Beispiel #1
0
static int simd_aead_init(struct crypto_aead *tfm)
{
	struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct cryptd_aead *cryptd_tfm;
	struct simd_aead_alg *salg;
	struct aead_alg *alg;
	unsigned reqsize;

	alg = crypto_aead_alg(tfm);
	salg = container_of(alg, struct simd_aead_alg, alg);

	cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	ctx->cryptd_tfm = cryptd_tfm;

	reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
	reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
	reqsize += sizeof(struct aead_request);

	crypto_aead_set_reqsize(tfm, reqsize);

	return 0;
}
Beispiel #2
0
static int pcrypt_aead_init_tfm(struct crypto_aead *tfm)
{
	int cpu, cpu_index;
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct pcrypt_instance_ctx *ictx = aead_instance_ctx(inst);
	struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_aead *cipher;

	cpu_index = (unsigned int)atomic_inc_return(&ictx->tfm_count) %
		    cpumask_weight(cpu_online_mask);

	ctx->cb_cpu = cpumask_first(cpu_online_mask);
	for (cpu = 0; cpu < cpu_index; cpu++)
		ctx->cb_cpu = cpumask_next(ctx->cb_cpu, cpu_online_mask);

	cipher = crypto_spawn_aead(&ictx->spawn);

	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	crypto_aead_set_reqsize(tfm, sizeof(struct pcrypt_request) +
				     sizeof(struct aead_request) +
				     crypto_aead_reqsize(cipher));

	return 0;
}
Beispiel #3
0
static int crypto_ccm_init_tfm(struct crypto_aead *tfm)
{
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct ccm_instance_ctx *ictx = aead_instance_ctx(inst);
	struct crypto_ccm_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_cipher *cipher;
	struct crypto_ablkcipher *ctr;
	unsigned long align;
	int err;

	cipher = crypto_spawn_cipher(&ictx->cipher);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctr = crypto_spawn_skcipher(&ictx->ctr);
	err = PTR_ERR(ctr);
	if (IS_ERR(ctr))
		goto err_free_cipher;

	ctx->cipher = cipher;
	ctx->ctr = ctr;

	align = crypto_aead_alignmask(tfm);
	align &= ~(crypto_tfm_ctx_alignment() - 1);
	crypto_aead_set_reqsize(
		tfm,
		align + sizeof(struct crypto_ccm_req_priv_ctx) +
		crypto_ablkcipher_reqsize(ctr));

	return 0;

err_free_cipher:
	crypto_free_cipher(cipher);
	return err;
}
Beispiel #4
0
static int nitrox_rfc4106_init(struct crypto_aead *aead)
{
	int ret;

	ret = nitrox_gcm_common_init(aead);
	if (ret)
		return ret;

	crypto_aead_set_reqsize(aead, sizeof(struct aead_request) +
				sizeof(struct nitrox_rfc4106_rctx));

	return 0;
}
static int cryptd_aegis256_aesni_init_tfm(struct crypto_aead *aead)
{
	struct cryptd_aead *cryptd_tfm;
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_tfm = cryptd_alloc_aead("__aegis256-aesni", CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	*ctx = cryptd_tfm;
	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
	return 0;
}
Beispiel #6
0
static int rfc4106_init(struct crypto_aead *aead)
{
	struct cryptd_aead *cryptd_tfm;
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
				       CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	*ctx = cryptd_tfm;
	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
	return 0;
}
Beispiel #7
0
static int crypto_rfc4309_init_tfm(struct crypto_aead *tfm)
{
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct crypto_aead_spawn *spawn = aead_instance_ctx(inst);
	struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_aead *aead;
	unsigned long align;

	aead = crypto_spawn_aead(spawn);
	if (IS_ERR(aead))
		return PTR_ERR(aead);

	ctx->child = aead;

	align = crypto_aead_alignmask(aead);
	align &= ~(crypto_tfm_ctx_alignment() - 1);
	crypto_aead_set_reqsize(
		tfm,
		sizeof(struct crypto_rfc4309_req_ctx) +
		ALIGN(crypto_aead_reqsize(aead), crypto_tfm_ctx_alignment()) +
		align + 32);

	return 0;
}
Beispiel #8
0
static int echainiv_encrypt(struct aead_request *req)
{
    struct crypto_aead *geniv = crypto_aead_reqtfm(req);
    struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
    struct aead_request *subreq = aead_request_ctx(req);
    crypto_completion_t compl;
    void *data;
    u8 *info;
    unsigned int ivsize = crypto_aead_ivsize(geniv);
    int err;

    if (req->cryptlen < ivsize)
        return -EINVAL;

    aead_request_set_tfm(subreq, ctx->geniv.child);

    compl = echainiv_encrypt_complete;
    data = req;
    info = req->iv;

    if (req->src != req->dst) {
        struct blkcipher_desc desc = {
            .tfm = ctx->null,
        };

        err = crypto_blkcipher_encrypt(
                  &desc, req->dst, req->src,
                  req->assoclen + req->cryptlen);
        if (err)
            return err;
    }

    if (unlikely(!IS_ALIGNED((unsigned long)info,
                             crypto_aead_alignmask(geniv) + 1))) {
        info = kmalloc(ivsize, req->base.flags &
                       CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
                       GFP_ATOMIC);
        if (!info)
            return -ENOMEM;

        memcpy(info, req->iv, ivsize);
    }

    aead_request_set_callback(subreq, req->base.flags, compl, data);
    aead_request_set_crypt(subreq, req->dst, req->dst,
                           req->cryptlen - ivsize, info);
    aead_request_set_ad(subreq, req->assoclen + ivsize);

    crypto_xor(info, ctx->salt, ivsize);
    scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);
    echainiv_read_iv(info, ivsize);

    err = crypto_aead_encrypt(subreq);
    echainiv_encrypt_complete2(req, err);
    return err;
}

static int echainiv_decrypt(struct aead_request *req)
{
    struct crypto_aead *geniv = crypto_aead_reqtfm(req);
    struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
    struct aead_request *subreq = aead_request_ctx(req);
    crypto_completion_t compl;
    void *data;
    unsigned int ivsize = crypto_aead_ivsize(geniv);

    if (req->cryptlen < ivsize + crypto_aead_authsize(geniv))
        return -EINVAL;

    aead_request_set_tfm(subreq, ctx->geniv.child);

    compl = req->base.complete;
    data = req->base.data;

    aead_request_set_callback(subreq, req->base.flags, compl, data);
    aead_request_set_crypt(subreq, req->src, req->dst,
                           req->cryptlen - ivsize, req->iv);
    aead_request_set_ad(subreq, req->assoclen + ivsize);

    scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
    if (req->src != req->dst)
        scatterwalk_map_and_copy(req->iv, req->dst,
                                 req->assoclen, ivsize, 1);

    return crypto_aead_decrypt(subreq);
}

static int echainiv_init(struct crypto_tfm *tfm)
{
    struct crypto_aead *geniv = __crypto_aead_cast(tfm);
    struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
    int err;

    spin_lock_init(&ctx->geniv.lock);

    crypto_aead_set_reqsize(geniv, sizeof(struct aead_request));

    err = crypto_get_default_rng();
    if (err)
        goto out;

    err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
                               crypto_aead_ivsize(geniv));
    crypto_put_default_rng();
    if (err)
        goto out;

    ctx->null = crypto_get_default_null_skcipher();
    err = PTR_ERR(ctx->null);
    if (IS_ERR(ctx->null))
        goto out;

    err = aead_geniv_init(tfm);
    if (err)
        goto drop_null;

    ctx->geniv.child = geniv->child;
    geniv->child = geniv;

out:
    return err;

drop_null:
    crypto_put_default_null_skcipher();
    goto out;
}

static void echainiv_exit(struct crypto_tfm *tfm)
{
    struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);

    crypto_free_aead(ctx->geniv.child);
    crypto_put_default_null_skcipher();
}

static int echainiv_aead_create(struct crypto_template *tmpl,
                                struct rtattr **tb)
{
    struct aead_instance *inst;
    struct crypto_aead_spawn *spawn;
    struct aead_alg *alg;
    int err;

    inst = aead_geniv_alloc(tmpl, tb, 0, 0);

    if (IS_ERR(inst))
        return PTR_ERR(inst);

    spawn = aead_instance_ctx(inst);
    alg = crypto_spawn_aead_alg(spawn);

    if (alg->base.cra_aead.encrypt)
        goto done;

    err = -EINVAL;
    if (inst->alg.ivsize & (sizeof(u32) - 1) ||
            inst->alg.ivsize > MAX_IV_SIZE)
        goto free_inst;

    inst->alg.encrypt = echainiv_encrypt;
    inst->alg.decrypt = echainiv_decrypt;

    inst->alg.base.cra_init = echainiv_init;
    inst->alg.base.cra_exit = echainiv_exit;

    inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
    inst->alg.base.cra_ctxsize = sizeof(struct echainiv_ctx);
    inst->alg.base.cra_ctxsize += inst->alg.ivsize;

done:
    err = aead_register_instance(tmpl, inst);
    if (err)
        goto free_inst;

out:
    return err;

free_inst:
    aead_geniv_free(inst);
    goto out;
}

static void echainiv_free(struct crypto_instance *inst)
{
    aead_geniv_free(aead_instance(inst));
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
		.tweak_fn = aesni_xts_tweak,
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

#endif

#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_aead *aead)
{
	struct cryptd_aead *cryptd_tfm;
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
				       CRYPTO_ALG_INTERNAL,
				       CRYPTO_ALG_INTERNAL);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);

	*ctx = cryptd_tfm;
	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
	return 0;
}

static void rfc4106_exit(struct crypto_aead *aead)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(aead);

	cryptd_free_aead(*ctx);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_cipher *tfm;
	int ret;

	tfm = crypto_alloc_cipher("aes", 0, 0);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	ret = crypto_cipher_setkey(tfm, key, key_len);
	if (ret)
		goto out_free_cipher;

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);

out_free_cipher:
	crypto_free_cipher(tfm);
	return ret;
}

static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
				  unsigned int key_len)
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);

	if (key_len < 4) {
		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));

	return aes_set_key_common(crypto_aead_tfm(aead),
				  &ctx->aes_key_expanded, key, key_len) ?:
	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
			   unsigned int key_len)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
	struct cryptd_aead *cryptd_tfm = *ctx;

	return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
}

static int common_rfc4106_set_authsize(struct crypto_aead *aead,
				       unsigned int authsize)
{
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
				unsigned int authsize)
{
	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
	struct cryptd_aead *cryptd_tfm = *ctx;

	return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}

static int helper_rfc4106_encrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	struct scatter_walk src_sg_walk;
	struct scatter_walk dst_sg_walk = {};
	unsigned int i;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length equal */
	/* to 16 or 20 bytes */
	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if (sg_is_last(req->src) &&
	    req->src->offset + req->src->length <= PAGE_SIZE &&
	    sg_is_last(req->dst) &&
	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		assoc = scatterwalk_map(&src_sg_walk);
		src = assoc + req->assoclen;
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
		}
	} else {
		/* Allocate memory for src, dst, assoc */
		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
			GFP_ATOMIC);
		if (unlikely(!assoc))
			return -ENOMEM;
		scatterwalk_map_and_copy(assoc, req->src, 0,
					 req->assoclen + req->cryptlen, 0);
		src = assoc + req->assoclen;
		dst = src;
	}

	kernel_fpu_begin();
	aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
			  ctx->hash_subkey, assoc, req->assoclen - 8,
			  dst + req->cryptlen, auth_tag_len);
	kernel_fpu_end();

	/* The authTag (aka the Integrity Check Value) needs to be written
	 * back to the packet. */
	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst - req->assoclen);
			scatterwalk_advance(&dst_sg_walk, req->dst->length);
			scatterwalk_done(&dst_sg_walk, 1, 0);
		}
		scatterwalk_unmap(assoc);
		scatterwalk_advance(&src_sg_walk, req->src->length);
		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
					 req->cryptlen + auth_tag_len, 1);
		kfree(assoc);
	}
	return 0;
}

static int helper_rfc4106_decrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	unsigned long tempCipherLen = 0;
	__be32 counter = cpu_to_be32(1);
	int retval = 0;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	u8 authTag[16];
	struct scatter_walk src_sg_walk;
	struct scatter_walk dst_sg_walk = {};
	unsigned int i;

	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length */
	/* equal to 16 or 20 bytes */

	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if (sg_is_last(req->src) &&
	    req->src->offset + req->src->length <= PAGE_SIZE &&
	    sg_is_last(req->dst) &&
	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		assoc = scatterwalk_map(&src_sg_walk);
		src = assoc + req->assoclen;
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
		if (!assoc)
			return -ENOMEM;
		scatterwalk_map_and_copy(assoc, req->src, 0,
					 req->assoclen + req->cryptlen, 0);
		src = assoc + req->assoclen;
		dst = src;
	}

	kernel_fpu_begin();
	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
			  ctx->hash_subkey, assoc, req->assoclen - 8,
			  authTag, auth_tag_len);
	kernel_fpu_end();

	/* Compare generated tag with passed in tag. */
	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
		-EBADMSG : 0;

	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst - req->assoclen);
			scatterwalk_advance(&dst_sg_walk, req->dst->length);
			scatterwalk_done(&dst_sg_walk, 1, 0);
		}
		scatterwalk_unmap(assoc);
		scatterwalk_advance(&src_sg_walk, req->src->length);
		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
					 tempCipherLen, 1);
		kfree(assoc);
	}
	return retval;
}