/* free workspace for demo3 */ static cs_long_t done3 (cs_long_t ok, cs_cls *S, cs_cln *N, cs_complex_t *y, cs_cl *W, cs_cl *E, cs_long_t *p) { cs_cl_sfree (S) ; cs_cl_nfree (N) ; cs_cl_free (y) ; cs_cl_spfree (W) ; cs_cl_spfree (E) ; cs_cl_free (p) ; return (ok) ; }
/* cs_lu: sparse LU factorization, with optional fill-reducing ordering */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT n, order, *p ; double tol ; if (nargout > 4 || nargin > 3 || nargin < 1) { mexErrMsgTxt ("Usage: [L,U,p,q] = cs_lu (A,tol)") ; } if (nargin == 2) /* determine tol and ordering */ { tol = mxGetScalar (pargin [1]) ; order = (nargout == 4) ? 1 : 0 ; /* amd (A+A'), or natural */ } else { tol = 1 ; order = (nargout == 4) ? 2 : 0 ; /* amd(S'*S) w/dense rows or I */ } if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_cl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_cl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_cl_free (A->x) ; /* complex copy no longer needed */ cs_cl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; p = cs_cl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_cl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ; /* get A */ n = A->n ; S = cs_dl_sqr (order, A, 0) ; /* symbolic ordering, no QR bound */ N = cs_dl_lu (A, S, tol) ; /* numeric factorization */ if (!N) mexErrMsgTxt ("cs_lu failed (singular, or out of memory)") ; cs_dl_dropzeros (N->L) ; /* drop zeros from L and sort it */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from U and sort it */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; p = cs_dl_pinv (N->pinv, n) ; /* p=pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return L */ pargout [1] = cs_dl_mex_put_sparse (&(N->U)) ; /* return U */ pargout [2] = cs_dl_mex_put_int (p, n, 1, 1) ; /* return p */ /* return Q */ if (nargout == 4) pargout [3] = cs_dl_mex_put_int (S->q, n, 1, 0) ; cs_dl_nfree (N) ; cs_dl_sfree (S) ; } }
/* cs_qr: sparse QR factorization */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { CS_INT m, n, order, *p ; if (nargout > 5 || nargin != 1) { mexErrMsgTxt ("Usage: [V,beta,p,R,q] = cs_qr(A)") ; } order = (nargout == 5) ? 3 : 0 ; /* determine ordering */ m = mxGetM (pargin [0]) ; n = mxGetN (pargin [0]) ; if (m < n) mexErrMsgTxt ("A must have # rows >= # columns") ; if (mxIsComplex (pargin [0])) { #ifndef NCOMPLEX cs_cls *S ; cs_cln *N ; cs_cl Amatrix, *A, *D ; A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ; /* get A */ S = cs_cl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_cl_qr (A, S) ; /* numeric QR factorization */ cs_free (A->x) ; if (!N) mexErrMsgTxt ("qr failed") ; cs_cl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_cl_transpose (N->L, 1) ; cs_cl_spfree (N->L) ; N->L = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; cs_cl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_cl_transpose (N->U, 1) ; cs_cl_spfree (N->U) ; N->U = cs_cl_transpose (D, 1) ; cs_cl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_cl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_cl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_cl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_cl_nfree (N) ; cs_cl_sfree (S) ; #else mexErrMsgTxt ("complex matrices not supported") ; #endif } else { cs_dls *S ; cs_dln *N ; cs_dl Amatrix, *A, *D ; A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ; /* get A */ S = cs_dl_sqr (order, A, 1) ; /* symbolic QR ordering & analysis*/ N = cs_dl_qr (A, S) ; /* numeric QR factorization */ if (!N) mexErrMsgTxt ("qr failed") ; cs_dl_dropzeros (N->L) ; /* drop zeros from V and sort */ D = cs_dl_transpose (N->L, 1) ; cs_dl_spfree (N->L) ; N->L = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; cs_dl_dropzeros (N->U) ; /* drop zeros from R and sort */ D = cs_dl_transpose (N->U, 1) ; cs_dl_spfree (N->U) ; N->U = cs_dl_transpose (D, 1) ; cs_dl_spfree (D) ; m = N->L->m ; /* m may be larger now */ p = cs_dl_pinv (S->pinv, m) ; /* p = pinv' */ pargout [0] = cs_dl_mex_put_sparse (&(N->L)) ; /* return V */ cs_dl_mex_put_double (n, N->B, &(pargout [1])) ; /* return beta */ pargout [2] = cs_dl_mex_put_int (p, m, 1, 1) ; /* return p */ pargout [3] = cs_dl_mex_put_sparse (&(N->U)) ; /* return R */ pargout [4] = cs_dl_mex_put_int (S->q, n, 1, 0) ; /* return q */ cs_dl_nfree (N) ; cs_dl_sfree (S) ; } }