// Load the sample assets. void D3D12PredicationQueries::LoadAssets() { // Create a root signature consisting of a single CBV parameter. { D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {}; // This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this. featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1; if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData)))) { featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0; } CD3DX12_DESCRIPTOR_RANGE1 ranges[1]; CD3DX12_ROOT_PARAMETER1 rootParameters[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC); rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX); // Allow input layout and deny uneccessary access to certain pipeline stages. D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT | D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS; CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags); ComPtr<ID3DBlob> signature; ComPtr<ID3DBlob> error; ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error)); ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature))); NAME_D3D12_OBJECT(m_rootSignature); } // Create the pipeline state, which includes compiling and loading shaders. { ComPtr<ID3DBlob> vertexShader; ComPtr<ID3DBlob> pixelShader; #if defined(_DEBUG) // Enable better shader debugging with the graphics debugging tools. UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION; #else UINT compileFlags = 0; #endif ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr)); ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr)); // Define the vertex input layout. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 } }; // Enable alpha blending so we can visualize the occlusion query results. CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT); blendDesc.RenderTarget[0] = { TRUE, FALSE, D3D12_BLEND_SRC_ALPHA, D3D12_BLEND_INV_SRC_ALPHA, D3D12_BLEND_OP_ADD, D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD, D3D12_LOGIC_OP_NOOP, D3D12_COLOR_WRITE_ENABLE_ALL, }; // Describe and create the graphics pipeline state objects (PSO). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) }; psoDesc.pRootSignature = m_rootSignature.Get(); psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get()); psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get()); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = blendDesc; psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT); psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT; psoDesc.SampleDesc.Count = 1; ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState))); NAME_D3D12_OBJECT(m_pipelineState); // Disable color writes and depth writes for the occlusion query's state. psoDesc.BlendState.RenderTarget[0].RenderTargetWriteMask = 0; psoDesc.DepthStencilState.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO; ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_queryState))); NAME_D3D12_OBJECT(m_queryState); } // Create the command list. ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList))); NAME_D3D12_OBJECT(m_commandList); // Note: ComPtr's are CPU objects but this resource needs to stay in scope until // the command list that references it has finished executing on the GPU. // We will flush the GPU at the end of this method to ensure the resource is not // prematurely destroyed. ComPtr<ID3D12Resource> vertexBufferUpload; // Create the vertex buffer. { // Create geometry for two quads and a bounding box for the occlusion query. // Geometry will be rendered back-to-front to support transparency in the scene. Vertex quadVertices[] = { // Far quad - in practice this would be a complex geometry. { { -0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { -0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { 0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { 0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, // Near quad. { { -0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } }, { { -0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } }, { { 0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } }, { { 0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } }, // Far quad bounding box used for occlusion query (offset slightly to avoid z-fighting). { { -0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } }, { { -0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } }, { { 0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } }, { { 0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } }, }; const UINT vertexBufferSize = sizeof(quadVertices); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&m_vertexBuffer))); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&vertexBufferUpload))); NAME_D3D12_OBJECT(m_vertexBuffer); // Copy data to the intermediate upload heap and then schedule a copy // from the upload heap to the vertex buffer. D3D12_SUBRESOURCE_DATA vertexData = {}; vertexData.pData = reinterpret_cast<UINT8*>(quadVertices); vertexData.RowPitch = vertexBufferSize; vertexData.SlicePitch = vertexData.RowPitch; UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData); m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER)); // Initialize the vertex buffer view. m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress(); m_vertexBufferView.StrideInBytes = sizeof(Vertex); m_vertexBufferView.SizeInBytes = sizeof(quadVertices); } // Create the constant buffers. { ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(FrameCount * sizeof(m_constantBufferData)), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&m_constantBuffer))); NAME_D3D12_OBJECT(m_constantBuffer); // Map and initialize the constant buffer. We don't unmap this until the // app closes. Keeping things mapped for the lifetime of the resource is okay. CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin))); ZeroMemory(m_pCbvDataBegin, FrameCount * sizeof(m_constantBufferData)); // Create constant buffer views to access the upload buffer. CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart()); D3D12_GPU_VIRTUAL_ADDRESS gpuAddress = m_constantBuffer->GetGPUVirtualAddress(); D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {}; cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer); for (UINT n = 0; n < FrameCount; n++) { cbvDesc.BufferLocation = gpuAddress; m_device->CreateConstantBufferView(&cbvDesc, cpuHandle); cpuHandle.Offset(m_cbvSrvDescriptorSize); gpuAddress += cbvDesc.SizeInBytes; cbvDesc.BufferLocation = gpuAddress; m_device->CreateConstantBufferView(&cbvDesc, cpuHandle); cpuHandle.Offset(m_cbvSrvDescriptorSize); gpuAddress += cbvDesc.SizeInBytes; } } // Create the depth stencil view. { D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {}; depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT; depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D; depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE; D3D12_CLEAR_VALUE depthOptimizedClearValue = {}; depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT; depthOptimizedClearValue.DepthStencil.Depth = 1.0f; depthOptimizedClearValue.DepthStencil.Stencil = 0; ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL), D3D12_RESOURCE_STATE_DEPTH_WRITE, &depthOptimizedClearValue, IID_PPV_ARGS(&m_depthStencil) )); NAME_D3D12_OBJECT(m_depthStencil); m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart()); } // Create the query result buffer. { D3D12_RESOURCE_DESC queryResultDesc = CD3DX12_RESOURCE_DESC::Buffer(8); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &queryResultDesc, D3D12_RESOURCE_STATE_PREDICATION, nullptr, IID_PPV_ARGS(&m_queryResult) )); NAME_D3D12_OBJECT(m_queryResult); } // Close the command list and execute it to begin the vertex buffer copy into // the default heap. ThrowIfFailed(m_commandList->Close()); ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() }; m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists); // Create synchronization objects and wait until assets have been uploaded to the GPU. { ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence))); m_fenceValues[m_frameIndex]++; // Create an event handle to use for frame synchronization. m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (m_fenceEvent == nullptr) { ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError())); } // Wait for the command list to execute; we are reusing the same command // list in our main loop but for now, we just want to wait for setup to // complete before continuing. WaitForGpu(); } }
// Load the sample assets. void D3D12Fullscreen::LoadAssets() { D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {}; // This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this. featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1; if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData)))) { featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0; } // Create a root signature consisting of a descriptor table with a single CBV. { CD3DX12_DESCRIPTOR_RANGE1 ranges[1]; CD3DX12_ROOT_PARAMETER1 rootParameters[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC); rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX); // Allow input layout and deny uneccessary access to certain pipeline stages. D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT | D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS; CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags); ComPtr<ID3DBlob> signature; ComPtr<ID3DBlob> error; ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error)); ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_sceneRootSignature))); NAME_D3D12_OBJECT(m_sceneRootSignature); } // Create a root signature consisting of a descriptor table with a SRV and a sampler. { CD3DX12_DESCRIPTOR_RANGE1 ranges[1]; CD3DX12_ROOT_PARAMETER1 rootParameters[1]; // We don't modify the SRV in the post-processing command list after // SetGraphicsRootDescriptorTable is executed on the GPU so we can use the default // range behavior: D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC_WHILE_SET_AT_EXECUTE ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0); rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL); // Allow input layout and pixel shader access and deny uneccessary access to certain pipeline stages. D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT | D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS; // Create a sampler. D3D12_STATIC_SAMPLER_DESC sampler = {}; sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR; sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampler.MipLODBias = 0; sampler.MaxAnisotropy = 0; sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER; sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK; sampler.MinLOD = 0.0f; sampler.MaxLOD = D3D12_FLOAT32_MAX; sampler.ShaderRegister = 0; sampler.RegisterSpace = 0; sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL; CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags); ComPtr<ID3DBlob> signature; ComPtr<ID3DBlob> error; ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error)); ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_postRootSignature))); NAME_D3D12_OBJECT(m_postRootSignature); } // Create the pipeline state, which includes compiling and loading shaders. { ComPtr<ID3DBlob> sceneVertexShader; ComPtr<ID3DBlob> scenePixelShader; ComPtr<ID3DBlob> postVertexShader; ComPtr<ID3DBlob> postPixelShader; ComPtr<ID3DBlob> error; #if defined(_DEBUG) // Enable better shader debugging with the graphics debugging tools. UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION; #else UINT compileFlags = 0; #endif ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &sceneVertexShader, &error)); ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &scenePixelShader, &error)); ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &postVertexShader, &error)); ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &postPixelShader, &error)); // Define the vertex input layouts. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 } }; D3D12_INPUT_ELEMENT_DESC scaleInputElementDescs[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 } }; // Describe and create the graphics pipeline state objects (PSOs). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) }; psoDesc.pRootSignature = m_sceneRootSignature.Get(); psoDesc.VS = CD3DX12_SHADER_BYTECODE(sceneVertexShader.Get()); psoDesc.PS = CD3DX12_SHADER_BYTECODE(scenePixelShader.Get()); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT); psoDesc.DepthStencilState.DepthEnable = FALSE; psoDesc.DepthStencilState.StencilEnable = FALSE; psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.SampleDesc.Count = 1; ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_scenePipelineState))); NAME_D3D12_OBJECT(m_scenePipelineState); psoDesc.InputLayout = { scaleInputElementDescs, _countof(scaleInputElementDescs) }; psoDesc.pRootSignature = m_postRootSignature.Get(); psoDesc.VS = CD3DX12_SHADER_BYTECODE(postVertexShader.Get()); psoDesc.PS = CD3DX12_SHADER_BYTECODE(postPixelShader.Get()); ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_postPipelineState))); NAME_D3D12_OBJECT(m_postPipelineState); } // Single-use command allocator and command list for creating resources. ComPtr<ID3D12CommandAllocator> commandAllocator; ComPtr<ID3D12GraphicsCommandList> commandList; ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&commandAllocator))); ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, commandAllocator.Get(), nullptr, IID_PPV_ARGS(&commandList))); // Create the command lists. { ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_sceneCommandAllocators[m_frameIndex].Get(), m_scenePipelineState.Get(), IID_PPV_ARGS(&m_sceneCommandList))); NAME_D3D12_OBJECT(m_sceneCommandList); ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_postCommandAllocators[m_frameIndex].Get(), m_postPipelineState.Get(), IID_PPV_ARGS(&m_postCommandList))); NAME_D3D12_OBJECT(m_postCommandList); // Close the command lists. ThrowIfFailed(m_sceneCommandList->Close()); ThrowIfFailed(m_postCommandList->Close()); } LoadSizeDependentResources(); LoadSceneResolutionDependentResources(); // Create/update the vertex buffer. ComPtr<ID3D12Resource> sceneVertexBufferUpload; { // Define the geometry for a thin quad that will animate across the screen. const float x = QuadWidth / 2.0f; const float y = QuadHeight / 2.0f; SceneVertex quadVertices[] = { { { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } } }; const UINT vertexBufferSize = sizeof(quadVertices); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&m_sceneVertexBuffer))); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&sceneVertexBufferUpload))); NAME_D3D12_OBJECT(m_sceneVertexBuffer); // Copy data to the intermediate upload heap and then schedule a copy // from the upload heap to the vertex buffer. UINT8* pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(sceneVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin))); memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices)); sceneVertexBufferUpload->Unmap(0, nullptr); commandList->CopyBufferRegion(m_sceneVertexBuffer.Get(), 0, sceneVertexBufferUpload.Get(), 0, vertexBufferSize); commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_sceneVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER)); // Initialize the vertex buffer views. m_sceneVertexBufferView.BufferLocation = m_sceneVertexBuffer->GetGPUVirtualAddress(); m_sceneVertexBufferView.StrideInBytes = sizeof(SceneVertex); m_sceneVertexBufferView.SizeInBytes = vertexBufferSize; } // Create/update the fullscreen quad vertex buffer. ComPtr<ID3D12Resource> postVertexBufferUpload; { // Define the geometry for a fullscreen quad. PostVertex quadVertices[] = { { { -1.0f, -1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f } }, // Bottom left. { { -1.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } }, // Top left. { { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, 0.0f } }, // Bottom right. { { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f } } // Top right. }; const UINT vertexBufferSize = sizeof(quadVertices); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&m_postVertexBuffer))); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&postVertexBufferUpload))); NAME_D3D12_OBJECT(m_postVertexBuffer); // Copy data to the intermediate upload heap and then schedule a copy // from the upload heap to the vertex buffer. UINT8* pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(postVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin))); memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices)); postVertexBufferUpload->Unmap(0, nullptr); commandList->CopyBufferRegion(m_postVertexBuffer.Get(), 0, postVertexBufferUpload.Get(), 0, vertexBufferSize); commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_postVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER)); // Initialize the vertex buffer views. m_postVertexBufferView.BufferLocation = m_postVertexBuffer->GetGPUVirtualAddress(); m_postVertexBufferView.StrideInBytes = sizeof(PostVertex); m_postVertexBufferView.SizeInBytes = vertexBufferSize; } // Create the constant buffer. { ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&m_sceneConstantBuffer))); NAME_D3D12_OBJECT(m_sceneConstantBuffer); // Describe and create constant buffer views. D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {}; cbvDesc.BufferLocation = m_sceneConstantBuffer->GetGPUVirtualAddress(); cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer); CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart(), 1, m_cbvSrvDescriptorSize); for (UINT n = 0; n < FrameCount; n++) { m_device->CreateConstantBufferView(&cbvDesc, cpuHandle); cbvDesc.BufferLocation += sizeof(SceneConstantBuffer); cpuHandle.Offset(m_cbvSrvDescriptorSize); } // Map and initialize the constant buffer. We don't unmap this until the // app closes. Keeping things mapped for the lifetime of the resource is okay. CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(m_sceneConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin))); memcpy(m_pCbvDataBegin, &m_sceneConstantBufferData, sizeof(m_sceneConstantBufferData)); } // Close the resource creation command list and execute it to begin the vertex buffer copy into // the default heap. ThrowIfFailed(commandList->Close()); ID3D12CommandList* ppCommandLists[] = { commandList.Get() }; m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists); // Create synchronization objects and wait until assets have been uploaded to the GPU. { ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence))); m_fenceValues[m_frameIndex]++; // Create an event handle to use for frame synchronization. m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (m_fenceEvent == nullptr) { ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError())); } // Wait for the command list to execute before continuing. WaitForGpu(); } }
// Load the sample assets. void D3D12Fullscreen::LoadAssets() { // Create a root signature consisting of a descriptor table with a single CBV. { CD3DX12_DESCRIPTOR_RANGE ranges[1]; CD3DX12_ROOT_PARAMETER rootParameters[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0); rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX); // Allow input layout and deny uneccessary access to certain pipeline stages. D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT | D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS | D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS; CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags); ComPtr<ID3DBlob> signature; ComPtr<ID3DBlob> error; ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature))); NAME_D3D12_OBJECT(m_rootSignature); } // Create the pipeline state, which includes compiling and loading shaders. { ComPtr<ID3DBlob> vertexShader; ComPtr<ID3DBlob> pixelShader; ComPtr<ID3DBlob> error; #if defined(_DEBUG) // Enable better shader debugging with the graphics debugging tools. UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION; #else UINT compileFlags = 0; #endif ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error)); ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error)); // Define the vertex input layout. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 } }; // Describe and create the graphics pipeline state object (PSO). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) }; psoDesc.pRootSignature = m_rootSignature.Get(); psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get()); psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get()); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT); psoDesc.DepthStencilState.DepthEnable = FALSE; psoDesc.DepthStencilState.StencilEnable = FALSE; psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.SampleDesc.Count = 1; ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState))); NAME_D3D12_OBJECT(m_pipelineState); } // Create the command list. ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList))); NAME_D3D12_OBJECT(m_commandList); LoadSizeDependentResources(); // Create/update the vertex buffer. { // Define the geometry for a thin quad that will animate across the screen. const float x = QuadWidth / 2.0f; const float y = QuadHeight / 2.0f; Vertex quadVertices[] = { { { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }, { { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } } }; const UINT vertexBufferSize = sizeof(quadVertices); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&m_vertexBuffer))); ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&m_vertexBufferUpload))); NAME_D3D12_OBJECT(m_vertexBuffer); // Copy data to the intermediate upload heap and then schedule a copy // from the upload heap to the vertex buffer. UINT8* pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(m_vertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin))); memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices)); m_vertexBufferUpload->Unmap(0, nullptr); m_commandList->CopyBufferRegion(m_vertexBuffer.Get(), 0, m_vertexBufferUpload.Get(), 0, vertexBufferSize); m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER)); // Initialize the vertex buffer views. m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress(); m_vertexBufferView.StrideInBytes = sizeof(Vertex); m_vertexBufferView.SizeInBytes = vertexBufferSize; } // Create the constant buffer. { ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&m_constantBuffer))); NAME_D3D12_OBJECT(m_constantBuffer); // Describe and create constant buffer views. D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {}; cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress(); cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer); CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart()); for (UINT n = 0; n < FrameCount; n++) { m_device->CreateConstantBufferView(&cbvDesc, cpuHandle); cbvDesc.BufferLocation += sizeof(SceneConstantBuffer); cpuHandle.Offset(m_cbvDescriptorSize); } // Initialize and map the constant buffers. We don't unmap this until the // app closes. Keeping things mapped for the lifetime of the resource is okay. ZeroMemory(&m_constantBufferData, sizeof(m_constantBufferData)); CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU. ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin))); memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData)); } // Close the command list and execute it to begin the vertex buffer copy into // the default heap. ThrowIfFailed(m_commandList->Close()); ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() }; m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists); // Create synchronization objects and wait until assets have been uploaded to the GPU. { ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence))); m_fenceValues[m_frameIndex]++; // Create an event handle to use for frame synchronization. m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (m_fenceEvent == nullptr) { ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError())); } // Wait for the command list to execute; we are reusing the same command // list in our main loop but for now, we just want to wait for setup to // complete before continuing. WaitForGpu(); } }
void D3D12SmallResources::CreateTextures() { m_textures.clear(); m_textures.resize(TextureCount); m_textureHeap.Reset(); ThrowIfFailed(m_copyCommandAllocator->Reset()); ThrowIfFailed(m_copyCommandList->Reset(m_copyCommandAllocator.Get(), nullptr)); CD3DX12_RESOURCE_DESC textureDesc = CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_R8G8B8A8_UNORM, TextureWidth, TextureHeight, 1, 1); if (m_usePlacedResources) { // Since we are using small resources we can take advantage of 4KB // resource alignments. As long as the most detailed mip can fit in an // allocation less than 64KB, 4KB alignments can be used. // // When dealing with MSAA textures the rules are similar, but the minimum // alignment is 64KB for a texture whose most detailed mip can fit in an // allocation less than 4MB. textureDesc.Alignment = D3D12_SMALL_RESOURCE_PLACEMENT_ALIGNMENT; D3D12_RESOURCE_ALLOCATION_INFO info = m_device->GetResourceAllocationInfo(0, 1, &textureDesc); if (info.Alignment != D3D12_SMALL_RESOURCE_PLACEMENT_ALIGNMENT) { // If the alignment requested is not granted, then let D3D tell us // the alignment that needs to be used for these resources. textureDesc.Alignment = 0; info = m_device->GetResourceAllocationInfo(0, 1, &textureDesc); } const UINT64 heapSize = TextureCount * info.SizeInBytes; CD3DX12_HEAP_DESC heapDesc(heapSize, D3D12_HEAP_TYPE_DEFAULT, 0, D3D12_HEAP_FLAG_DENY_BUFFERS | D3D12_HEAP_FLAG_DENY_RT_DS_TEXTURES); ThrowIfFailed(m_device->CreateHeap(&heapDesc, IID_PPV_ARGS(&m_textureHeap))); std::vector<D3D12_RESOURCE_BARRIER> barriers; barriers.resize(TextureCount); for (UINT n = 0; n < TextureCount; n++) { ThrowIfFailed(m_device->CreatePlacedResource( m_textureHeap.Get(), n * info.SizeInBytes, &textureDesc, D3D12_RESOURCE_STATE_COMMON, nullptr, IID_PPV_ARGS(&m_textures[n]))); barriers[n] = CD3DX12_RESOURCE_BARRIER::Aliasing(nullptr, m_textures[n].Get()); } m_copyCommandList->ResourceBarrier(static_cast<UINT>(barriers.size()), barriers.data()); } else { for (UINT n = 0; n < TextureCount; n++) { ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT), D3D12_HEAP_FLAG_NONE, &textureDesc, D3D12_RESOURCE_STATE_COMMON, nullptr, IID_PPV_ARGS(&m_textures[n]))); } } // Note: ComPtr's are CPU objects but these resources need to stay in scope until // the command list that references them has finished executing on the GPU. // We will flush the GPU at the end of this method to ensure the resources are not // prematurely destroyed. std::vector<ComPtr<ID3D12Resource>> uploadResources; uploadResources.resize(TextureCount); // Colors for textures are randomly generated. Reset the seed so that the colors // don't change when the resource type changes. srand(100); CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_srvHeap->GetCPUDescriptorHandleForHeapStart()); for (UINT n = 0; n < TextureCount; n++) { const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_textures[n].Get(), 0, 1) + D3D12_DEFAULT_RESOURCE_PLACEMENT_ALIGNMENT; ThrowIfFailed(m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize), D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&uploadResources[n]))); auto texture = GenerateTexture(); // Copy data to the intermediate upload heap and then schedule a copy // from the upload heap to the texture. D3D12_SUBRESOURCE_DATA textureData = {}; textureData.pData = reinterpret_cast<UINT8*>(texture.data()); textureData.RowPitch = TextureWidth * TexturePixelSizeInBytes; textureData.SlicePitch = textureData.RowPitch * TextureHeight; UpdateSubresources<1>(m_copyCommandList.Get(), m_textures[n].Get(), uploadResources[n].Get(), 0, 0, 1, &textureData); NAME_D3D12_OBJECT_INDEXED(m_textures, n); // Describe and create a SRV for the texture. D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {}; srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING; srvDesc.Format = textureDesc.Format; srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D; srvDesc.Texture2D.MipLevels = textureDesc.MipLevels; m_device->CreateShaderResourceView(m_textures[n].Get(), &srvDesc, cpuHandle); cpuHandle.Offset(m_srvDescriptorSize); } ThrowIfFailed(m_copyCommandList->Close()); ID3D12CommandList* ppCommandLists[] = { m_copyCommandList.Get() }; m_copyQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists); // Wait for the copy queue to complete execution of the command list. m_copyQueue->Signal(m_fence.Get(), m_fenceValues[m_frameIndex]); ThrowIfFailed(m_fence->SetEventOnCompletion(m_fenceValues[m_frameIndex], m_fenceEvent)); WaitForSingleObjectEx(m_fenceEvent, INFINITE, FALSE); m_fenceValues[m_frameIndex]++; }