Beispiel #1
0
void
trap(struct trapframe *frame)
{
#ifdef KDTRACE_HOOKS
	struct reg regs;
#endif
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int i = 0, ucode = 0, code;
	u_int type;
	register_t addr = 0;
	ksiginfo_t ksi;

	PCPU_INC(cnt.v_trap);
	type = frame->tf_trapno;

#ifdef SMP
	/* Handler for NMI IPIs used for stopping CPUs. */
	if (type == T_NMI) {
	         if (ipi_nmi_handler() == 0)
	                   goto out;
	}
#endif /* SMP */

#ifdef KDB
	if (kdb_active) {
		kdb_reenter();
		goto out;
	}
#endif

	if (type == T_RESERVED) {
		trap_fatal(frame, 0);
		goto out;
	}

#ifdef	HWPMC_HOOKS
	/*
	 * CPU PMCs interrupt using an NMI.  If the PMC module is
	 * active, pass the 'rip' value to the PMC module's interrupt
	 * handler.  A return value of '1' from the handler means that
	 * the NMI was handled by it and we can return immediately.
	 */
	if (type == T_NMI && pmc_intr &&
	    (*pmc_intr)(PCPU_GET(cpuid), frame))
		goto out;
#endif

	if (type == T_MCHK) {
		mca_intr();
		goto out;
	}

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in its per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 */
	if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
		goto out;
#endif

	if ((frame->tf_rflags & PSL_I) == 0) {
		/*
		 * Buggy application or kernel code has disabled
		 * interrupts and then trapped.  Enabling interrupts
		 * now is wrong, but it is better than running with
		 * interrupts disabled until they are accidentally
		 * enabled later.
		 */
		if (ISPL(frame->tf_cs) == SEL_UPL)
			uprintf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curthread->td_name, type);
		else if (type != T_NMI && type != T_BPTFLT &&
		    type != T_TRCTRAP) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			printf("kernel trap %d with interrupts disabled\n",
			    type);

			/*
			 * We shouldn't enable interrupts while holding a
			 * spin lock.
			 */
			if (td->td_md.md_spinlock_count == 0)
				enable_intr();
		}
	}

	code = frame->tf_err;

        if (ISPL(frame->tf_cs) == SEL_UPL) {
		/* user trap */

		td->td_pticks = 0;
		td->td_frame = frame;
		addr = frame->tf_rip;
		if (td->td_ucred != p->p_ucred) 
			cred_update_thread(td);

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			enable_intr();
#ifdef KDTRACE_HOOKS
			if (type == T_BPTFLT) {
				fill_frame_regs(frame, &regs);
				if (dtrace_pid_probe_ptr != NULL &&
				    dtrace_pid_probe_ptr(&regs) == 0)
					goto out;
			}
#endif
			frame->tf_rflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
			ucode = fputrap_x87();
			if (ucode == -1)
				goto userout;
			i = SIGFPE;
			break;

		case T_PROTFLT:		/* general protection fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_STKFLT:		/* stack fault */
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */
			addr = frame->tf_addr;
			i = trap_pfault(frame, TRUE);
			if (i == -1)
				goto userout;
			if (i == 0)
				goto user;

			if (i == SIGSEGV)
				ucode = SEGV_MAPERR;
			else {
				if (prot_fault_translation == 0) {
					/*
					 * Autodetect.
					 * This check also covers the images
					 * without the ABI-tag ELF note.
					 */
					if (SV_CURPROC_ABI() == SV_ABI_FREEBSD
					    && p->p_osrel >= P_OSREL_SIGSEGV) {
						i = SIGSEGV;
						ucode = SEGV_ACCERR;
					} else {
						i = SIGBUS;
						ucode = BUS_PAGE_FAULT;
					}
				} else if (prot_fault_translation == 1) {
					/*
					 * Always compat mode.
					 */
					i = SIGBUS;
					ucode = BUS_PAGE_FAULT;
				} else {
					/*
					 * Always SIGSEGV mode.
					 */
					i = SIGSEGV;
					ucode = SEGV_ACCERR;
				}
			}
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#ifdef DEV_ISA
		case T_NMI:
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto userout;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* DEV_ISA */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
			/* transparent fault (due to context switch "late") */
			KASSERT(PCB_USER_FPU(td->td_pcb),
			    ("kernel FPU ctx has leaked"));
			fpudna();
			goto userout;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = fputrap_sse();
			if (ucode == -1)
				goto userout;
			i = SIGFPE;
			break;
#ifdef KDTRACE_HOOKS
		case T_DTRACE_RET:
			enable_intr();
			fill_frame_regs(frame, &regs);
			if (dtrace_return_probe_ptr != NULL &&
			    dtrace_return_probe_ptr(&regs) == 0)
				goto out;
			break;
#endif
		}
	} else {
		/* kernel trap */

		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));
		switch (type) {
		case T_PAGEFLT:			/* page fault */
			(void) trap_pfault(frame, FALSE);
			goto out;

		case T_DNA:
			KASSERT(!PCB_USER_FPU(td->td_pcb),
			    ("Unregistered use of FPU in kernel"));
			fpudna();
			goto out;

		case T_ARITHTRAP:	/* arithmetic trap */
		case T_XMMFLT:		/* SIMD floating-point exception */
		case T_FPOPFLT:		/* FPU operand fetch fault */
			/*
			 * XXXKIB for now disable any FPU traps in kernel
			 * handler registration seems to be overkill
			 */
			trap_fatal(frame, 0);
			goto out;

		case T_STKFLT:		/* stack fault */
			break;

		case T_PROTFLT:		/* general protection fault */
		case T_SEGNPFLT:	/* segment not present fault */
			if (td->td_intr_nesting_level != 0)
				break;

			/*
			 * Invalid segment selectors and out of bounds
			 * %rip's and %rsp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
			if (frame->tf_rip == (long)doreti_iret) {
				frame->tf_rip = (long)doreti_iret_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_ds) {
				frame->tf_rip = (long)ds_load_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_es) {
				frame->tf_rip = (long)es_load_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_fs) {
				frame->tf_rip = (long)fs_load_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_gs) {
				frame->tf_rip = (long)gs_load_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_gsbase) {
				frame->tf_rip = (long)gsbase_load_fault;
				goto out;
			}
			if (frame->tf_rip == (long)ld_fsbase) {
				frame->tf_rip = (long)fsbase_load_fault;
				goto out;
			}
			if (curpcb->pcb_onfault != NULL) {
				frame->tf_rip = (long)curpcb->pcb_onfault;
				goto out;
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_rflags & PSL_NT) {
				frame->tf_rflags &= ~PSL_NT;
				goto out;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			/*
			 * Ignore debug register trace traps due to
			 * accesses in the user's address space, which
			 * can happen under several conditions such as
			 * if a user sets a watchpoint on a buffer and
			 * then passes that buffer to a system call.
			 * We still want to get TRCTRAPS for addresses
			 * in kernel space because that is useful when
			 * debugging the kernel.
			 */
			if (user_dbreg_trap()) {
				/*
				 * Reset breakpoint bits because the
				 * processor doesn't
				 */
				/* XXX check upper bits here */
				load_dr6(rdr6() & 0xfffffff0);
				goto out;
			}
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If KDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
#ifdef KDB
			if (kdb_trap(type, 0, frame))
				goto out;
#endif
			break;

#ifdef DEV_ISA
		case T_NMI:
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto out;
			} else if (panic_on_nmi == 0)
				goto out;
			/* FALLTHROUGH */
#endif /* DEV_ISA */
		}

		trap_fatal(frame, 0);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	ksiginfo_init_trap(&ksi);
	ksi.ksi_signo = i;
	ksi.ksi_code = ucode;
	ksi.ksi_trapno = type;
	ksi.ksi_addr = (void *)addr;
	if (uprintf_signal) {
		uprintf("pid %d comm %s: signal %d err %lx code %d type %d "
		    "addr 0x%lx rsp 0x%lx rip 0x%lx "
		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
		    p->p_pid, p->p_comm, i, frame->tf_err, ucode, type, addr,
		    frame->tf_rsp, frame->tf_rip,
		    fubyte((void *)(frame->tf_rip + 0)),
		    fubyte((void *)(frame->tf_rip + 1)),
		    fubyte((void *)(frame->tf_rip + 2)),
		    fubyte((void *)(frame->tf_rip + 3)),
		    fubyte((void *)(frame->tf_rip + 4)),
		    fubyte((void *)(frame->tf_rip + 5)),
		    fubyte((void *)(frame->tf_rip + 6)),
		    fubyte((void *)(frame->tf_rip + 7)));
	}
	KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
	trapsignal(td, &ksi);

user:
	userret(td, frame);
	KASSERT(PCB_USER_FPU(td->td_pcb),
	    ("Return from trap with kernel FPU ctx leaked"));
userout:
out:
	return;
}
Beispiel #2
0
/*
 * Process an asynchronous software trap.
 * This is relatively easy.
 * This function will return with preemption disabled.
 */
void
ast(struct trapframe *framep)
{
	struct thread *td;
	struct proc *p;
	int flags;
	int sig;

	td = curthread;
	p = td->td_proc;

	CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
            p->p_comm);
	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
	WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
	mtx_assert(&Giant, MA_NOTOWNED);
	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
	td->td_frame = framep;
	td->td_pticks = 0;

	/*
	 * This updates the td_flag's for the checks below in one
	 * "atomic" operation with turning off the astpending flag.
	 * If another AST is triggered while we are handling the
	 * AST's saved in flags, the astpending flag will be set and
	 * ast() will be called again.
	 */
	thread_lock(td);
	flags = td->td_flags;
	td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK |
	    TDF_NEEDRESCHED | TDF_ALRMPEND | TDF_PROFPEND | TDF_MACPEND);
	thread_unlock(td);
	PCPU_INC(cnt.v_trap);

	if (td->td_ucred != p->p_ucred) 
		cred_update_thread(td);
	if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
		addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
		td->td_profil_ticks = 0;
		td->td_pflags &= ~TDP_OWEUPC;
	}
#ifdef HWPMC_HOOKS
	/* Handle Software PMC callchain capture. */
	if (PMC_IS_PENDING_CALLCHAIN(td))
		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_USER_CALLCHAIN_SOFT, (void *) framep);
#endif
	if (flags & TDF_ALRMPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGVTALRM);
		PROC_UNLOCK(p);
	}
	if (flags & TDF_PROFPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGPROF);
		PROC_UNLOCK(p);
	}
#ifdef MAC
	if (flags & TDF_MACPEND)
		mac_thread_userret(td);
#endif
	if (flags & TDF_NEEDRESCHED) {
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(1, 1, __func__);
#endif
		thread_lock(td);
		sched_prio(td, td->td_user_pri);
		mi_switch(SW_INVOL | SWT_NEEDRESCHED, NULL);
		thread_unlock(td);
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(0, 1, __func__);
#endif
	}

	/*
	 * Check for signals. Unlocked reads of p_pendingcnt or
	 * p_siglist might cause process-directed signal to be handled
	 * later.
	 */
	if (flags & TDF_NEEDSIGCHK || p->p_pendingcnt > 0 ||
	    !SIGISEMPTY(p->p_siglist)) {
		PROC_LOCK(p);
		mtx_lock(&p->p_sigacts->ps_mtx);
		while ((sig = cursig(td)) != 0)
			postsig(sig);
		mtx_unlock(&p->p_sigacts->ps_mtx);
		PROC_UNLOCK(p);
	}
	/*
	 * We need to check to see if we have to exit or wait due to a
	 * single threading requirement or some other STOP condition.
	 */
	if (flags & TDF_NEEDSUSPCHK) {
		PROC_LOCK(p);
		thread_suspend_check(0);
		PROC_UNLOCK(p);
	}

	if (td->td_pflags & TDP_OLDMASK) {
		td->td_pflags &= ~TDP_OLDMASK;
		kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
	}

	userret(td, framep);
}
Beispiel #3
0
void
trap(struct trapframe *frame)
{
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int i = 0, ucode = 0, code;
	u_int type;
	register_t addr = 0;
	vm_offset_t eva;
	ksiginfo_t ksi;
#ifdef POWERFAIL_NMI
	static int lastalert = 0;
#endif

	PCPU_INC(cnt.v_trap);
	type = frame->tf_trapno;

#ifdef SMP
	/* Handler for NMI IPIs used for stopping CPUs. */
	if (type == T_NMI) {
	         if (ipi_nmi_handler() == 0)
	                   goto out;
	}
#endif /* SMP */

#ifdef KDB
	if (kdb_active) {
		kdb_reenter();
		goto out;
	}
#endif

	if (type == T_RESERVED) {
		trap_fatal(frame, 0);
		goto out;
	}

#ifdef	HWPMC_HOOKS
	/*
	 * CPU PMCs interrupt using an NMI so we check for that first.
	 * If the HWPMC module is active, 'pmc_hook' will point to
	 * the function to be called.  A return value of '1' from the
	 * hook means that the NMI was handled by it and that we can
	 * return immediately.
	 */
	if (type == T_NMI && pmc_intr &&
	    (*pmc_intr)(PCPU_GET(cpuid), frame))
	    goto out;
#endif

	if (type == T_MCHK) {
		if (!mca_intr())
			trap_fatal(frame, 0);
		goto out;
	}

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in it's per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * If the DTrace kernel module has registered a trap handler,
	 * call it and if it returns non-zero, assume that it has
	 * handled the trap and modified the trap frame so that this
	 * function can return normally.
	 */
	if ((type == T_PROTFLT || type == T_PAGEFLT) &&
	    dtrace_trap_func != NULL)
		if ((*dtrace_trap_func)(frame, type))
			goto out;
	if (type == T_DTRACE_PROBE || type == T_DTRACE_RET ||
	    type == T_BPTFLT) {
		struct reg regs;

		fill_frame_regs(frame, &regs);
		if (type == T_DTRACE_PROBE &&
		    dtrace_fasttrap_probe_ptr != NULL &&
		    dtrace_fasttrap_probe_ptr(&regs) == 0)
			goto out;
		if (type == T_BPTFLT &&
		    dtrace_pid_probe_ptr != NULL &&
		    dtrace_pid_probe_ptr(&regs) == 0)
			goto out;
		if (type == T_DTRACE_RET &&
		    dtrace_return_probe_ptr != NULL &&
		    dtrace_return_probe_ptr(&regs) == 0)
			goto out;
	}
#endif

	if ((frame->tf_eflags & PSL_I) == 0) {
		/*
		 * Buggy application or kernel code has disabled
		 * interrupts and then trapped.  Enabling interrupts
		 * now is wrong, but it is better than running with
		 * interrupts disabled until they are accidentally
		 * enabled later.
		 */
		if (ISPL(frame->tf_cs) == SEL_UPL || (frame->tf_eflags & PSL_VM))
			uprintf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curthread->td_name, type);
		else if (type != T_BPTFLT && type != T_TRCTRAP &&
			 frame->tf_eip != (int)cpu_switch_load_gs) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			printf("kernel trap %d with interrupts disabled\n",
			    type);
			/*
			 * Page faults need interrupts disabled until later,
			 * and we shouldn't enable interrupts while holding
			 * a spin lock or if servicing an NMI.
			 */
			if (type != T_NMI && type != T_PAGEFLT &&
			    td->td_md.md_spinlock_count == 0)
				enable_intr();
		}
	}
	eva = 0;
	code = frame->tf_err;
	if (type == T_PAGEFLT) {
		/*
		 * For some Cyrix CPUs, %cr2 is clobbered by
		 * interrupts.  This problem is worked around by using
		 * an interrupt gate for the pagefault handler.  We
		 * are finally ready to read %cr2 and then must
		 * reenable interrupts.
		 *
		 * If we get a page fault while in a critical section, then
		 * it is most likely a fatal kernel page fault.  The kernel
		 * is already going to panic trying to get a sleep lock to
		 * do the VM lookup, so just consider it a fatal trap so the
		 * kernel can print out a useful trap message and even get
		 * to the debugger.
		 *
		 * If we get a page fault while holding a non-sleepable
		 * lock, then it is most likely a fatal kernel page fault.
		 * If WITNESS is enabled, then it's going to whine about
		 * bogus LORs with various VM locks, so just skip to the
		 * fatal trap handling directly.
		 */
		eva = rcr2();
		if (td->td_critnest != 0 ||
		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
		    "Kernel page fault") != 0)
			trap_fatal(frame, eva);
		else
			enable_intr();
	}

        if ((ISPL(frame->tf_cs) == SEL_UPL) ||
	    ((frame->tf_eflags & PSL_VM) && 
		!(PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL))) {
		/* user trap */

		td->td_pticks = 0;
		td->td_frame = frame;
		addr = frame->tf_eip;
		if (td->td_ucred != p->p_ucred) 
			cred_update_thread(td);

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			enable_intr();
			frame->tf_eflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
#ifdef DEV_NPX
			ucode = npxtrap();
			if (ucode == -1)
				goto userout;
#else
			ucode = 0;
#endif
			i = SIGFPE;
			break;

			/*
			 * The following two traps can happen in
			 * vm86 mode, and, if so, we want to handle
			 * them specially.
			 */
		case T_PROTFLT:		/* general protection fault */
		case T_STKFLT:		/* stack fault */
			if (frame->tf_eflags & PSL_VM) {
				i = vm86_emulate((struct vm86frame *)frame);
				if (i == 0)
					goto user;
				break;
			}
			i = SIGBUS;
			ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
			break;
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */

			i = trap_pfault(frame, TRUE, eva);
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
			if (i == -2) {
				/*
				 * The f00f hack workaround has triggered, so
				 * treat the fault as an illegal instruction 
				 * (T_PRIVINFLT) instead of a page fault.
				 */
				type = frame->tf_trapno = T_PRIVINFLT;

				/* Proceed as in that case. */
				ucode = ILL_PRVOPC;
				i = SIGILL;
				break;
			}
#endif
			if (i == -1)
				goto userout;
			if (i == 0)
				goto user;

			if (i == SIGSEGV)
				ucode = SEGV_MAPERR;
			else {
				if (prot_fault_translation == 0) {
					/*
					 * Autodetect.
					 * This check also covers the images
					 * without the ABI-tag ELF note.
					 */
					if (SV_CURPROC_ABI() == SV_ABI_FREEBSD
					    && p->p_osrel >= P_OSREL_SIGSEGV) {
						i = SIGSEGV;
						ucode = SEGV_ACCERR;
					} else {
						i = SIGBUS;
						ucode = BUS_PAGE_FAULT;
					}
				} else if (prot_fault_translation == 1) {
					/*
					 * Always compat mode.
					 */
					i = SIGBUS;
					ucode = BUS_PAGE_FAULT;
				} else {
					/*
					 * Always SIGSEGV mode.
					 */
					i = SIGSEGV;
					ucode = SEGV_ACCERR;
				}
			}
			addr = eva;
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#ifdef DEV_ISA
		case T_NMI:
#ifdef POWERFAIL_NMI
#ifndef TIMER_FREQ
#  define TIMER_FREQ 1193182
#endif
			if (time_second - lastalert > 10) {
				log(LOG_WARNING, "NMI: power fail\n");
				sysbeep(880, hz);
				lastalert = time_second;
			}
			goto userout;
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto userout;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
#ifdef DEV_NPX
			KASSERT(PCB_USER_FPU(td->td_pcb),
			    ("kernel FPU ctx has leaked"));
			/* transparent fault (due to context switch "late") */
			if (npxdna())
				goto userout;
#endif
			uprintf("pid %d killed due to lack of floating point\n",
				p->p_pid);
			i = SIGKILL;
			ucode = 0;
			break;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = 0; /* XXX */
			i = SIGFPE;
			break;
		}
	} else {
		/* kernel trap */

		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));
		switch (type) {
		case T_PAGEFLT:			/* page fault */
			(void) trap_pfault(frame, FALSE, eva);
			goto out;

		case T_DNA:
#ifdef DEV_NPX
			KASSERT(!PCB_USER_FPU(td->td_pcb),
			    ("Unregistered use of FPU in kernel"));
			if (npxdna())
				goto out;
#endif
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
		case T_XMMFLT:		/* SIMD floating-point exception */
		case T_FPOPFLT:		/* FPU operand fetch fault */
			/*
			 * XXXKIB for now disable any FPU traps in kernel
			 * handler registration seems to be overkill
			 */
			trap_fatal(frame, 0);
			goto out;

			/*
			 * The following two traps can happen in
			 * vm86 mode, and, if so, we want to handle
			 * them specially.
			 */
		case T_PROTFLT:		/* general protection fault */
		case T_STKFLT:		/* stack fault */
			if (frame->tf_eflags & PSL_VM) {
				i = vm86_emulate((struct vm86frame *)frame);
				if (i != 0)
					/*
					 * returns to original process
					 */
					vm86_trap((struct vm86frame *)frame);
				goto out;
			}
			if (type == T_STKFLT)
				break;

			/* FALL THROUGH */

		case T_SEGNPFLT:	/* segment not present fault */
			if (PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL)
				break;

			/*
			 * Invalid %fs's and %gs's can be created using
			 * procfs or PT_SETREGS or by invalidating the
			 * underlying LDT entry.  This causes a fault
			 * in kernel mode when the kernel attempts to
			 * switch contexts.  Lose the bad context
			 * (XXX) so that we can continue, and generate
			 * a signal.
			 */
			if (frame->tf_eip == (int)cpu_switch_load_gs) {
				PCPU_GET(curpcb)->pcb_gs = 0;
#if 0				
				PROC_LOCK(p);
				kern_psignal(p, SIGBUS);
				PROC_UNLOCK(p);
#endif				
				goto out;
			}

			if (td->td_intr_nesting_level != 0)
				break;

			/*
			 * Invalid segment selectors and out of bounds
			 * %eip's and %esp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
			if (frame->tf_eip == (int)doreti_iret) {
				frame->tf_eip = (int)doreti_iret_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_ds) {
				frame->tf_eip = (int)doreti_popl_ds_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_es) {
				frame->tf_eip = (int)doreti_popl_es_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_fs) {
				frame->tf_eip = (int)doreti_popl_fs_fault;
				goto out;
			}
			if (PCPU_GET(curpcb)->pcb_onfault != NULL) {
				frame->tf_eip =
				    (int)PCPU_GET(curpcb)->pcb_onfault;
				goto out;
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_eflags & PSL_NT) {
				frame->tf_eflags &= ~PSL_NT;
				goto out;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			if (frame->tf_eip == (int)IDTVEC(lcall_syscall)) {
				/*
				 * We've just entered system mode via the
				 * syscall lcall.  Continue single stepping
				 * silently until the syscall handler has
				 * saved the flags.
				 */
				goto out;
			}
			if (frame->tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
				/*
				 * The syscall handler has now saved the
				 * flags.  Stop single stepping it.
				 */
				frame->tf_eflags &= ~PSL_T;
				goto out;
			}
			/*
			 * Ignore debug register trace traps due to
			 * accesses in the user's address space, which
			 * can happen under several conditions such as
			 * if a user sets a watchpoint on a buffer and
			 * then passes that buffer to a system call.
			 * We still want to get TRCTRAPS for addresses
			 * in kernel space because that is useful when
			 * debugging the kernel.
			 */
			if (user_dbreg_trap() && 
			   !(PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL)) {
				/*
				 * Reset breakpoint bits because the
				 * processor doesn't
				 */
				load_dr6(rdr6() & 0xfffffff0);
				goto out;
			}
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If KDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
#ifdef KDB
			if (kdb_trap(type, 0, frame))
				goto out;
#endif
			break;

#ifdef DEV_ISA
		case T_NMI:
#ifdef POWERFAIL_NMI
			if (time_second - lastalert > 10) {
				log(LOG_WARNING, "NMI: power fail\n");
				sysbeep(880, hz);
				lastalert = time_second;
			}
			goto out;
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto out;
			} else if (panic_on_nmi == 0)
				goto out;
			/* FALLTHROUGH */
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */
		}

		trap_fatal(frame, eva);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	ksiginfo_init_trap(&ksi);
	ksi.ksi_signo = i;
	ksi.ksi_code = ucode;
	ksi.ksi_addr = (void *)addr;
	ksi.ksi_trapno = type;
	trapsignal(td, &ksi);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", (u_long)eva);
		uprintf("\n");
	}
#endif

user:
	userret(td, frame);
	mtx_assert(&Giant, MA_NOTOWNED);
	KASSERT(PCB_USER_FPU(td->td_pcb),
	    ("Return from trap with kernel FPU ctx leaked"));
userout:
out:
	return;
}
Beispiel #4
0
/*
 * void prefetch_abort_handler(trapframe_t *tf)
 *
 * Abort handler called when instruction execution occurs at
 * a non existent or restricted (access permissions) memory page.
 * If the address is invalid and we were in SVC mode then panic as
 * the kernel should never prefetch abort.
 * If the address is invalid and the page is mapped then the user process
 * does no have read permission so send it a signal.
 * Otherwise fault the page in and try again.
 */
void
prefetch_abort_handler(trapframe_t *tf)
{
	struct thread *td;
	struct proc * p;
	struct vm_map *map;
	vm_offset_t fault_pc, va;
	int error = 0;
	struct ksig ksig;


#if 0
	/* Update vmmeter statistics */
	uvmexp.traps++;
#endif
#if 0
	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
	    (void*)tf->tf_usr_lr);
#endif
	
 	td = curthread;
	p = td->td_proc;
	PCPU_INC(cnt.v_trap);

	if (TRAP_USERMODE(tf)) {
		td->td_frame = tf;
		if (td->td_ucred != td->td_proc->p_ucred)
			cred_update_thread(td);
	}
	fault_pc = tf->tf_pc;
	if (td->td_md.md_spinlock_count == 0) {
		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
			enable_interrupts(I32_bit);
		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
			enable_interrupts(F32_bit);
	}

	/* See if the cpu state needs to be fixed up */
	switch (prefetch_abort_fixup(tf, &ksig)) {
	case ABORT_FIXUP_RETURN:
		return;
	case ABORT_FIXUP_FAILED:
		/* Deliver a SIGILL to the process */
		ksig.signb = SIGILL;
		ksig.code = 0;
		td->td_frame = tf;
		goto do_trapsignal;
	default:
		break;
	}

	/* Prefetch aborts cannot happen in kernel mode */
	if (__predict_false(!TRAP_USERMODE(tf)))
		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
	td->td_pticks = 0;


	/* Ok validate the address, can only execute in USER space */
	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
		ksig.signb = SIGSEGV;
		ksig.code = 0;
		goto do_trapsignal;
	}

	map = &td->td_proc->p_vmspace->vm_map;
	va = trunc_page(fault_pc);

	/*
	 * See if the pmap can handle this fault on its own...
	 */
#ifdef DEBUG
	last_fault_code = -1;
#endif
	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
		goto out;

	if (map != kernel_map) {
		PROC_LOCK(p);
		p->p_lock++;
		PROC_UNLOCK(p);
	}

	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
	    VM_FAULT_NORMAL);
	if (map != kernel_map) {
		PROC_LOCK(p);
		p->p_lock--;
		PROC_UNLOCK(p);
	}

	if (__predict_true(error == 0))
		goto out;

	if (error == ENOMEM) {
		printf("VM: pid %d (%s), uid %d killed: "
		    "out of swap\n", td->td_proc->p_pid, td->td_name,
		    (td->td_proc->p_ucred) ?
		     td->td_proc->p_ucred->cr_uid : -1);
		ksig.signb = SIGKILL;
	} else {
		ksig.signb = SIGSEGV;
	}
	ksig.code = 0;

do_trapsignal:
	call_trapsignal(td, ksig.signb, ksig.code);

out:
	userret(td, tf);

}
Beispiel #5
0
void
trap(struct trapframe *frame)
{
	struct thread	*td;
	struct proc	*p;
	int		sig, type, user;
	ksiginfo_t	ksi;

#ifdef KDB
	if (kdb_active) {
		kdb_reenter();
		return;
	}
#endif

	PCPU_INC(cnt.v_trap);

	td = curthread;
	p = td->td_proc;

	type = frame->exc;
	sig = 0;
	user = (frame->srr1 & PSL_PR) ? 1 : 0;

	CTR3(KTR_TRAP, "trap: %s type=%s (%s)", p->p_comm,
	    trapname(type), user ? "user" : "kernel");

	if (user) {
		td->td_frame = frame;
		if (td->td_ucred != p->p_ucred)
			cred_update_thread(td);

		/* User Mode Traps */
		switch (type) {
		case EXC_DSI:
		case EXC_ISI:
			sig = trap_pfault(frame, 1);
			break;

		case EXC_SC:
			syscall(frame);
			break;

		case EXC_ALI:
			if (fix_unaligned(td, frame) != 0)
				sig = SIGBUS;
			else
				frame->srr0 += 4;
			break;

		case EXC_DEBUG:	/* Single stepping */
			mtspr(SPR_DBSR, mfspr(SPR_DBSR));
			frame->srr1 &= ~PSL_DE;
			frame->cpu.booke.dbcr0 &= ~(DBCR0_IDM || DBCR0_IC);
			sig = SIGTRAP;
			break;

		case EXC_PGM:	/* Program exception */
#ifdef FPU_EMU
			sig = fpu_emulate(frame,
			    (struct fpreg *)&td->td_pcb->pcb_fpu);
#else
			/* XXX SIGILL for non-trap instructions. */
			sig = SIGTRAP;
#endif
			break;

		default:
			trap_fatal(frame);
		}
	} else {
		/* Kernel Mode Traps */
		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));

		switch (type) {
		case EXC_DEBUG:
			mtspr(SPR_DBSR, mfspr(SPR_DBSR));
			kdb_trap(frame->exc, 0, frame);
			return;

		case EXC_DSI:
			if (trap_pfault(frame, 0) == 0)
 				return;
			break;

		case EXC_MCHK:
			if (handle_onfault(frame))
 				return;
			break;
#ifdef KDB
		case EXC_PGM:
			if (frame->cpu.booke.esr & ESR_PTR)
				kdb_trap(EXC_PGM, 0, frame);
			return;
#endif
		default:
			break;
		}
		trap_fatal(frame);
	}

	if (sig != 0) {
		if (p->p_sysent->sv_transtrap != NULL)
			sig = (p->p_sysent->sv_transtrap)(sig, type);
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = sig;
		ksi.ksi_code = type; /* XXX, not POSIX */
		/* ksi.ksi_addr = ? */
		ksi.ksi_trapno = type;
		trapsignal(td, &ksi);
	}

	userret(td, frame);
}
Beispiel #6
0
void
data_abort_handler(trapframe_t *tf)
{
	struct vm_map *map;
	struct pcb *pcb;
	struct thread *td;
	u_int user, far, fsr;
	vm_prot_t ftype;
	void *onfault;
	vm_offset_t va;
	int error = 0;
	struct ksig ksig;
	struct proc *p;
	

	/* Grab FAR/FSR before enabling interrupts */
	far = cpu_faultaddress();
	fsr = cpu_faultstatus();
#if 0
	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
#endif

	/* Update vmmeter statistics */
#if 0
	vmexp.traps++;
#endif

	td = curthread;
	p = td->td_proc;

	PCPU_INC(cnt.v_trap);
	/* Data abort came from user mode? */
	user = TRAP_USERMODE(tf);

	if (user) {
		td->td_pticks = 0;
		td->td_frame = tf;		
		if (td->td_ucred != td->td_proc->p_ucred)
			cred_update_thread(td);
		
	}
	/* Grab the current pcb */
	pcb = td->td_pcb;
	/* Re-enable interrupts if they were enabled previously */
	if (td->td_md.md_spinlock_count == 0) {
		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
			enable_interrupts(I32_bit);
		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
			enable_interrupts(F32_bit);
	}
		

	/* Invoke the appropriate handler, if necessary */
	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
		    td, &ksig)) {
			goto do_trapsignal;
		}
		goto out;
	}

	/*
	 * At this point, we're dealing with one of the following data aborts:
	 *
	 *  FAULT_TRANS_S  - Translation -- Section
	 *  FAULT_TRANS_P  - Translation -- Page
	 *  FAULT_DOMAIN_S - Domain -- Section
	 *  FAULT_DOMAIN_P - Domain -- Page
	 *  FAULT_PERM_S   - Permission -- Section
	 *  FAULT_PERM_P   - Permission -- Page
	 *
	 * These are the main virtual memory-related faults signalled by
	 * the MMU.
	 */

	/* fusubailout is used by [fs]uswintr to avoid page faulting */
	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
		tf->tf_r0 = EFAULT;
		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
		return;
	}

	/*
	 * Make sure the Program Counter is sane. We could fall foul of
	 * someone executing Thumb code, in which case the PC might not
	 * be word-aligned. This would cause a kernel alignment fault
	 * further down if we have to decode the current instruction.
	 * XXX: It would be nice to be able to support Thumb at some point.
	 */
	if (__predict_false((tf->tf_pc & 3) != 0)) {
		if (user) {
			/*
			 * Give the user an illegal instruction signal.
			 */
			/* Deliver a SIGILL to the process */
			ksig.signb = SIGILL;
			ksig.code = 0;
			goto do_trapsignal;
		}

		/*
		 * The kernel never executes Thumb code.
		 */
		printf("\ndata_abort_fault: Misaligned Kernel-mode "
		    "Program Counter\n");
		dab_fatal(tf, fsr, far, td, &ksig);
	}

	/* See if the cpu state needs to be fixed up */
	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
	case ABORT_FIXUP_RETURN:
		return;
	case ABORT_FIXUP_FAILED:
		/* Deliver a SIGILL to the process */
		ksig.signb = SIGILL;
		ksig.code = 0;
		goto do_trapsignal;
	default:
		break;
	}

	va = trunc_page((vm_offset_t)far);

	/*
	 * It is only a kernel address space fault iff:
	 *	1. user == 0  and
	 *	2. pcb_onfault not set or
	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
	 */
	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
	    __predict_true((pcb->pcb_onfault == NULL ||
	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
		map = kernel_map;

		/* Was the fault due to the FPE/IPKDB ? */
		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {

			/*
			 * Force exit via userret()
			 * This is necessary as the FPE is an extension to
			 * userland that actually runs in a priveledged mode
			 * but uses USR mode permissions for its accesses.
			 */
			user = 1;
			ksig.signb = SIGSEGV;
			ksig.code = 0;
			goto do_trapsignal;
		}
	} else {
		map = &td->td_proc->p_vmspace->vm_map;
	}

	/*
	 * We need to know whether the page should be mapped
	 * as R or R/W. The MMU does not give us the info as
	 * to whether the fault was caused by a read or a write.
	 *
	 * However, we know that a permission fault can only be
	 * the result of a write to a read-only location, so
	 * we can deal with those quickly.
	 *
	 * Otherwise we need to disassemble the instruction
	 * responsible to determine if it was a write.
	 */
	if (IS_PERMISSION_FAULT(fsr))
		ftype = VM_PROT_WRITE;
	else {
		u_int insn = ReadWord(tf->tf_pc);

		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
			ftype = VM_PROT_WRITE;
		} else {
			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
				ftype = VM_PROT_READ | VM_PROT_WRITE;
			else
				ftype = VM_PROT_READ;
		}
	}

	/*
	 * See if the fault is as a result of ref/mod emulation,
	 * or domain mismatch.
	 */
#ifdef DEBUG
	last_fault_code = fsr;
#endif
	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
	    user)) {
		goto out;
	}

	onfault = pcb->pcb_onfault;
	pcb->pcb_onfault = NULL;
	if (map != kernel_map) {
		PROC_LOCK(p);
		p->p_lock++;
		PROC_UNLOCK(p);
	}
	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
	pcb->pcb_onfault = onfault;

	if (map != kernel_map) {
		PROC_LOCK(p);
		p->p_lock--;
		PROC_UNLOCK(p);
	}
	if (__predict_true(error == 0))
		goto out;
	if (user == 0) {
		if (pcb->pcb_onfault) {
			tf->tf_r0 = error;
			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
			return;
		}

		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
		    error);
		dab_fatal(tf, fsr, far, td, &ksig);
	}


	if (error == ENOMEM) {
		printf("VM: pid %d (%s), uid %d killed: "
		    "out of swap\n", td->td_proc->p_pid, td->td_name,
		    (td->td_proc->p_ucred) ?
		     td->td_proc->p_ucred->cr_uid : -1);
		ksig.signb = SIGKILL;
	} else {
		ksig.signb = SIGSEGV;
	}
	ksig.code = 0;
do_trapsignal:
	call_trapsignal(td, ksig.signb, ksig.code);
out:
	/* If returning to user mode, make sure to invoke userret() */
	if (user)
		userret(td, tf);
}
Beispiel #7
0
static inline int
syscallenter(struct thread *td, struct syscall_args *sa)
{
	struct proc *p;
	int error, traced;

	PCPU_INC(cnt.v_syscall);
	p = td->td_proc;

	td->td_pticks = 0;
	if (td->td_ucred != p->p_ucred)
		cred_update_thread(td);
	if (p->p_flag & P_TRACED) {
		traced = 1;
		PROC_LOCK(p);
		td->td_dbgflags &= ~TDB_USERWR;
		td->td_dbgflags |= TDB_SCE;
		PROC_UNLOCK(p);
	} else
		traced = 0;
	error = (p->p_sysent->sv_fetch_syscall_args)(td, sa);
#ifdef KTRACE
	if (KTRPOINT(td, KTR_SYSCALL))
		ktrsyscall(sa->code, sa->narg, sa->args);
#endif

	CTR6(KTR_SYSC,
"syscall: td=%p pid %d %s (%#lx, %#lx, %#lx)",
	    td, td->td_proc->p_pid, syscallname(p, sa->code),
	    sa->args[0], sa->args[1], sa->args[2]);

	if (error == 0) {
		STOPEVENT(p, S_SCE, sa->narg);
		if (p->p_flag & P_TRACED && p->p_stops & S_PT_SCE) {
			PROC_LOCK(p);
			ptracestop((td), SIGTRAP);
			PROC_UNLOCK(p);
		}
		if (td->td_dbgflags & TDB_USERWR) {
			/*
			 * Reread syscall number and arguments if
			 * debugger modified registers or memory.
			 */
			error = (p->p_sysent->sv_fetch_syscall_args)(td, sa);
#ifdef KTRACE
			if (KTRPOINT(td, KTR_SYSCALL))
				ktrsyscall(sa->code, sa->narg, sa->args);
#endif
			if (error != 0)
				goto retval;
		}

#ifdef CAPABILITY_MODE
		/*
		 * In capability mode, we only allow access to system calls
		 * flagged with SYF_CAPENABLED.
		 */
		if (IN_CAPABILITY_MODE(td) &&
		    !(sa->callp->sy_flags & SYF_CAPENABLED)) {
			error = ECAPMODE;
			goto retval;
		}
#endif

		error = syscall_thread_enter(td, sa->callp);
		if (error != 0)
			goto retval;

#ifdef KDTRACE_HOOKS
		/*
		 * If the systrace module has registered it's probe
		 * callback and if there is a probe active for the
		 * syscall 'entry', process the probe.
		 */
		if (systrace_probe_func != NULL && sa->callp->sy_entry != 0)
			(*systrace_probe_func)(sa->callp->sy_entry, sa->code,
			    sa->callp, sa->args, 0);
#endif

		AUDIT_SYSCALL_ENTER(sa->code, td);
		error = (sa->callp->sy_call)(td, sa->args);
		AUDIT_SYSCALL_EXIT(error, td);

		/* Save the latest error return value. */
		td->td_errno = error;

#ifdef KDTRACE_HOOKS
		/*
		 * If the systrace module has registered it's probe
		 * callback and if there is a probe active for the
		 * syscall 'return', process the probe.
		 */
		if (systrace_probe_func != NULL && sa->callp->sy_return != 0)
			(*systrace_probe_func)(sa->callp->sy_return, sa->code,
			    sa->callp, NULL, (error) ? -1 : td->td_retval[0]);
#endif
		syscall_thread_exit(td, sa->callp);
		CTR4(KTR_SYSC, "syscall: p=%p error=%d return %#lx %#lx",
		    p, error, td->td_retval[0], td->td_retval[1]);
	}
 retval:
	if (traced) {
		PROC_LOCK(p);
		td->td_dbgflags &= ~TDB_SCE;
		PROC_UNLOCK(p);
	}
	(p->p_sysent->sv_set_syscall_retval)(td, error);
	return (error);
}
Beispiel #8
0
void
trap(struct trapframe *frame)
{
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int i = 0, ucode = 0, code;
	u_int type;
	register_t addr = 0;
	ksiginfo_t ksi;

	PCPU_INC(cnt.v_trap);
	type = frame->tf_trapno;

#ifdef SMP
#ifdef STOP_NMI
	/* Handler for NMI IPIs used for stopping CPUs. */
	if (type == T_NMI) {
	         if (ipi_nmi_handler() == 0)
	                   goto out;
	}
#endif /* STOP_NMI */
#endif /* SMP */

#ifdef KDB
	if (kdb_active) {
		kdb_reenter();
		goto out;
	}
#endif

#ifdef	HWPMC_HOOKS
	/*
	 * CPU PMCs interrupt using an NMI.  If the PMC module is
	 * active, pass the 'rip' value to the PMC module's interrupt
	 * handler.  A return value of '1' from the handler means that
	 * the NMI was handled by it and we can return immediately.
	 */
	if (type == T_NMI && pmc_intr &&
	    (*pmc_intr)(PCPU_GET(cpuid), frame))
		goto out;
#endif

	if (type == T_MCHK) {
		if (!mca_intr())
			trap_fatal(frame, 0);
		goto out;
	}

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in it's per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * If the DTrace kernel module has registered a trap handler,
	 * call it and if it returns non-zero, assume that it has
	 * handled the trap and modified the trap frame so that this
	 * function can return normally.
	 */
	if (dtrace_trap_func != NULL)
		if ((*dtrace_trap_func)(frame, type))
			goto out;
#endif

	if ((frame->tf_rflags & PSL_I) == 0) {
		/*
		 * Buggy application or kernel code has disabled
		 * interrupts and then trapped.  Enabling interrupts
		 * now is wrong, but it is better than running with
		 * interrupts disabled until they are accidentally
		 * enabled later.
		 */
		if (ISPL(frame->tf_cs) == SEL_UPL)
			printf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curproc->p_comm, type);
		else if (type != T_NMI && type != T_BPTFLT &&
		    type != T_TRCTRAP) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			printf("kernel trap %d with interrupts disabled\n",
			    type);
			/*
			 * We shouldn't enable interrupts while holding a
			 * spin lock or servicing an NMI.
			 */
			if (type != T_NMI && td->td_md.md_spinlock_count == 0)
				enable_intr();
		}
	}

	code = frame->tf_err;
	if (type == T_PAGEFLT) {
		/*
		 * If we get a page fault while in a critical section, then
		 * it is most likely a fatal kernel page fault.  The kernel
		 * is already going to panic trying to get a sleep lock to
		 * do the VM lookup, so just consider it a fatal trap so the
		 * kernel can print out a useful trap message and even get
		 * to the debugger.
		 *
		 * If we get a page fault while holding a non-sleepable
		 * lock, then it is most likely a fatal kernel page fault.
		 * If WITNESS is enabled, then it's going to whine about
		 * bogus LORs with various VM locks, so just skip to the
		 * fatal trap handling directly.
		 */
		if (td->td_critnest != 0 ||
		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
		    "Kernel page fault") != 0)
			trap_fatal(frame, frame->tf_addr);
	}

        if (ISPL(frame->tf_cs) == SEL_UPL) {
		/* user trap */

		td->td_pticks = 0;
		td->td_frame = frame;
		addr = frame->tf_rip;
		if (td->td_ucred != p->p_ucred) 
			cred_update_thread(td);

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			enable_intr();
			frame->tf_rflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
			ucode = fputrap();
			if (ucode == -1)
				goto userout;
			i = SIGFPE;
			break;

		case T_PROTFLT:		/* general protection fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_STKFLT:		/* stack fault */
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */
			addr = frame->tf_addr;
#ifdef KSE
			if (td->td_pflags & TDP_SA)
				thread_user_enter(td);
#endif
			i = trap_pfault(frame, TRUE);
			if (i == -1)
				goto userout;
			if (i == 0)
				goto user;

			if (i == SIGSEGV)
				ucode = SEGV_MAPERR;
			else {
				if (prot_fault_translation == 0) {
					/*
					 * Autodetect.
					 * This check also covers the images
					 * without the ABI-tag ELF note.
					 */
					if ((curproc->p_sysent ==
					    &elf64_freebsd_sysvec
#ifdef COMPAT_IA32
					    || curproc->p_sysent ==
					    &ia32_freebsd_sysvec
#endif
					    ) && p->p_osrel >= 700004) {
						i = SIGSEGV;
						ucode = SEGV_ACCERR;
					} else {
						i = SIGBUS;
						ucode = BUS_PAGE_FAULT;
					}
				} else if (prot_fault_translation == 1) {
					/*
					 * Always compat mode.
					 */
					i = SIGBUS;
					ucode = BUS_PAGE_FAULT;
				} else {
					/*
					 * Always SIGSEGV mode.
					 */
					i = SIGSEGV;
					ucode = SEGV_ACCERR;
				}
			}
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#ifdef DEV_ISA
		case T_NMI:
			/* machine/parity/power fail/"kitchen sink" faults */
			/* XXX Giant */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto userout;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* DEV_ISA */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
			/* transparent fault (due to context switch "late") */
			fpudna();
			goto userout;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = 0; /* XXX */
			i = SIGFPE;
			break;
		}
	} else {
		/* kernel trap */

		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));
		switch (type) {
		case T_PAGEFLT:			/* page fault */
			(void) trap_pfault(frame, FALSE);
			goto out;

		case T_DNA:
			/*
			 * The kernel is apparently using fpu for copying.
			 * XXX this should be fatal unless the kernel has
			 * registered such use.
			 */
			fpudna();
			printf("fpudna in kernel mode!\n");
			goto out;

		case T_STKFLT:		/* stack fault */
			break;

		case T_PROTFLT:		/* general protection fault */
		case T_SEGNPFLT:	/* segment not present fault */
			if (td->td_intr_nesting_level != 0)
				break;

			/*
			 * Invalid segment selectors and out of bounds
			 * %rip's and %rsp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
			if (frame->tf_rip == (long)doreti_iret) {
				frame->tf_rip = (long)doreti_iret_fault;
				goto out;
			}
			if (PCPU_GET(curpcb)->pcb_onfault != NULL) {
				frame->tf_rip =
				    (long)PCPU_GET(curpcb)->pcb_onfault;
				goto out;
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_rflags & PSL_NT) {
				frame->tf_rflags &= ~PSL_NT;
				goto out;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			/*
			 * Ignore debug register trace traps due to
			 * accesses in the user's address space, which
			 * can happen under several conditions such as
			 * if a user sets a watchpoint on a buffer and
			 * then passes that buffer to a system call.
			 * We still want to get TRCTRAPS for addresses
			 * in kernel space because that is useful when
			 * debugging the kernel.
			 */
			if (user_dbreg_trap()) {
				/*
				 * Reset breakpoint bits because the
				 * processor doesn't
				 */
				/* XXX check upper bits here */
				load_dr6(rdr6() & 0xfffffff0);
				goto out;
			}
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If KDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
#ifdef KDB
			if (kdb_trap(type, 0, frame))
				goto out;
#endif
			break;

#ifdef DEV_ISA
		case T_NMI:
			/* XXX Giant */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto out;
			} else if (panic_on_nmi == 0)
				goto out;
			/* FALLTHROUGH */
#endif /* DEV_ISA */
		}

		trap_fatal(frame, 0);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	ksiginfo_init_trap(&ksi);
	ksi.ksi_signo = i;
	ksi.ksi_code = ucode;
	ksi.ksi_trapno = type;
	ksi.ksi_addr = (void *)addr;
	trapsignal(td, &ksi);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", frame->tf_addr);
		uprintf("\n");
	}
#endif

user:
	userret(td, frame);
	mtx_assert(&Giant, MA_NOTOWNED);
userout:
out:
	return;
}
void
ia32_syscall(struct trapframe *frame)
{
	caddr_t params;
	int i;
	struct sysent *callp;
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	register_t orig_tf_rflags;
	int error;
	int narg;
	u_int32_t args[8];
	u_int64_t args64[8];
	u_int code;
	ksiginfo_t ksi;

	PCPU_INC(cnt.v_syscall);
	td->td_pticks = 0;
	td->td_frame = frame;
	if (td->td_ucred != p->p_ucred) 
		cred_update_thread(td);
	params = (caddr_t)frame->tf_rsp + sizeof(u_int32_t);
	code = frame->tf_rax;
	orig_tf_rflags = frame->tf_rflags;

	if (p->p_sysent->sv_prepsyscall) {
		/*
		 * The prep code is MP aware.
		 */
		(*p->p_sysent->sv_prepsyscall)(frame, args, &code, &params);
	} else {
		/*
		 * Need to check if this is a 32 bit or 64 bit syscall.
		 * fuword is MP aware.
		 */
		if (code == SYS_syscall) {
			/*
			 * Code is first argument, followed by actual args.
			 */
			code = fuword32(params);
			params += sizeof(int);
		} else if (code == SYS___syscall) {
			/*
			 * Like syscall, but code is a quad, so as to maintain
			 * quad alignment for the rest of the arguments.
			 * We use a 32-bit fetch in case params is not
			 * aligned.
			 */
			code = fuword32(params);
			params += sizeof(quad_t);
		}
	}

 	if (p->p_sysent->sv_mask)
 		code &= p->p_sysent->sv_mask;

 	if (code >= p->p_sysent->sv_size)
 		callp = &p->p_sysent->sv_table[0];
  	else
 		callp = &p->p_sysent->sv_table[code];

	narg = callp->sy_narg;

	/*
	 * copyin and the ktrsyscall()/ktrsysret() code is MP-aware
	 */
	if (params != NULL && narg != 0)
		error = copyin(params, (caddr_t)args,
		    (u_int)(narg * sizeof(int)));
	else
		error = 0;

	for (i = 0; i < narg; i++)
		args64[i] = args[i];

#ifdef KTRACE
	if (KTRPOINT(td, KTR_SYSCALL))
		ktrsyscall(code, narg, args64);
#endif
	CTR4(KTR_SYSC, "syscall enter thread %p pid %d proc %s code %d", td,
	    td->td_proc->p_pid, td->td_proc->p_comm, code);

	if (error == 0) {
		td->td_retval[0] = 0;
		td->td_retval[1] = frame->tf_rdx;

		STOPEVENT(p, S_SCE, narg);

		PTRACESTOP_SC(p, td, S_PT_SCE);

		AUDIT_SYSCALL_ENTER(code, td);
		error = (*callp->sy_call)(td, args64);
		AUDIT_SYSCALL_EXIT(error, td);
	}

	switch (error) {
	case 0:
		frame->tf_rax = td->td_retval[0];
		frame->tf_rdx = td->td_retval[1];
		frame->tf_rflags &= ~PSL_C;
		break;

	case ERESTART:
		/*
		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
		 * int 0x80 is 2 bytes. We saved this in tf_err.
		 */
		frame->tf_rip -= frame->tf_err;
		break;

	case EJUSTRETURN:
		break;

	default:
 		if (p->p_sysent->sv_errsize) {
 			if (error >= p->p_sysent->sv_errsize)
  				error = -1;	/* XXX */
   			else
  				error = p->p_sysent->sv_errtbl[error];
		}
		frame->tf_rax = error;
		frame->tf_rflags |= PSL_C;
		break;
	}

	/*
	 * Traced syscall.
	 */
	if (orig_tf_rflags & PSL_T) {
		frame->tf_rflags &= ~PSL_T;
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGTRAP;
		ksi.ksi_code = TRAP_TRACE;
		ksi.ksi_addr = (void *)frame->tf_rip;
		trapsignal(td, &ksi);
	}

	/*
	 * Check for misbehavior.
	 */
	WITNESS_WARN(WARN_PANIC, NULL, "System call %s returning",
	    (code >= 0 && code < SYS_MAXSYSCALL) ? freebsd32_syscallnames[code] : "???");
	KASSERT(td->td_critnest == 0,
	    ("System call %s returning in a critical section",
	    (code >= 0 && code < SYS_MAXSYSCALL) ? freebsd32_syscallnames[code] : "???"));
	KASSERT(td->td_locks == 0,
	    ("System call %s returning with %d locks held",
	    (code >= 0 && code < SYS_MAXSYSCALL) ? freebsd32_syscallnames[code] : "???",
	    td->td_locks));

	/*
	 * Handle reschedule and other end-of-syscall issues
	 */
	userret(td, frame);

	CTR4(KTR_SYSC, "syscall exit thread %p pid %d proc %s code %d", td,
	    td->td_proc->p_pid, td->td_proc->p_comm, code);
#ifdef KTRACE
	if (KTRPOINT(td, KTR_SYSRET))
		ktrsysret(code, error, td->td_retval[0]);
#endif

	/*
	 * This works because errno is findable through the
	 * register set.  If we ever support an emulation where this
	 * is not the case, this code will need to be revisited.
	 */
	STOPEVENT(p, S_SCX, code);
 
	PTRACESTOP_SC(p, td, S_PT_SCX);
}
Beispiel #10
0
void
trap(struct trapframe *frame)
{
	struct thread	*td;
	struct proc	*p;
#ifdef KDTRACE_HOOKS
	uint32_t inst;
#endif
	int		sig, type, user;
	u_int		ucode;
	ksiginfo_t	ksi;

	PCPU_INC(cnt.v_trap);

	td = curthread;
	p = td->td_proc;

	type = ucode = frame->exc;
	sig = 0;
	user = frame->srr1 & PSL_PR;

	CTR3(KTR_TRAP, "trap: %s type=%s (%s)", td->td_name,
	    trapname(type), user ? "user" : "kernel");

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in it's per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * If the DTrace kernel module has registered a trap handler,
	 * call it and if it returns non-zero, assume that it has
	 * handled the trap and modified the trap frame so that this
	 * function can return normally.
	 */
	/*
	 * XXXDTRACE: add pid probe handler here (if ever)
	 */
	if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
		return;
#endif

	if (user) {
		td->td_pticks = 0;
		td->td_frame = frame;
		if (td->td_ucred != p->p_ucred)
			cred_update_thread(td);

		/* User Mode Traps */
		switch (type) {
		case EXC_RUNMODETRC:
		case EXC_TRC:
			frame->srr1 &= ~PSL_SE;
			sig = SIGTRAP;
			ucode = TRAP_TRACE;
			break;

#ifdef __powerpc64__
		case EXC_ISE:
		case EXC_DSE:
			if (handle_user_slb_spill(&p->p_vmspace->vm_pmap,
			    (type == EXC_ISE) ? frame->srr0 :
			    frame->cpu.aim.dar) != 0) {
				sig = SIGSEGV;
				ucode = SEGV_MAPERR;
			}
			break;
#endif
		case EXC_DSI:
		case EXC_ISI:
			sig = trap_pfault(frame, 1);
			if (sig == SIGSEGV)
				ucode = SEGV_MAPERR;
			break;

		case EXC_SC:
			syscall(frame);
			break;

		case EXC_FPU:
			KASSERT((td->td_pcb->pcb_flags & PCB_FPU) != PCB_FPU,
			    ("FPU already enabled for thread"));
			enable_fpu(td);
			break;

		case EXC_VEC:
			KASSERT((td->td_pcb->pcb_flags & PCB_VEC) != PCB_VEC,
			    ("Altivec already enabled for thread"));
			enable_vec(td);
			break;

		case EXC_VECAST_G4:
		case EXC_VECAST_G5:
			/*
			 * We get a VPU assist exception for IEEE mode
			 * vector operations on denormalized floats.
			 * Emulating this is a giant pain, so for now,
			 * just switch off IEEE mode and treat them as
			 * zero.
			 */

			save_vec(td);
			td->td_pcb->pcb_vec.vscr |= ALTIVEC_VSCR_NJ;
			enable_vec(td);
			break;

		case EXC_ALI:
			if (fix_unaligned(td, frame) != 0) {
				sig = SIGBUS;
				ucode = BUS_ADRALN;
			}
			else
				frame->srr0 += 4;
			break;

		case EXC_PGM:
			/* Identify the trap reason */
			if (frame->srr1 & EXC_PGM_TRAP) {
#ifdef KDTRACE_HOOKS
				inst = fuword32((const void *)frame->srr0);
				if (inst == 0x0FFFDDDD && dtrace_pid_probe_ptr != NULL) {
					struct reg regs;
					fill_regs(td, &regs);
					(*dtrace_pid_probe_ptr)(&regs);
					break;
				}
#endif
 				sig = SIGTRAP;
				ucode = TRAP_BRKPT;
			} else {
				sig = ppc_instr_emulate(frame, td->td_pcb);
				if (sig == SIGILL) {
					if (frame->srr1 & EXC_PGM_PRIV)
						ucode = ILL_PRVOPC;
					else if (frame->srr1 & EXC_PGM_ILLEGAL)
						ucode = ILL_ILLOPC;
				} else if (sig == SIGFPE)
					ucode = FPE_FLTINV;	/* Punt for now, invalid operation. */
			}
			break;

		case EXC_MCHK:
			/*
			 * Note that this may not be recoverable for the user
			 * process, depending on the type of machine check,
			 * but it at least prevents the kernel from dying.
			 */
			sig = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		default:
			trap_fatal(frame);
		}
	} else {
		/* Kernel Mode Traps */

		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));
		switch (type) {
#ifdef KDTRACE_HOOKS
		case EXC_PGM:
			if (frame->srr1 & EXC_PGM_TRAP) {
				if (*(uint32_t *)frame->srr0 == 0x7c810808) {
					if (dtrace_invop_jump_addr != NULL) {
						dtrace_invop_jump_addr(frame);
						return;
					}
				}
			}
			break;
#endif
#ifdef __powerpc64__
		case EXC_DSE:
			if ((frame->cpu.aim.dar & SEGMENT_MASK) == USER_ADDR) {
				__asm __volatile ("slbmte %0, %1" ::
					"r"(td->td_pcb->pcb_cpu.aim.usr_vsid),
					"r"(USER_SLB_SLBE));
				return;
			}
			break;
#endif
		case EXC_DSI:
			if (trap_pfault(frame, 0) == 0)
 				return;
			break;
		case EXC_MCHK:
			if (handle_onfault(frame))
 				return;
			break;
		default:
			break;
		}
		trap_fatal(frame);
	}