[i];
			ss+=x*x;
		}
		rvar=ss/(float)nsamp_per_block;
		logmsg("var=%g tvar=%g",ss/(float)nsamp_per_block,tvar);
		logmsg("mean=%g tmean=%g",mm/(float)nsamp_per_block,tmean);
		cpgopen("5/xs");
		cpgsvp(0.1,0.9,0.1,0.9);
		cpgswin(0,fftX,tmean-sqrt(tvar)*30,tmean+sqrt(tvar)*30);
		cpgbox("ABN",0,0,"ABN",0,0);
		cpgline(fftX,X,tseries);
		cpgsci(2);
		cpgclos();
		tr[0] = 0.0 ;
		tr[1] = 1;
		tr[2] = 0;
		tr[3] = 0.5;
		tr[4] = 0;
		tr[5] = 1;

		logmsg("max=%g min=%g",max,min);

		cpgopen("6/xs");
		cpgsvp(0.1,0.9,0.1,0.9);
		cpgswin(0,nsamp_per_block,0,nchan);
		cpgbox("ABN",0,0,"ABN",0,0);
		cpggray(*clean,nsamp_per_block,nchan,1,nsamp_per_block,1,nchan,tmean/(float)nchan+sqrt(rvar/(float)nchan),tmean/(float)nchan-sqrt(rvar/(float)nchan),tr);
		cpgclos();




		stop_clock(t_spec);
		for (uint64_t j = 0; j < nchan ; j++){
			float mean=ch_mean[offset+j];
			if (mean > max_mean)max_mean=mean;
			if (mean < min_mean)min_mean=mean;

			float var=ch_var[offset+j];
			if (var > max_var)max_var=var;
			if (var < min_var)min_var=var;
			float fft_n=ch_fft_n[offset+j];
			if (fft_n > max_fft_n)max_fft_n=fft_n;
			if (fft_n < min_fft_n)min_fft_n=fft_n;
			float fft_p=ch_fft_p[offset+j];
			if (fft_p > max_fft_p)max_fft_p=fft_p;
			if (fft_p < min_fft_p)min_fft_p=fft_p;

		}
	}
	stop_clock(t_all);

	fclose(of);

	logmsg("T(all)  = %.2lfs",read_clock(t_all));
	logmsg("T(read) = %.2lfs",read_clock(t_read));
	logmsg("T(trans)= %.2lfs",read_clock(t_trns));
	logmsg("T(fft)  = %.2lfs",read_clock(t_fft));
	logmsg("T(fan)  = %.2lfs",read_clock(t_spec));
	logmsg("T(rms)  = %.2lfs",read_clock(t_rms));
	logmsg("T(rest) = %.2lfs",read_clock(t_all)-read_clock(t_read)-read_clock(t_trns)-read_clock(t_rms)-read_clock(t_fft)-read_clock(t_spec));


	tr[0] = -tsamp*nsamp_per_block*0.5;
	tr[2] = tsamp*nsamp_per_block;
	tr[1] = 0;
	tr[3] = 0.5;
	tr[5] = 0;
	tr[4] = 1;




	cpgopen("1/xs");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_mean,nchan,nblocks,1,nchan,1,nblocks,max_mean,min_mean,tr);
	cpgclos();

	cpgopen("2/xs");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_var,nchan,nblocks,1,nchan,1,nblocks,max_var,min_var,tr);
	cpgclos();

	cpgopen("3/xs");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_fft_n,nchan,nblocks,1,nchan,1,nblocks,max_fft_n,min_fft_n,tr);
	cpgclos();

	cpgopen("4/xs");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_fft_p,nchan,nblocks,1,nchan,1,nblocks,max_fft_p,min_fft_p,tr);
	cpgclos();



	cpgopen("mean.ps/vcps");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_mean,nchan,nblocks,1,nchan,1,nblocks,max_mean,min_mean,tr);
	cpgclos();

	cpgopen("var.ps/vcps");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_var,nchan,nblocks,1,nchan,1,nblocks,max_var,min_var,tr);
	cpgclos();


	cpgopen("fft_n.ps/vcps");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_fft_n,nchan,nblocks,1,nchan,1,nblocks,max_fft_n,min_fft_n,tr);
	cpgclos();

	cpgopen("fft_p.ps/vcps");
	cpgsvp(0.1,0.9,0.1,0.9);
	cpgswin(0,nblocks*tsamp*nsamp_per_block,0,nchan);
	cpgbox("ABN",600,10,"ABN",100,1);
	cpggray(ch_fft_p,nchan,nblocks,1,nchan,1,nblocks,max_fft_p,min_fft_p,tr);
	cpgclos();



	fclose(f);
	free(buffer);
	free_2df(data);

	return 0;

}
Beispiel #16
0
int main(int argc, char *argv[]) {
    float *x=NULL,*y=NULL,minx,maxx,miny,maxy,cx, *oparams=NULL,*nparams=NULL;
    float *rx=NULL,*ry=NULL,*w=NULL,*wparams=NULL,*wx=NULL,*wy=NULL,*ww=NULL;
    float *y_sault_fit=NULL, *x_fit=NULL, *y_new_fit=NULL, *y_reynolds_fit=NULL;
    float *y_stevens_fit=NULL,*y_whole_fit=NULL,*y_old_fit=NULL;
    int i,j,n=0,n_fit=100,new_fit_order=2,whole_fit_order=5,nr=0,nw=0;
    /* float extra_x[NEXTRA]={ 93, 95 }, extra_y[NEXTRA] = { 0.1223, 0.1168 }; */
    float extra_x[NEXTRA]= { 93, 95 }, extra_y[NEXTRA] = { 0.1116, 0.1056 };
    float extra_u[NEXTRA]= { 0.01356, 0.01399 };
    float fitp_sault[NFIT_SAULT]= { -202.6259, 149.7321, -36.4943, 2.9372 };
    float fitp_reynolds[NFIT_REYNOLDS]= { -30.7667, 26.4908, -7.0977, 0.605334 };
    float fitp_stevens[NFIT_STEVENS]= { -1.237160, 2.005317, -0.400622 };
    float fitp_old[NFIT_OLD]= { -23.839, 19.569, -4.8168, 0.35836 };
    float *ratio_reynolds_fit=NULL,*ratio_stevens_fit=NULL,*ratio_sault_fit=NULL;
    float *ratio_new_fit=NULL;
    float vpx1, vpx2, vpy1, vpy2, vpy3, lx, ly, dly;
    char fitlabel[BUFSIZE];

    /* Generate the cm fit points. */
    for (cx=1.0; cx<10.0; cx+=0.1) {
        nr++;
        rx = realloc(rx, nr * sizeof(float));
        ry = realloc(ry, nr * sizeof(float));
        rx[nr-1] = log10f(cx * 1000);
        ry[nr-1] = 0.0;
        for (i=0; i<NFIT_REYNOLDS; i++) {
            ry[nr-1] += fitp_reynolds[i] * powf(rx[n-1], (float)i);
        }
    }

    /* Generate the 15mm fit points. */
    for (cx=10.0; cx<=24.0; cx+=0.128) {
        n++;
        x = realloc(x, n * sizeof(float));
        y = realloc(y, n * sizeof(float));
        w = realloc(w, n * sizeof(float));
        x[n-1] = log10f(cx * 1000);
        y[n-1] = 0.0;
        for (i=0; i<NFIT_REYNOLDS; i++) {
            y[n-1] += fitp_sault[i] * powf(x[n-1], (float)i);
        }
        w[n-1] = 1.0/0.1;
    }

    /* Do the fit. */
    linfit_order(NFIT_SAULT, n, x, y, w, &oparams);
    for (i=0; i<NFIT_SAULT; i++) {
        printf("i = %d c[i] = %.4f\n", i, oparams[i]);
    }

    /* Add the 3mm flux points. */
    for (i=0; i<NEXTRA; i++) {
        n++;
        x = realloc(x, n * sizeof(float));
        y = realloc(y, n * sizeof(float));
        w = realloc(w, n * sizeof(float));
        x[n-1] = log10f(extra_x[i] * 1000);
        y[n-1] = log10f(extra_y[i]);
        w[n-1] = 1/extra_u[i];
    }

    /* Do another fit. */
    linfit_order(new_fit_order, n, x, y, w, &nparams);
    for (i=0; i<new_fit_order; i++) {
        printf("i = %d nc[i] = %.4f\n", i, nparams[i]);
    }

    /* Generate the whole range fit points. */
    minx=log10f(900);
    maxx=log10f(100000);
    miny=-2;
    maxy=log10f(20);
    x_fit = malloc(n_fit * sizeof(float));
    for (i=0; i<n_fit; i++) {
        x_fit[i] = minx + i * ((maxx - minx)/(float)n_fit);
        nw++;
        wx = realloc(wx, nw * sizeof(float));
        wy = realloc(wy, nw * sizeof(float));
        ww = realloc(ww, nw * sizeof(float));
        wx[nw-1] = x_fit[i];
        wy[nw-1] = 0.0;
        ww[nw-1] = 1;
        if (x_fit[i] < log10f(11143)) {
            /* Use the Reynolds fit. */
            for (j=0; j<NFIT_REYNOLDS; j++) {
                wy[nw-1] += fitp_reynolds[j] * powf(x_fit[i], (float)j);
            }
        } else {
            /* Use the new fit. */
            for (j=0; j<new_fit_order; j++) {
                wy[nw-1] += nparams[j] * powf(x_fit[i], (float)j);
            }
        }
    }

    /* Do a whole-range fit. */
    linfit_order(whole_fit_order, nw, wx, wy, ww, &wparams);
    for (i=0; i<whole_fit_order; i++) {
        printf("i = %d wc[i] = %.4f\n", i, wparams[i]);
    }

    // minmax(n, x, &minx, &maxx);
    // minmax(n, y, &miny, &maxy);

    y_sault_fit = malloc(n_fit * sizeof(float));
    y_reynolds_fit = malloc(n_fit * sizeof(float));
    y_stevens_fit = malloc(n_fit * sizeof(float));
    y_new_fit = malloc(n_fit * sizeof(float));
    y_whole_fit = malloc(n_fit * sizeof(float));
    y_old_fit = malloc(n_fit * sizeof(float));
    ratio_reynolds_fit = malloc(n_fit * sizeof(float));
    ratio_stevens_fit = malloc(n_fit * sizeof(float));
    ratio_sault_fit = malloc(n_fit * sizeof(float));
    ratio_new_fit = malloc(n_fit * sizeof(float));
    /* minx=log10f(50); */
    minx=log10f(1000);
    /* maxx=log10f(500000); */
    maxx=log10f(110000);
    for (i=0; i<n_fit; i++) {
        x_fit[i] = minx + i * ((maxx - minx)/(float)n_fit);
        y_sault_fit[i] = 0.0;
        y_reynolds_fit[i] = 0.0;
        y_new_fit[i] = 0.0;
        y_stevens_fit[i] = 0.0;
        y_whole_fit[i] = 0.0;
        y_old_fit[i] = 0.0;
        for (j=0; j<NFIT_SAULT; j++) {
            y_sault_fit[i] += fitp_sault[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_REYNOLDS; j++) {
            y_reynolds_fit[i] += fitp_reynolds[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_STEVENS; j++) {
            y_stevens_fit[i] += fitp_stevens[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<new_fit_order; j++) {
            y_new_fit[i] += nparams[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<whole_fit_order; j++) {
            y_whole_fit[i] += wparams[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_OLD; j++) {
            y_old_fit[i] += fitp_old[j] * powf(x_fit[i], (float)j);
        }
        ratio_reynolds_fit[i] = powf(10, (y_reynolds_fit[i] - y_whole_fit[i]));
        ratio_stevens_fit[i] = powf(10, (y_stevens_fit[i] - y_whole_fit[i]));
        ratio_sault_fit[i] = powf(10, (y_sault_fit[i] - y_whole_fit[i]));
        ratio_new_fit[i] = powf(10, (y_new_fit[i] - y_whole_fit[i]));
    }

    /* cpgopen("11/xs"); */
    cpgopen("1934-638_models.ps/cps");
    /* cpgopen("1934-638_models.png/png"); */
    cpgqvp(0, &vpx1, &vpx2, &vpy1, &vpy2);
    vpy3 = vpy1 + (vpy2 - vpy1) / 5.0;
    /* cpgsvp(vpx1, vpx2, vpy3, vpy2); */
    cpgswin(minx, maxx, miny, maxy);
    lx = minx + (maxx - minx) / 9.0;
    ly = miny + (maxy - miny) / 3.0;
    dly = (maxy - miny) / 20.0;
    cpgsch(1.0);
    cpgbox("BCLNTS",0,0,"BCLNTS",0,0);
    cpglab("Frequency (MHz)", "Flux Density (Jy)", "1934-638 Model Comparison");
    cpgsch(0.8);
    cpgpt(n, x, y, 4);
    /* cpgpt(nw, wx, wy, 4); */
    cpgsci(2);
    /* cpgpt(nr, rx, ry, 4); */
    cpgline(n_fit, x_fit, y_sault_fit);
    strcpy(fitlabel, "Sault: ");
    fitstring(fitp_sault, NFIT_SAULT, fitlabel);
    cpgtext(lx, ly, fitlabel);
    cpgsci(3);
    cpgline(n_fit, x_fit, y_new_fit);
    strcpy(fitlabel, "Stevens (linear): ");
    fitstring(nparams, new_fit_order, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(4);
    cpgline(n_fit, x_fit, y_reynolds_fit);
    strcpy(fitlabel, "Reynolds: ");
    fitstring(fitp_reynolds, NFIT_REYNOLDS, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(5);
    cpgline(n_fit, x_fit, y_stevens_fit);
    strcpy(fitlabel, "Stevens (Miriad): ");
    fitstring(fitp_stevens, NFIT_STEVENS, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(6);
    cpgline(n_fit, x_fit, y_old_fit);
    strcpy(fitlabel, "Pre-1994: ");
    fitstring(fitp_old, NFIT_OLD, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    /* cpgsci(6); */
    /* cpgline(n_fit, x_fit, y_whole_fit); */
    /* strcpy(fitlabel, "Stevens (New): "); */
    /* fitstring(wparams, whole_fit_order, fitlabel); */
    /* ly -= dly; */
    /* cpgtext(lx, ly, fitlabel); */
    /* cpgsvp(vpx1, vpx2, vpy1, vpy3); */
    /* cpgsci(1); */
    /* cpgswin(minx, maxx, 0.9, 1.1); */
    /* cpgsch(1.0); */
    /* cpgbox("BCLNTS",0,0,"BCMTS",0,0); */
    /* cpglab("Frequency (MHz)", "Model Ratio", ""); */
    /* cpgsci(2); */
    /* cpgline(n_fit, x_fit, ratio_sault_fit); */
    /* cpgsci(3); */
    /* cpgline(n_fit, x_fit, ratio_new_fit); */
    /* cpgsci(4); */
    /* cpgline(n_fit, x_fit, ratio_reynolds_fit); */
    /* cpgsci(5); */
    /* cpgline(n_fit, x_fit, ratio_stevens_fit); */
    cpgclos();

    exit(0);
}
Beispiel #17
0
int main(){
	printf("\n====================================================================\n");
	printf("This program is able to simulate the diffusion of heat\n");
	printf("across a metal plate of size %i x %i\n", ENV_SIZE_X, ENV_SIZE_Y);
	printf("====================================================================\n");

	//==========================================================================
	//--------------------------SYSTEM INITIALIZATIONS--------------------------
	//==========================================================================
	
	// initialize random seed
	srand(time(NULL));

	// force print all outputs (remove stdout buffer)
	setbuf(stdout, NULL);

	// initialize pgplot window
	if (!cpgopen("/XWINDOW"))
		errorCase(ERR_PGPLOT);

	cpgpap(0.0, 0.6);						// set window size
	cpgsubp(1,3);						// subdivide window into panels
	// heatmap
	cpgpanl(1,1);
	cpgsvp(0.0, 1.0, 0.0, 1.0);
	cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
	// flux plot
	cpgpanl(1,2);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, FLUX_PLOT_Y1, FLUX_PLOT_Y2);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Flux", "");
	// heat plot
	cpgpanl(1,3);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, LINE_PLOT_Y1, LINE_PLOT_Y2);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Total Heat", "");

	// initialize color table for pgplot display
  	float rl[9] = {-0.5, 0.0, 0.17, 0.33, 0.50, 0.67, 0.83, 1.0, 1.7};
  	float rr[9] = { 0.0, 0.0,  0.0,  0.0,  0.6,  1.0,  1.0, 1.0, 1.0};
  	float rg[9] = { 0.0, 0.0,  0.0,  1.0,  1.0,  1.0,  0.6, 0.0, 1.0};
  	float rb[9] = { 0.0, 0.3,  0.8,  1.0,  0.3,  0.0,  0.0, 0.0, 1.0};
  	cpgctab(rl, rr, rg, rb, 512,  1.0, 0.5);
	cpgscr(10, 0.0, 0.0, 1.0);
	cpgscr(11, 1.0, 0.0, 0.0);
	cpgsfs(3);


	//==========================================================================
	//--------------------------VARIABLE INITIALIZATIONS------------------------
	//==========================================================================

	// generic variables
	int i, j, k;						// counters

	// simulation environment
	float** simEnvEven = allocateArray2D(ENV_SIZE_X, ENV_SIZE_Y);
	float** simEnvOdd = allocateArray2D(ENV_SIZE_X, ENV_SIZE_Y);
	float* simLocal = allocateArray1D(5);

	// mnist handwritten numbers
	float** mnistDatabase = readCSV("mnist_train_100.csv", 100, 785);
	for (i=0; i<100; i++)
		for (j=0; j<785; j++)
			mnistDatabase[i][j] = mnistDatabase[i][j]/255.0;

	// current location and time
	int x,y,z;
	int t, tGlobal;

	// student number
	int studentNumbRaw;
	int studentNumbWorking;
	int studentNumb[7];

	// rates
	float rateDiff = 0.2;
	float delta;

	// flux variables
	float flux;
	float fluxTotal;
	float fluxAverage;
	float fluxHeat;
	float totalHeat;
	int x1, x2, y1, y2;

	// background heat
	float bgHeat;

	// tracking variables
	float totalHeatOld;
	float totalHeatPre;
	float tGlobalOld;
	float fluxOld;

	// pgplot variables
	float* plotImg = allocateArray1D(ENV_SIZE_TOTAL);
	float TR[6] = {0, 0, 1, ENV_SIZE_Y, -1, 0};
	float plotMinBound = 0;
	float plotMaxBound = 1;

	//==========================================================================
	//--------------------------------SETUP-------------------------------------
	//==========================================================================
	
	// ask for student number
	printf("Please enter your student number:\n");
	if (scanf("%i", &studentNumbRaw) == 0)
		errorCase(ERR_INVALID_INPUT);
	studentNumbWorking = studentNumbRaw;
	for (i=0; i<SN_LENGTH; i++){
		studentNumb[6-i] = studentNumbWorking%10;
		studentNumbWorking /= 10;
	}
	printf("\nYour student number is:\n");
	for (i=0; i<SN_LENGTH; i++)
		printf("%i", studentNumb[i]);
	printf("\n\n");

	// set and print diffusion rate based on last digit of student number
	rateDiff = ((((float)(studentNumb[6]))/10.0)*0.19)+0.01;
	printf("Your Diffusion Rate is: \n%f\n\n", rateDiff);

	// set and print background heat added based on last 4 digits of student number
	studentNumbRaw -= 1410000;
	bgHeat = ((float)((studentNumbRaw%97)%10));
	bgHeat += ((float)((studentNumbRaw%101)%8))*10;
	bgHeat /= 100;
	printf("Your Background Heat is: \n%f\n\n", bgHeat*100);

	// set and print domain for calculating flux
	// x1, y1 based on last four digits of student number
	x1 = studentNumbRaw % ENV_SIZE_X;
	y1 = studentNumbRaw % ENV_SIZE_Y;
	// x2, y2 based on last four digits of student number
	x2 = x1 + (studentNumbRaw % (97));
	if (x2 >= ENV_SIZE_X)
		x2 = ENV_SIZE_X - 1;
	y2 = y1 + (studentNumbRaw % (29));
	if (y2 >= ENV_SIZE_Y)
		y2 = ENV_SIZE_Y - 1;
	printf("Your Domain is: \n(%i, %i) X (%i, %i)\n\n", x1, y1, x2, y2);

	// environment initialization:
	// select digits and place into environment
	for (i=0; i<SN_LENGTH; i++){
		if (studentNumb[i] == 0)
			z = 0;
		else if (studentNumb[i] == 1)
			z = 13;
		else if (studentNumb[i] == 2)
			z = 27;
		else if (studentNumb[i] == 3)
			z = 33;
		else if (studentNumb[i] == 4)
			z = 44;
		else if (studentNumb[i] == 5)
			z = 55;
		else if (studentNumb[i] == 6)
			z = 60;
		else if (studentNumb[i] == 7)
			z = 71;
		else if (studentNumb[i] == 8)
			z = 81;
		else
			z = 89;

		for (x=0; x<28; x++)
			for (y=0; y<28; y++) {
				simEnvEven[x+(i*28)+1][y+1] = mnistDatabase[z][y*28+x] + bgHeat;
				if (simEnvEven[x+(i*28)+1][y+1] > 1.0)
					simEnvEven[x+(i*28)+1][y+1] = 1.0;
			}
	}


	//==========================================================================
	//--------------------------ACTUAL CODE-------------------------------------
	//==========================================================================

	// initialize display
	fixBoundaryConditions(simEnvEven);
	copyArray2D(simEnvEven, simEnvOdd, ENV_SIZE_X, ENV_SIZE_Y);
	loadImage(simEnvEven, plotImg);
	cpgpanl(1,1);
	cpgsvp(0.0, 1.0, 0.0, 1.0);
	cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
	cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
	cpgrect(x1, x2, y1, y2);

	// initialize trackers
	tGlobalOld = 0;
	fluxOld = 0;
	totalHeatOld = 0;
	for (x=x1; x<=x2; x++)
		for (y=y1; y<=y2; y++)
			totalHeatOld += simEnvEven[x][y];

	// initial delay to visualize starting matrix
	for (t=0; t<500000000; t++){}
	
	t = 0;
	tGlobal = 0;
	flux = 0;
	fluxAverage = 0;
	fluxTotal = 0;
	while(1){
		flux = 0;
		cpgpanl(1,1);
		cpgsvp(0.0, 1.0, 0.0, 1.0);
		cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);

		// calculate heat changes using numeric methods
		fixBoundaryConditions(simEnvEven);

		//simEnvEven[50][15] = 100;
		//simEnvEven[60][15] = -10;

		copyArray2D(simEnvEven, simEnvOdd, ENV_SIZE_X, ENV_SIZE_Y);

		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 0) {
					delta = rateDiff*(simEnvEven[x][y+1] - 2*simEnvEven[x][y] + simEnvEven[x][y-1]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvEven[x+1][y] - 2*simEnvEven[x][y] + simEnvEven[x-1][y]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 1) {
					delta = rateDiff*(simEnvOdd[x][y+1] - 2*simEnvOdd[x][y] + simEnvOdd[x][y-1]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvOdd[x+1][y] - 2*simEnvOdd[x][y] + simEnvOdd[x-1][y]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		loadImage(simEnvOdd, plotImg);
		cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		cpgrect(x1, x2, y1, y2);
		fluxTotal += flux;
		tGlobal++;

		flux = 0;

		//simEnvOdd[50][15] = 100;
		//simEnvOdd[60][15] = -10;

		fixBoundaryConditions(simEnvOdd);
		
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 1) {
					delta = rateDiff*(simEnvOdd[x][y+1] - 2*simEnvOdd[x][y] + simEnvOdd[x][y-1]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvOdd[x+1][y] - 2*simEnvOdd[x][y] + simEnvOdd[x-1][y]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 0) {
					delta = rateDiff*(simEnvEven[x][y+1] - 2*simEnvEven[x][y] + simEnvEven[x][y-1]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvEven[x+1][y] - 2*simEnvEven[x][y] + simEnvEven[x-1][y]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		loadImage(simEnvEven, plotImg);
		cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		cpgrect(x1, x2, y1, y2);
		fluxTotal += flux;
		tGlobal++;



		// flux line plot
		cpgpanl(1,2);
		cpgsvp(0.08, 0.92, 0.08, 0.92);
		cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, FLUX_PLOT_Y1, FLUX_PLOT_Y2);
		cpgmove(tGlobalOld, fluxOld);
		cpgdraw(tGlobal, flux);

		// heat line plot
		totalHeat = 0;
		for (x=x1; x<=x2; x++)
			for (y=y1; y<=y2; y++)
				totalHeat += simEnvEven[x][y];
		cpgpanl(1,3);
		cpgsvp(0.08, 0.92, 0.08, 0.92);
		cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, LINE_PLOT_Y1, LINE_PLOT_Y2);
		cpgmove(tGlobalOld, totalHeatOld);
		cpgdraw(tGlobal, totalHeat);

		// set trackers
		tGlobalOld = tGlobal;
		totalHeatOld = totalHeat;
		fluxOld = flux;

		if (tGlobal%100 == 0) {
			totalHeat = 0;
			for (x=x1; x<=x2; x++)
				for (y=y1; y<=y2; y++)
					totalHeat += simEnvEven[x][y];
			fluxAverage = fluxTotal/tGlobal;
			fluxHeat = totalHeat - totalHeatPre;
			printf("Total Heat: %f \n Current Divergence: %f \n Current Flux:       %f\n\n", totalHeat, flux, fluxHeat);
		}

		totalHeatPre = 0;
		for (x=x1; x<=x2; x++)
			for (y=y1; y<=y2; y++)
				totalHeatPre += simEnvEven[x][y];
	}
}
Beispiel #18
0
int main (int argc,char **argv)

	{
	int argPos, argNum = argc;
	char charBuffer [RGPBufferSIZE], panelTitle [RGPBufferSIZE], *outFile = (char *) "rgisplot";
	int panelRow, panelCol, panelRowNum,panelColNum, defaultLW;
	DBInt dataNum, entryNum = 0;
	DBInt ret, mode = 0, device = 0, format = 0, layout = 0;
	float x0, y0, x1, y1, pWidth = -1.0, pHeight = -1.0;
	DBObjData *dbData;

	for (argPos = 1;argPos < argNum; )
		{
		if (CMargTest (argv [argPos],"-m","--mode"))
			{
			const char *modes [] = { "interactive", "batch", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing mode!");    return (CMfailed); }
			if ((mode = CMoptLookup (modes,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid mode %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-d","--device"))
			{
			const char *devices [] = { "screen", "file", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing device!");  return (CMfailed); }
			if ((device = CMoptLookup (devices,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid device %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-p","--psize"))
			{
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing psize!");   return (CMfailed); }
			if ((argv [argPos] == (char *) NULL) || (sscanf (argv [argPos],"%f,%f",&pWidth,&pHeight) != 2))
				{ CMmsgPrint (CMmsgUsrError,"Invalid page size %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-f","--format"))
			{
			const char *formats [] = { "eps", "gif", "ppm", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing format!");  return (CMfailed); }
			if ((format = CMoptLookup (formats,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid format %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-l","--layout"))
			{
			const char *layouts [] = { "portrait","landscape", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing layout!");  return (CMfailed); }
			if ((layout = CMoptLookup (layouts,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid layout %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-o","--output"))
			{
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing output!");  return (CMfailed); }
			if (argv [argPos] == (char *) NULL)
				{ CMmsgPrint (CMmsgUsrError,"Invalid output file"); goto Usage; }
			outFile = argv [argPos];
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-h","--help"))
			{
			Usage:
			CMmsgPrint (CMmsgUsrError,"Usage: rgisPlot [-m <>] [-d <>] [-f <>] [-l <>] [-o <>] -h");
			CMmsgPrint (CMmsgUsrError,"                 -m, --mode <interactive | batch>");
			CMmsgPrint (CMmsgUsrError,"                 -d, --device <screen | file>");
			CMmsgPrint (CMmsgUsrError,"                 -p, --psize width,height");
			CMmsgPrint (CMmsgUsrError,"                 -f, --format <eps | gif>");
			CMmsgPrint (CMmsgUsrError,"                 -l, --layout <landscape | portrait>");
			CMmsgPrint (CMmsgUsrError,"                 -o, --output <filename>");
			argNum = CMargShiftLeft (argPos,argv,argNum);
			return (DBSuccess);
			}
		if ((argv [argPos][0] == '-') && (strlen (argv [argPos]) > 1))
			{ CMmsgPrint (CMmsgUsrError,"Unknown option: %s!",argv [argPos]); return (CMfailed); }
		argPos++;

		}

	switch (device)
		{
		case 0: cpgopen ("/XWINDOW");	break;
		case 1:
			{
			char *formatStrings [] = { (char *) "CPS", (char *) "GIF", (char *) "PPM" };
			sprintf (charBuffer,layout == 0 ? "%s/V%s" : "%s/%s", outFile, formatStrings [format]);
			cpgopen (charBuffer);
			} break;
		default: return (CMfailed);
		}
	cpgscrn (0,"WHITE",&ret);
	if ((pWidth > 0.0) && (pHeight > 0.0)) cpgpap (pWidth, pHeight / pWidth);

	do	{
		RGPPrintMessage (mode,&entryNum,"Panel Layout [horizontal,vertical]:");
		while (fgets (charBuffer,sizeof (charBuffer) - 1,stdin) == (char *) NULL);
		if (sscanf (charBuffer,"%d,%d",&panelColNum,&panelRowNum) == 2) break;
		else
			if (RGPPrintError (mode,entryNum,"Panel layout input error")) goto Stop;
		} while (true);

	RGPInitPenColors ();
	cpgsubp (panelColNum,panelRowNum);
	cpgqlw (&defaultLW);

	ret = DBSuccess;
	for (panelRow = 0;panelRow < panelRowNum;++panelRow)
		for (panelCol = 0;panelCol < panelColNum; ++panelCol)

			{
			cpgpanl (panelCol + 1,panelRow + 1);
			cpgsch (1.8);
			cpgvstd ();
			do	{
				sprintf (charBuffer,"Panel Title [%d,%d]:",panelRow,panelCol);
				RGPPrintMessage (mode,&entryNum,charBuffer);
				if (fgets (panelTitle,sizeof (panelTitle) - 1,stdin) != (char *) NULL)
					{
					if (panelTitle [strlen (panelTitle) - 1] == '\n')
						panelTitle [strlen (panelTitle) - 1] = '\0';
					if (strlen (panelTitle) > 0) break;
					}
				RGPPrintError (mode,entryNum,"Panel Title input error"); goto Stop;
				} while (true);

			dataNum = 0;
			do {
				RGPPrintMessage (mode,&entryNum,"Mapextent [X0,Y0,X1,Y1]:");
				if (fgets (charBuffer,sizeof (charBuffer) - 1,stdin) == (char *) NULL) continue;
				if (sscanf (charBuffer,"%f,%f,%f,%f",&x0,&y0,&x1,&y1) == 4)	break;
				else	if (RGPPrintError (mode,entryNum,"Mapextent input error")) goto Stop;
				} while (true);
			cpgwnad (x0,x1,y0,y1);

			do	{
				sprintf (charBuffer,"RiverGIS data file [%d]:",++dataNum);
				RGPPrintMessage (mode,&entryNum, charBuffer);
				if ((fgets (charBuffer,sizeof (charBuffer) - 1,stdin) != (char *) NULL) &&
					 (strlen (charBuffer) > 0) && charBuffer [0] != '\n')
					{
					if (charBuffer [strlen (charBuffer) - 1] == '\n') charBuffer [strlen (charBuffer) - 1] = '\0';
					dbData = new DBObjData ();
					if (dbData->Read (charBuffer) != DBSuccess) { dataNum--; continue; }
					switch (dbData->Type ())
						{
						case DBTypeVectorPoint:
							if ((ret = RGPDrawVecPoint (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						case DBTypeVectorLine:
							if ((ret = RGPDrawVecLine (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						case DBTypeVectorPolygon:
							break;
						case DBTypeGridContinuous:
								if ((ret = RGPDrawGridContinuous (mode,&entryNum,dbData)) == DBFault)	goto Stop;
							break;
						case DBTypeGridDiscrete:
							break;
						case DBTypeNetwork:
							if ((ret = RGPDrawNetwork (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						default: CMmsgPrint (CMmsgUsrError,"Invalid data type"); dataNum--; break;
						}
					delete dbData;
					}
				else	break;
				} while (true);
			cpgbox ("BCMTS",0.0,0,"BCNMTS",0.0,0);
			cpgslw (2);
			cpgsch (2.5);
			cpgmtxt ("T",1.5,0.5,0.5,panelTitle);
			cpgslw (defaultLW);
			}
Stop:
	cpgend ();
	return (ret);
	}
Beispiel #19
0
void rfifind_plot(int numchan, int numint, int ptsperint,
                  float timesigma, float freqsigma,
                  float inttrigfrac, float chantrigfrac,
                  float **dataavg, float **datastd, float **datapow,
                  int *userchan, int numuserchan,
                  int *userints, int numuserints,
                  infodata * idata, unsigned char **bytemask,
                  mask * oldmask, mask * newmask,
                  rfi * rfivect, int numrfi, int rfixwin, int rfips, int xwin)
/* Make the beautiful multi-page rfifind plots */
{
   int ii, jj, ct, loops = 1;
   float *freqs, *chans, *times, *ints;
   float *avg_chan_avg, *std_chan_avg, *pow_chan_avg;
   float *avg_chan_med, *std_chan_med, *pow_chan_med;
   float *avg_chan_std, *std_chan_std, *pow_chan_std;
   float *avg_int_avg, *std_int_avg, *pow_int_avg;
   float *avg_int_med, *std_int_med, *pow_int_med;
   float *avg_int_std, *std_int_std, *pow_int_std;
   float dataavg_avg, datastd_avg, datapow_avg;
   float dataavg_med, datastd_med, datapow_med;
   float dataavg_std, datastd_std, datapow_std;
   float avg_reject, std_reject, pow_reject;
   double inttim, T, lof, hif;

   inttim = ptsperint * idata->dt;
   T = inttim * numint;
   lof = idata->freq - 0.5 * idata->chan_wid;
   hif = lof + idata->freqband;
   avg_chan_avg = gen_fvect(numchan);
   std_chan_avg = gen_fvect(numchan);
   pow_chan_avg = gen_fvect(numchan);
   avg_int_avg = gen_fvect(numint);
   std_int_avg = gen_fvect(numint);
   pow_int_avg = gen_fvect(numint);
   avg_chan_med = gen_fvect(numchan);
   std_chan_med = gen_fvect(numchan);
   pow_chan_med = gen_fvect(numchan);
   avg_int_med = gen_fvect(numint);
   std_int_med = gen_fvect(numint);
   pow_int_med = gen_fvect(numint);
   avg_chan_std = gen_fvect(numchan);
   std_chan_std = gen_fvect(numchan);
   pow_chan_std = gen_fvect(numchan);
   avg_int_std = gen_fvect(numint);
   std_int_std = gen_fvect(numint);
   pow_int_std = gen_fvect(numint);
   chans = gen_fvect(numchan);
   freqs = gen_fvect(numchan);
   for (ii = 0; ii < numchan; ii++) {
      chans[ii] = ii;
      freqs[ii] = idata->freq + ii * idata->chan_wid;
   }
   ints = gen_fvect(numint);
   times = gen_fvect(numint);
   for (ii = 0; ii < numint; ii++) {
      ints[ii] = ii;
      times[ii] = 0.0 + ii * inttim;
   }

   /* Calculate the statistics of the full set */

   ct = numchan * numint;
   calc_avgmedstd(dataavg[0], ct, 0.8, 1, &dataavg_avg, &dataavg_med, &dataavg_std);
   calc_avgmedstd(datastd[0], ct, 0.8, 1, &datastd_avg, &datastd_med, &datastd_std);
   calc_avgmedstd(datapow[0], ct, 0.5, 1, &datapow_avg, &datapow_med, &datapow_std);
   avg_reject = timesigma * dataavg_std;
   std_reject = timesigma * datastd_std;
   pow_reject = power_for_sigma(freqsigma, 1, ptsperint / 2);

   /* Calculate the channel/integration statistics vectors */

   for (ii = 0; ii < numint; ii++) {
      calc_avgmedstd(dataavg[0] + ii * numchan, numchan, 0.8, 1,
                     avg_int_avg + ii, avg_int_med + ii, avg_int_std + ii);
      calc_avgmedstd(datastd[0] + ii * numchan, numchan, 0.8, 1,
                     std_int_avg + ii, std_int_med + ii, std_int_std + ii);
      calc_avgmedstd(datapow[0] + ii * numchan, numchan, 0.5, 1,
                     pow_int_avg + ii, pow_int_med + ii, pow_int_std + ii);
   }
   for (ii = 0; ii < numchan; ii++) {
      calc_avgmedstd(dataavg[0] + ii, numint, 0.8, numchan,
                     avg_chan_avg + ii, avg_chan_med + ii, avg_chan_std + ii);
      calc_avgmedstd(datastd[0] + ii, numint, 0.8, numchan,
                     std_chan_avg + ii, std_chan_med + ii, std_chan_std + ii);
      calc_avgmedstd(datapow[0] + ii, numint, 0.5, numchan,
                     pow_chan_avg + ii, pow_chan_med + ii, pow_chan_std + ii);
      /*
         fprintf(stderr, "%12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    \n", 
         avg_chan_avg[ii], avg_chan_med[ii], avg_chan_std[ii],
         std_chan_avg[ii], std_chan_med[ii], std_chan_std[ii],
         pow_chan_avg[ii], pow_chan_med[ii], pow_chan_std[ii]);
       */
   }

   /* Generate the byte mask */

   /* Set the channels/intervals picked by the user */
   if (numuserints)
      for (ii = 0; ii < numuserints; ii++)
         if (userints[ii] >= 0 && userints[ii] < numint)
            for (jj = 0; jj < numchan; jj++)
               bytemask[userints[ii]][jj] |= USERINTS;
   if (numuserchan)
      for (ii = 0; ii < numuserchan; ii++)
         if (userchan[ii] >= 0 && userchan[ii] < numchan)
            for (jj = 0; jj < numint; jj++)
               bytemask[jj][userchan[ii]] |= USERCHAN;

   /* Compare each point in an interval (or channel) with   */
   /* the interval's (or channel's) median and the overall  */
   /* standard deviation.  If the channel/integration       */
   /* medians are more than sigma different than the global */
   /* value, set them to the global.                        */
   {
      float int_med, chan_med;

      for (ii = 0; ii < numint; ii++) {
         for (jj = 0; jj < numchan; jj++) {
            {                   /* Powers */
               if (datapow[ii][jj] > pow_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_POW;
            }
            {                   /* Averages */
               if (fabs(avg_int_med[ii] - dataavg_med) > timesigma * dataavg_std)
                  int_med = dataavg_med;
               else
                  int_med = avg_int_med[ii];
               if (fabs(avg_chan_med[jj] - dataavg_med) > timesigma * dataavg_std)
                  chan_med = dataavg_med;
               else
                  chan_med = avg_chan_med[jj];
               if (fabs(dataavg[ii][jj] - int_med) > avg_reject ||
                   fabs(dataavg[ii][jj] - chan_med) > avg_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_AVG;
            }
            {                   /* Standard Deviations */
               if (fabs(std_int_med[ii] - datastd_med) > timesigma * datastd_std)
                  int_med = datastd_med;
               else
                  int_med = std_int_med[ii];
               if (fabs(std_chan_med[jj] - datastd_med) > timesigma * datastd_std)
                  chan_med = datastd_med;
               else
                  chan_med = std_chan_med[jj];
               if (fabs(datastd[ii][jj] - int_med) > std_reject ||
                   fabs(datastd[ii][jj] - chan_med) > std_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_STD;
            }
         }
      }
   }

   /* Step over the intervals and channels and count how many are set "bad". */
   /* For a given interval, if the number of bad channels is greater than    */
   /* chantrigfrac*numchan then reject the whole interval.                   */
   /* For a given channel, if the number of bad intervals is greater than    */
   /* inttrigfrac*numint then reject the whole channel.                      */
   {
      int badnum, trignum;

      /* Loop over the intervals */
      trignum = (int) (numchan * chantrigfrac);
      for (ii = 0; ii < numint; ii++) {
         if (!(bytemask[ii][0] & USERINTS)) {
            badnum = 0;
            for (jj = 0; jj < numchan; jj++)
               if (bytemask[ii][jj] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userints[numuserints++] = ii;
               for (jj = 0; jj < numchan; jj++)
                  bytemask[ii][jj] |= USERINTS;
            }
         }
      }

      /* Loop over the channels */
      trignum = (int) (numint * inttrigfrac);
      for (ii = 0; ii < numchan; ii++) {
         if (!(bytemask[0][ii] & USERCHAN)) {
            badnum = 0;
            for (jj = 0; jj < numint; jj++)
               if (bytemask[jj][ii] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userchan[numuserchan++] = ii;
               for (jj = 0; jj < numint; jj++)
                  bytemask[jj][ii] |= USERCHAN;
            }
         }
      }
   }

   /* Generate the New Mask */

   fill_mask(timesigma, freqsigma, idata->mjd_i + idata->mjd_f,
             ptsperint * idata->dt, idata->freq, idata->chan_wid,
             numchan, numint, ptsperint, numuserchan, userchan,
             numuserints, userints, bytemask, newmask);

   /* Place the oldmask over the newmask for plotting purposes */

   if (oldmask->numchan)
      set_oldmask_bits(oldmask, bytemask);

   /*
    *  Now plot the results
    */

   if (xwin)
      loops = 2;
   for (ct = 0; ct < loops; ct++) {     /* PS/XWIN Plot Loop */
      float min, max, tr[6], locut, hicut;
      float left, right, top, bottom;
      float xl, xh, yl, yh;
      float tt, ft, th, fh;     /* thin and fat thicknesses and heights */
      float lm, rm, tm, bm;     /* LRTB margins */
      float xarr[2], yarr[2];
      char outdev[100];
      int ii, mincol, maxcol, numcol;

      /*Set the PGPLOT device to an X-Window */

      if (ct == 1)
         strcpy(outdev, "/XWIN");
      else
         sprintf(outdev, "%s.ps/CPS", idata->name);

      /* Open and prep our device */

      cpgopen(outdev);
      cpgpap(10.25, 8.5 / 11.0);
      cpgpage();
      cpgiden();
      cpgsch(0.7);
      cpgqcir(&mincol, &maxcol);
      numcol = maxcol - mincol + 1;
      for (ii = mincol; ii <= maxcol; ii++) {
         float color;
         color = (float) (maxcol - ii) / (float) numcol;
         cpgscr(ii, color, color, color);
      }

      /* Set thicknesses and margins */

      lm = 0.04;
      rm = 0.04;
      bm = 0.08;
      tm = 0.05;
      ft = 3.0;                 /* This sets fat thickness = 3 x thin thickness */
      tt = 0.92 / (6.0 + 4.0 * ft);
      ft *= tt;
      fh = 0.55;
      th = tt * 11.0 / 8.5;

      {                         /* Powers Histogram */
         float *theo, *hist, *hpows, *tpows, maxhist = 0.0, maxtheo = 0.0;
         int numhist = 40, numtheo = 200, bin, numpows;
         double dtheo, dhist, spacing;

         /* Calculate the predicted distribution of max powers */

         numpows = numint * numchan;
         find_min_max_arr(numpows, datapow[0], &min, &max);
         min = (min < 5.0) ? log10(5.0 * 0.95) : log10(min * 0.95);
         max = log10(max * 1.05);
         dhist = (max - min) / numhist;
         theo = gen_fvect(numtheo);
         tpows = gen_fvect(numtheo);
         hist = gen_fvect(numhist);
         hpows = gen_fvect(numhist);
         for (ii = 0; ii < numhist; ii++) {
            hist[ii] = 0.0;
            hpows[ii] = min + ii * dhist;
         }
         for (ii = 0; ii < numpows; ii++) {
            bin = (*(datapow[0] + ii) == 0.0) ? 0 :
                (log10(*(datapow[0] + ii)) - min) / dhist;
            if (bin < 0)
               bin = 0;
            if (bin >= numhist)
               bin = numhist;
            hist[bin] += 1.0;
         }
         for (ii = 0; ii < numhist; ii++)
            if (hist[ii] > maxhist)
               maxhist = hist[ii];
         maxhist *= 1.1;
         dtheo = (max - min) / (double) (numtheo - 1);
         for (ii = 0; ii < numtheo; ii++) {
            tpows[ii] = min + ii * dtheo;
            theo[ii] = single_power_pdf(pow(10.0, tpows[ii]),
                                        ptsperint / 2) * numpows;
            spacing = (pow(10.0, tpows[ii] + dhist) - pow(10.0, tpows[ii]));
            theo[ii] *= spacing;
            if (theo[ii] > maxtheo)
               maxtheo = theo[ii];
         }
         maxtheo *= 1.1;
         if (maxtheo > maxhist)
            maxhist = maxtheo;
         left = lm;
         right = lm + ft + tt;
         bottom = 0.80;
         top = 0.96;
         cpgsvp(left, right, bottom, top);
         xl = min;
         xh = max;
         yl = 0.0;
         yh = maxhist;
         cpgswin(xl, xh, yl, yh);
         cpgmtxt("L", 1.1, 0.5, 0.5, "Number");
         cpgmtxt("B", 2.1, 0.5, 0.5, "Max Power");
         cpgbin(numhist, hpows, hist, 0);
         cpgscr(maxcol, 0.5, 0.5, 0.5);
         cpgsci(maxcol);        /* Grey */
         cpgline(numtheo, tpows, theo);
         xarr[0] = log10(power_for_sigma(freqsigma, 1, ptsperint / 2));
         xarr[1] = xarr[0];
         yarr[0] = yl;
         yarr[1] = yh;
         cpgsls(4);             /* Dotted line */
         cpgscr(maxcol, 1.0, 0.0, 0.0);
         cpgsci(maxcol);        /* Red */
         cpgline(2, xarr, yarr);
         cpgsls(1);             /* Solid line */
         cpgsci(1);             /* Default color */
         cpgbox("BCLNST", 0.0, 0, "BC", 0.0, 0);
         vect_free(hist);
         vect_free(theo);
         vect_free(tpows);
         vect_free(hpows);
      }

      /* Maximum Powers */

      left = lm;
      right = lm + ft;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(maxcol, 1.0, 0.0, 0.0);    /* Red */
      locut = 0.0;
      hicut = pow_reject;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datapow[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Max Power Label */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Max");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Power");
      cpgsci(1);                /* Default color */

      /*  Max Power versus Time */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numint, pow_int_med, &min, &max);
      xl = 0.0;
      xh = 1.5 * pow_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, pow_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Max Power versus Channel */

      left = lm;
      right = lm + ft;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numchan, pow_chan_med, &min, &max);
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = 1.5 * pow_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, pow_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Standard Deviations */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 1.0, 0.7);    /* Light Green */
      cpgscr(maxcol, 0.3, 1.0, 0.3);    /* Dark Green */
      locut = datastd_med - timesigma * datastd_std;
      hicut = datastd_med + timesigma * datastd_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datastd[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Sigma Label */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Sigma");
      cpgsci(1);                /* Default color */

      /*  Data Sigma versus Time */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = datastd_med - 2.0 * std_reject;
      xh = datastd_med + 2.0 * std_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, std_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Data Sigma versus Channel */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = datastd_med - 2.0 * std_reject;
      yh = datastd_med + 2.0 * std_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, std_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Data Mean */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 0.7, 1.0);    /* Light Blue */
      cpgscr(maxcol, 0.3, 0.3, 1.0);    /* Dark Blue */
      locut = dataavg_med - timesigma * dataavg_std;
      hicut = dataavg_med + timesigma * dataavg_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(dataavg[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Mean Label */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Mean");
      cpgsci(1);                /* Default color */

      /*  Data Mean versus Time */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = dataavg_med - 2.0 * avg_reject;
      xh = dataavg_med + 2.0 * avg_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, avg_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);

      /*  Data Mean versus Channel */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = dataavg_med - 2.0 * avg_reject;
      yh = dataavg_med + 2.0 * avg_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, avg_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      {                         /* Add the Data Info area */
         char out[200], out2[100];
         float dy = 0.025;

         cpgsvp(0.0, 1.0, 0.0, 1.0);
         cpgswin(0.0, 1.0, 0.0, 1.0);
         left = lm + ft + 1.5 * tt;
         top = 1.0 - tm;
         cpgsch(1.0);
         sprintf(out, "%-s", idata->name);
         cpgptxt(0.5, 1.0 - 0.5 * tm, 0.0, 0.5, out);
         cpgsch(0.8);

         sprintf(out, "Object:");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "%-s", idata->object);
         cpgtext(left + 0.1, top - 0 * dy, out);
         sprintf(out, "Telescope:");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "%-s", idata->telescope);
         cpgtext(left + 0.1, top - 1 * dy, out);
         sprintf(out, "Instrument:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "%-s", idata->instrument);
         cpgtext(left + 0.1, top - 2 * dy, out);
         ra_dec_to_string(out2, idata->ra_h, idata->ra_m, idata->ra_s);
         sprintf(out, "RA\\dJ2000\\u");
         cpgtext(left + 0.0, top - 3 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 3 * dy, out);
         ra_dec_to_string(out2, idata->dec_d, idata->dec_m, idata->dec_s);
         sprintf(out, "DEC\\dJ2000\\u");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 4 * dy, out);
         sprintf(out, "Epoch\\dtopo\\u");
         cpgtext(left + 0.0, top - 5 * dy, out);
         sprintf(out, "= %-.11f", idata->mjd_i + idata->mjd_f);
         cpgtext(left + 0.08, top - 5 * dy, out);
         sprintf(out, "T\\dsample\\u (s)");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "= %g", idata->dt);
         cpgtext(left + 0.08, top - 6 * dy, out);
         sprintf(out, "T\\dtotal\\u (s)");
         cpgtext(left + 0.0, top - 7 * dy, out);
         sprintf(out, "= %g", T);
         cpgtext(left + 0.08, top - 7 * dy, out);

         left = lm + ft + 7.8 * tt;
         sprintf(out, "Num channels");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "= %-d", numchan);
         cpgtext(left + 0.12, top - 0 * dy, out);
         sprintf(out, "Pts per int");
         cpgtext(left + 0.19, top - 0 * dy, out);
         sprintf(out, "= %-d", ptsperint);
         cpgtext(left + 0.29, top - 0 * dy, out);
         sprintf(out, "Num intervals");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "= %-d", numint);
         cpgtext(left + 0.12, top - 1 * dy, out);
         sprintf(out, "Time per int");
         cpgtext(left + 0.19, top - 1 * dy, out);
         sprintf(out, "= %-g", inttim);
         cpgtext(left + 0.29, top - 1 * dy, out);
         sprintf(out, "Power:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 2 * dy, out);
         sprintf(out, "= %-.3f", datapow_med);
         cpgtext(left + 0.12, top - 2 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 2 * dy, out);
         sprintf(out, "= %-.3g", datapow_std);
         cpgtext(left + 0.245, top - 2 * dy, out);
         find_min_max_arr(numint * numchan, datapow[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 3 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 3 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 3 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 3 * dy, out);
         sprintf(out, "Sigma:");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 4 * dy, out);
         sprintf(out, "= %-.3f", datastd_med);
         cpgtext(left + 0.12, top - 4 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 4 * dy, out);
         sprintf(out, "= %-.3g", datastd_std);
         cpgtext(left + 0.245, top - 4 * dy, out);
         find_min_max_arr(numint * numchan, datastd[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 5 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 5 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 5 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 5 * dy, out);
         sprintf(out, "Mean:");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 6 * dy, out);
         sprintf(out, "= %-.3f", dataavg_med);
         cpgtext(left + 0.12, top - 6 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 6 * dy, out);
         sprintf(out, "= %-.3g", dataavg_std);
         cpgtext(left + 0.245, top - 6 * dy, out);
         find_min_max_arr(numint * numchan, dataavg[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 7 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 7 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 7 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 7 * dy, out);
      }

      {                         /* Plot the Mask */
         unsigned char byte;
         char temp[200];
         float **plotmask, rr, gg, bb, page;

         plotmask = gen_fmatrix(numint, numchan);
         for (ii = 0; ii < numint; ii++) {
            for (jj = 0; jj < numchan; jj++) {
               byte = bytemask[ii][jj];
               plotmask[ii][jj] = 0.0;
               if (byte & PADDING)
                  plotmask[ii][jj] = 1.0;
               if (byte & OLDMASK)
                  plotmask[ii][jj] = 2.0;
               if (byte & USERZAP)
                  plotmask[ii][jj] = 3.0;
               if (byte & BAD_POW)
                  plotmask[ii][jj] = 4.0;
               else if (byte & BAD_AVG)
                  plotmask[ii][jj] = 5.0;
               else if (byte & BAD_STD)
                  plotmask[ii][jj] = 6.0;
            }
         }
         /* Set the colors */
         numcol = 7;
         maxcol = mincol + numcol - 1;
         cpgscir(mincol, maxcol);
         cpgqcr(0, &rr, &gg, &bb);
         cpgscr(mincol + 0, rr, gg, bb);        /* GOODDATA = background */
         cpgscr(mincol + 1, 0.7, 0.7, 0.7);     /* PADDING  = light grey */
         cpgscr(mincol + 2, 0.3, 0.3, 0.3);     /* OLDMASK  = dark grey */
         cpgqcr(1, &rr, &gg, &bb);
         cpgscr(mincol + 3, rr, gg, bb);        /* USERZAP  = foreground */
         cpgscr(mincol + 4, 1.0, 0.0, 0.0);     /* BAD+POW  = red */
         cpgscr(mincol + 5, 0.0, 0.0, 1.0);     /* BAD+AVG  = blue */
         cpgscr(mincol + 6, 0.0, 1.0, 0.0);     /* BAD+STD  = green */
         /* Prep the image */
         for (page = 0; page <= 1; page++) {
            xl = 0.0;
            xh = numchan;
            yl = 0.0;
            yh = T;
            locut = 0.0;
            hicut = 6.0;
            tr[2] = tr[4] = 0.0;
            tr[1] = (xh - xl) / numchan;
            tr[0] = xl - (tr[1] / 2);
            tr[5] = (yh - yl) / numint;
            tr[3] = yl - (tr[5] / 2);
            if (page == 0) {
               left = lm + 3.0 * ft + 6.0 * tt;
               right = lm + 4.0 * ft + 6.0 * tt;
               bottom = bm;
               top = bm + fh;
            } else {
               cpgpage();
               cpgiden();
               left = 0.06;
               right = 0.94;
               bottom = 0.06;
               top = 0.88;
            }
            cpgsvp(left, right, bottom, top);
            cpgswin(xl, xh, yl, yh);
            cpgimag(plotmask[0], numchan, numint, 1,
                    numchan, 1, numint, locut, hicut, tr);
            cpgswin(xl, xh, yl, yh);
            cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
            cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
            if (page)
               cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
            xl = lof;
            xh = hif;
            yl = 0.0;
            yh = numint;
            cpgswin(xl, xh, yl, yh);
            cpgbox("CMST", 0.0, 0, "CMST", 0.0, 0);
            cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");
            cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number");
            /* Add the Labels */
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            if (page == 0) {
               cpgsci(mincol + 1);
               cpgptxt(left, top + 0.1, 0.0, 0.0, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(left, top + 0.08, 0.0, 0.0, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(left, top + 0.06, 0.0, 0.0, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(right, top + 0.1, 0.0, 1.0, "Power");
               cpgsci(mincol + 6);
               cpgptxt(right, top + 0.08, 0.0, 1.0, "Sigma");
               cpgsci(mincol + 5);
               cpgptxt(right, top + 0.06, 0.0, 1.0, "Mean");
               cpgsci(1);
            } else {
               cpgsci(mincol + 1);
               cpgptxt(1.0 / 12.0, 0.955, 0.0, 0.5, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(3.0 / 12.0, 0.955, 0.0, 0.5, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(5.0 / 12.0, 0.955, 0.0, 0.5, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(7.0 / 12.0, 0.955, 0.0, 0.5, "Max Power");
               cpgsci(mincol + 6);
               cpgptxt(9.0 / 12.0, 0.955, 0.0, 0.5, "Data Sigma");
               cpgsci(mincol + 5);
               cpgptxt(11.0 / 12.0, 0.955, 0.0, 0.5, "Data Mean");
               cpgsci(1);
               cpgsch(0.9);
               sprintf(temp, "Recommended Mask for '%-s'", idata->name);
               cpgptxt(0.5, 0.985, 0.0, 0.5, temp);
            }
         }
         vect_free(plotmask[0]);
         vect_free(plotmask);
      }

      if (ct == 0)
         printf("There are %d RFI instances.\n\n", numrfi);

      if ((ct == 0 && rfips) || (ct == 1 && rfixwin)) { /* Plot the RFI instances */
         int maxcol, mincol, numperpage = 25, numtoplot;
         float dy = 0.035, top = 0.95, rr, gg, bb;
         char temp[200];

         qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_freq);
         /* qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_sigma); */
         for (ii = 0; ii <= (numrfi - 1) / numperpage; ii++) {
            cpgpage();
            cpgiden();
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            sprintf(temp, "%-s", idata->name);
            cpgtext(0.05, 0.985, temp);
            cpgsch(0.6);
            sprintf(temp, "Freq (Hz)");
            cpgptxt(0.03, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Period (ms)");
            cpgptxt(0.12, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Sigma");
            cpgptxt(0.21, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Number");
            cpgptxt(0.27, 0.96, 0.0, 0.0, temp);
            cpgsvp(0.33, 0.64, top - dy, top);
            cpgswin(lof, hif, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Frequency (MHz)");
            cpgsvp(0.65, 0.96, top - dy, top);
            cpgswin(0.0, T, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Time (s)");
            cpgqcir(&mincol, &maxcol);
            maxcol = mincol + 1;
            cpgscir(mincol, maxcol);
            cpgqcr(0, &rr, &gg, &bb);
            cpgscr(mincol, rr, gg, bb); /* background */
            cpgqcr(1, &rr, &gg, &bb);
            /* cpgscr(maxcol, rr, gg, bb);  foreground */
            cpgscr(maxcol, 0.5, 0.5, 0.5);      /* grey */
            if (ii == (numrfi - 1) / numperpage)
               numtoplot = numrfi % numperpage;
            else
               numtoplot = numperpage;
            for (jj = 0; jj < numtoplot; jj++)
               plot_rfi(rfivect + ii * numperpage + jj,
                        top - jj * dy, numint, numchan, T, lof, hif);
            cpgsvp(0.33, 0.64, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numchan, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Channel");
            cpgsvp(0.65, 0.96, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numint, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Interval");
         }
      }
      cpgclos();
   }                            /* Plot for loop */

   /* Free our arrays */

   vect_free(freqs);
   vect_free(chans);
   vect_free(times);
   vect_free(ints);
   vect_free(avg_chan_avg);
   vect_free(std_chan_avg);
   vect_free(pow_chan_avg);
   vect_free(avg_int_avg);
   vect_free(std_int_avg);
   vect_free(pow_int_avg);
   vect_free(avg_chan_med);
   vect_free(std_chan_med);
   vect_free(pow_chan_med);
   vect_free(avg_int_med);
   vect_free(std_int_med);
   vect_free(pow_int_med);
   vect_free(avg_chan_std);
   vect_free(std_chan_std);
   vect_free(pow_chan_std);
   vect_free(avg_int_std);
   vect_free(std_int_std);
   vect_free(pow_int_std);
}
Beispiel #20
0
static double harmonic_loop(int xid, double rr, int zoomlevel, fftpart * fp)
{
   float inx = 0.0, iny = 0.0;
   double retval = 0.0;
   int xid2, psid, badchoice = 1;
   char choice;

   xid2 = cpgopen("/XWIN");
   cpgpap(10.25, 8.5 / 11.0);
   cpgask(0);
   cpgslct(xid2);
   plot_harmonics(rr, zoomlevel, fp);
   printf("  Click on the harmonic to go it,\n"
          "    press 'P' to print, or press 'Q' to close.\n");
   while (badchoice) {
      cpgcurs(&inx, &iny, &choice);
      if (choice == 'Q' || choice == 'q') {
         badchoice = 0;
      } else if (choice == 'P' || choice == 'p') {
         int len, numharmbins;
         double offsetf;
         char filename[200];
         fftpart *harmpart;
         fftview *harmview;

         printf("  Enter the filename to save the plot as:\n");
         fgets(filename, 195, stdin);
         len = strlen(filename) - 1;
         strcpy(filename + len, "/CPS");
         psid = cpgopen(filename);
         cpgslct(psid);
         cpgpap(10.25, 8.5 / 11.0);
         cpgiden();
         cpgscr(15, 0.8, 0.8, 0.8);
         numharmbins = (1 << (LOGDISPLAYNUM - zoomlevel));
         harmpart = get_fftpart((int) (rr - numharmbins), 2 * numharmbins);
         harmview = get_fftview(rr, zoomlevel, harmpart);
         free_fftpart(harmpart);
         offsetf = plot_fftview(harmview, 0.0, 1.0, rr, 2);
         cpgpage();
         plot_harmonics(rr, zoomlevel, fp);
         cpgclos();
         cpgslct(xid2);
         cpgscr(15, 0.4, 0.4, 0.4);
         filename[len] = '\0';
         printf("  Wrote the plot to the file '%s'.\n", filename);
      } else if (choice == 'A' || choice == 'a') {
         if (iny > 1.0)
            retval = rr * (int) (inx);
         else if (iny > 0.0)
            retval = rr * ((int) (inx) + 4.0);
         else if (iny > -1.0)
            retval = rr / (int) (inx);
         else
            retval = rr / ((int) (inx) + 4.0);
         badchoice = 0;
      } else {
         printf("  Option not recognized.\n");
      }
   };
   cpgclos();
   cpgslct(xid);
   return retval;
}
Beispiel #21
0
int main(int argc, char *argv[])
{
   float minval = SMALLNUM, maxval = LARGENUM, inx = 0, iny = 0;
   int centern, offsetn;
   int zoomlevel, maxzoom = 0, minzoom, xid, psid;
   char *rootfilenm, inchar;
   datapart *lodp;
   dataview *dv;
   basicstats *statvals;

   if (argc == 1) {
      printf("\nusage:  exploredat datafilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive Data Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            November, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "dat") != 0) {
            printf
                ("\nInput file ('%s') must be a single PRESTO data file ('.dat')!\n\n",
                 argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a PRESTO data file ('.dat')!\n\n",
                argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
#ifdef USEMMAP
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in exploredat.c");
         printf("\n");
         exit(-1);
      }
      Ndat = buf.st_size / sizeof(float);
   }
   lodp = get_datapart(0, Ndat);
#else
   {
      int numsamp;

      datfile = chkfopen(argv[1], "rb");
      Ndat = chkfilelen(datfile, sizeof(float));
      numsamp = (Ndat > MAXPTS) ? (int) MAXPTS : (int) Ndat;
      lodp = get_datapart(0, numsamp);
   }
#endif

   /* Plot the initial data */

   centern = 0.5 * INITIALNUMPTS;
   if (centern > lodp->nn)
      centern = lodp->nn / 2;
   zoomlevel = LOGMAXDISPNUM - LOGINITIALNUMPTS;
   minzoom = LOGMAXDISPNUM - LOGMAXPTS;
   maxzoom = LOGMAXDISPNUM - LOGMINDISPNUM;
   dv = get_dataview(centern, zoomlevel, lodp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free_datapart(lodp);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(datfile);
#endif
      free(dv);
      exit(EXIT_FAILURE);
   }
   cpgask(0);
   cpgpage();
   offsetn = plot_dataview(dv, minval, maxval, 1.0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case ' ':                /* Toggle stats and sample plotting on/off */
         /* 0 = both, 1 = stats only, 2 = data only */
         plotstats++;
         plotstats = plotstats % 3;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'M':                /* Toggle between median and average */
      case 'm':
         usemedian = (usemedian) ? 0 : 1;
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'A':                /* Zoom in */
      case 'a':
         centern = inx + offsetn;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centern -= dv->numsamps + dv->numsamps / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centern -= dv->numsamps / 8;
         {                      /* Should probably get the previous chunk from the datfile... */
            double lowestr;

            lowestr = 0.5 * dv->numsamps;
            if (centern < lowestr)
               centern = lowestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '>':                /* Shift right 1 full screen */
         centern += dv->numsamps - dv->numsamps / 8;
      case '.':                /* Shift right 1/8 screen */
         centern += dv->numsamps / 8;
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         {                      /* Should probably get the next chunk from the datfile... */
            double highestr;

            highestr = lodp->nlo + lodp->nn - 0.5 * dv->numsamps;
            if (centern > highestr)
               centern = highestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '+':                /* Increase height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval + 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '_':                /* Decrease height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval - 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '=':                /* Increase height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval + 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '-':                /* Decrease height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval - 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case 'S':                /* Auto-scale */
      case 's':
         printf("  Auto-scaling is on.\n");
         minval = SMALLNUM;
         maxval = LARGENUM;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'G':                /* Goto a time */
      case 'g':
         {
            char timestr[50];
            double time = -1.0;

            while (time < 0.0) {
               printf
                   ("  Enter the time (s) from the beginning of the file to go to:\n");
               fgets(timestr, 50, stdin);
               timestr[strlen(timestr) - 1] = '\0';
               time = atof(timestr);
            }
            offsetn = 0.0;
            centern = (int) (time / idata.dt + 0.5);
            printf("  Moving to time %.15g (data point %d).\n", time, centern);
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 195, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'C';
            filename[len + 2] = 'P';
            filename[len + 3] = 'S';
            filename[len + 4] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            cpgclos();
            cpgslct(xid);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'V':                /* Show the basic statistics for the current dataview */
      case 'v':
         statvals = calc_stats(dv, lodp);
         printf("\n  Statistics:\n"
                "    Low sample               %d\n"
                "    Number of samples        %d\n"
                "    Low time (s)             %.7g\n"
                "    Duration of samples (s)  %.7g\n"
                "    Maximum value            %.7g\n"
                "    Minimum value            %.7g\n"
                "    Average value            %.7g\n"
                "    Median value             %.7g\n"
                "    Standard Deviation       %.7g\n"
                "    Skewness                 %.7g\n"
                "    Kurtosis                 %.7g\n\n",
                dv->lon, dv->numsamps, dv->lon * idata.dt, dv->numsamps * idata.dt,
                statvals->max, statvals->min, statvals->average,
                statvals->median, statvals->stdev,
                statvals->skewness, statvals->kurtosis);
         free(statvals);
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(dv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_datapart(lodp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(datfile);
#endif
   printf("Done\n\n");
   return 0;
}
Beispiel #22
0
int main(int argc, char *argv[])
{
   float maxpow = 0.0, inx = 0.0, iny = 0.0;
   double centerr, offsetf;
   int zoomlevel, maxzoom, minzoom, xid, psid;
   char *rootfilenm, inchar;
   fftpart *lofp;
   fftview *fv;

   if (argc == 1) {
      printf("\nusage:  explorefft fftfilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive FFT Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            October, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
   N = idata.N;
   T = idata.dt * idata.N;
#ifdef USEMMAP
   printf("Memory mapping the input FFT.  This may take a while...\n");
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in explorefft.c");
         printf("\n");
         exit(-1);
      }
      Nfft = buf.st_size / sizeof(fcomplex);
   }
   lofp = get_fftpart(0, Nfft);
#else
   {
      int numamps;

      fftfile = chkfopen(argv[1], "rb");
      Nfft = chkfilelen(fftfile, sizeof(fcomplex));
      numamps = (Nfft > MAXBINS) ? (int) MAXBINS : (int) Nfft;
      lofp = get_fftpart(0, numamps);
   }
#endif

   /* Plot the initial data */

   {
      int initnumbins = INITIALNUMBINS;

      if (initnumbins > Nfft) {
         initnumbins = next2_to_n(Nfft) / 2;
         zoomlevel = LOGDISPLAYNUM - (int) (log(initnumbins) / log(2.0));
         minzoom = zoomlevel;
      } else {
         zoomlevel = LOGDISPLAYNUM - LOGINITIALNUMBINS;
         minzoom = LOGDISPLAYNUM - LOGMAXBINS;
      }
      maxzoom = LOGDISPLAYNUM - LOGMINBINS;
      centerr = initnumbins / 2;
   }
   fv = get_fftview(centerr, zoomlevel, lofp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free(fv);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(fftfile);
#endif
      free_fftpart(lofp);
      exit(EXIT_FAILURE);
   }
   cpgscr(15, 0.4, 0.4, 0.4);
   cpgask(0);
   cpgpage();
   offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case 'A':                /* Zoom in */
      case 'a':
         centerr = (inx + offsetf) * T;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centerr -= fv->numbins + fv->numbins / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centerr -= fv->numbins / 8;
         {                      /* Should probably get the previous chunk from the fftfile... */
            double lowestr;

            lowestr = 0.5 * fv->numbins;
            if (centerr < lowestr)
               centerr = lowestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '>':                /* Shift right 1 full screen */
         centerr += fv->numbins - fv->numbins / 8;
      case '.':                /* Shift right 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         centerr += fv->numbins / 8;
         {                      /* Should probably get the next chunk from the fftfile... */
            double highestr;

            highestr = lofp->rlo + lofp->numamps - 0.5 * fv->numbins;
            if (centerr > highestr)
               centerr = highestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '+':                /* Increase height of powers */
      case '=':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 3.0 / 4.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '-':                /* Decrease height of powers */
      case '_':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 4.0 / 3.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case 'S':                /* Auto-scale */
      case 's':
         if (maxpow == 0.0)
            break;
         else {
            printf("  Auto-scaling is on.\n");
            maxpow = 0.0;
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            break;
         }
      case 'G':                /* Goto a frequency */
      case 'g':
         {
            char freqstr[50];
            double freq = -1.0;

            while (freq < 0.0) {
               printf("  Enter the frequency (Hz) to go to:\n");
               fgets(freqstr, 50, stdin);
               freqstr[strlen(freqstr) - 1] = '\0';
               freq = atof(freqstr);
            }
            offsetf = 0.0;
            centerr = freq * T;
            printf("  Moving to frequency %.15g.\n", freq);
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'H':                /* Show harmonics */
      case 'h':
         {
            double retval;

            retval = harmonic_loop(xid, centerr, zoomlevel, lofp);
            if (retval > 0.0) {
               offsetf = 0.0;
               centerr = retval;
               free(fv);
               fv = get_fftview(centerr, zoomlevel, lofp);
               cpgpage();
               offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
            }
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'D':                /* Show details about a selected point  */
      case 'd':
         {
            double newr;

            printf("  Searching for peak near freq = %.7g Hz...\n", (inx + offsetf));
            newr = find_peak(inx + offsetf, fv, lofp);
            centerr = newr;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'L':                /* Load a zaplist */
      case 'l':
         {
            int ii, len;
            char filename[200];
            double *lobins, *hibins;

            printf("  Enter the filename containing the zaplist to load:\n");
            fgets(filename, 199, stdin);
            len = strlen(filename) - 1;
            filename[len] = '\0';
            numzaplist = get_birdies(filename, T, 0.0, &lobins, &hibins);
            lenzaplist = numzaplist + 20;       /* Allow some room to add more */
            if (lenzaplist)
               free(zaplist);
            zaplist = (bird *) malloc(sizeof(bird) * lenzaplist);
            for (ii = 0; ii < numzaplist; ii++) {
               zaplist[ii].lobin = lobins[ii];
               zaplist[ii].hibin = hibins[ii];
            }
            vect_free(lobins);
            vect_free(hibins);
            printf("\n");
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Z':                /* Add a birdie to a zaplist */
      case 'z':
         {
            int badchoice = 2;
            float lox, hix, loy, hiy;
            double rs[2];
            char choice;

            if (numzaplist + 1 > lenzaplist) {
               lenzaplist += 10;
               zaplist = (bird *) realloc(zaplist, sizeof(bird) * lenzaplist);
            }
            cpgqwin(&lox, &hix, &loy, &hiy);
            printf("  Click the left mouse button on the first frequency limit.\n");
            while (badchoice) {
               cpgcurs(&inx, &iny, &choice);
               if (choice == 'A' || choice == 'a') {
                  rs[2 - badchoice] = ((double) inx + offsetf) * T;
                  cpgsave();
                  cpgsci(7);
                  cpgmove(inx, 0.0);
                  cpgdraw(inx, hiy);
                  cpgunsa();
                  badchoice--;
                  if (badchoice == 1)
                     printf
                         ("  Click the left mouse button on the second frequency limit.\n");
               } else {
                  printf("  Option not recognized.\n");
               }
            };
            if (rs[1] > rs[0]) {
               zaplist[numzaplist].lobin = rs[0];
               zaplist[numzaplist].hibin = rs[1];
            } else {
               zaplist[numzaplist].lobin = rs[1];
               zaplist[numzaplist].hibin = rs[0];
            }
            printf("    The new birdie has:  f_avg = %.15g  f_width = %.15g\n\n",
                   0.5 * (zaplist[numzaplist].hibin + zaplist[numzaplist].lobin) / T,
                   (zaplist[numzaplist].hibin - zaplist[numzaplist].lobin) / T);
            numzaplist++;
            qsort(zaplist, numzaplist, sizeof(bird), compare_birds);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 196, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'P';
            filename[len + 2] = 'S';
            filename[len + 3] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            cpgscr(15, 0.8, 0.8, 0.8);
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            cpgclos();
            cpgslct(xid);
            cpgscr(15, 0.4, 0.4, 0.4);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'N':                /* Changing power normalization */
      case 'n':
         {
            float inx2 = 0.0, iny2 = 0.0;
            char choice;
            unsigned char badchoice = 1;

            printf("  Specify the type of power normalization:\n"
                   "       m,M  :  Median values determined locally\n"
                   "       d,D  :  DC frequency amplitude\n"
                   "       r,R  :  Raw powers (i.e. no normalization)\n"
                   "       u,U  :  User specified interval (the average powers)\n");
            while (badchoice) {
               cpgcurs(&inx2, &iny2, &choice);
               switch (choice) {
               case 'M':
               case 'm':
                  norm_const = 0.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using local median normalization.  Autoscaling is on.\n");
                  break;
               case 'D':
               case 'd':
                  norm_const = 1.0 / r0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using DC frequency (%f) normalization.  Autoscaling is on.\n",
                       r0);
                  break;
               case 'R':
               case 'r':
                  norm_const = 1.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using raw powers (i.e. no normalization).  Autoscaling is on.\n");
                  break;
               case 'U':
               case 'u':
                  {
                     char choice2;
                     float xx = inx, yy = iny;
                     int lor, hir, numr;
                     double avg, var;

                     printf
                         ("  Use the left mouse button to select a left and right boundary\n"
                          "  of a region to calculate the average power.\n");
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     lor = (int) ((xx + offsetf) * T);
                     cpgsci(7);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     hir = (int) ((xx + offsetf) * T);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     cpgsci(1);
                     if (lor > hir) {
                        int tempr;
                        tempr = hir;
                        hir = lor;
                        lor = tempr;
                     }
                     numr = hir - lor + 1;
                     avg_var(lofp->rawpowers + lor - lofp->rlo, numr, &avg, &var);
                     printf("  Selection has:  average = %.5g\n"
                            "                  std dev = %.5g\n", avg, sqrt(var));
                     norm_const = 1.0 / avg;
                     maxpow = 0.0;
                     badchoice = 0;
                     printf
                         ("  Using %.5g as the normalization constant.  Autoscaling is on.\n",
                          avg);
                     break;
                  }
               default:
                  printf("  Unrecognized choice '%c'.\n", choice);
                  break;
               }
            }
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(fv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_fftpart(lofp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(fftfile);
#endif
   if (lenzaplist)
      free(zaplist);
   printf("Done\n\n");
   return 0;
}