/* solve a linear system using Cholesky, LU, and QR, with various orderings */ int demo2 (problem *Prob) { cs *A, *C ; double *b, *x, *resid, t, tol ; int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ; csd *D ; if (!Prob) return (0) ; A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid; m = A->m ; n = A->n ; tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */ D = cs_dmperm (C, 1) ; /* randomized dmperm analysis */ if (!D) return (0) ; nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ; sprank = rr [3] ; for (ns = 0, k = 0 ; k < nb ; k++) { ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ; } printf ("blocks: %g singletons: %g structural rank: %g\n", (double) nb, (double) ns, (double) sprank) ; cs_dfree (D) ; for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */ { if (!order && m > 1000) continue ; printf ("QR ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (m != n || sprank < n) return (1) ; /* return if rect. or singular*/ for (order = 0 ; order <= 3 ; order++) /* try all orderings */ { if (!order && m > 1000) continue ; printf ("LU ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_lusol (order, C, x, tol) ; /* solve Ax=b with LU */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } if (!Prob->sym) return (1) ; for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */ { if (!order && m > 1000) continue ; printf ("Chol ") ; print_order (order) ; rhs (x, b, m) ; /* compute right-hand side */ t = tic () ; ok = cs_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */ printf ("time: %8.2f ", toc (t)) ; print_resid (ok, C, x, b, resid) ; /* print residual */ } return (1) ; }
/* allocate a cs_dmperm or cs_scc result */ csd *cs_dalloc (int m, int n) { csd *D ; D = cs_calloc (1, sizeof (csd)) ; if (!D) return (NULL) ; D->p = cs_malloc (m, sizeof (int)) ; D->r = cs_malloc (m+6, sizeof (int)) ; D->q = cs_malloc (n, sizeof (int)) ; D->s = cs_malloc (n+6, sizeof (int)) ; return ((!D->p || !D->r || !D->q || !D->s) ? cs_dfree (D) : D) ; }
/* cs_dmperm: maximum matching or Dulmage-Mendelsohn permutation. */ void mexFunction ( int nargout, mxArray *pargout [ ], int nargin, const mxArray *pargin [ ] ) { double seed ; cs *A, Amatrix ; csd *D ; csi m, n, *jmatch, iseed ; if (nargin < 1 || nargin > 2 || nargout > 6) { mexErrMsgTxt ("Usage: [p,q,r,s,cc,rr] = cs_dmperm (A,seed)") ; } seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 0 ; /* get seed */ iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ; A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ; /* get A */ n = A->n ; m = A->m ; if (nargout <= 1) { jmatch = cs_maxtrans (A, iseed) ; /* max. matching */ pargout [0] = cs_mex_put_int (jmatch+m, n, 1, 0) ; /* return imatch */ cs_free (jmatch) ; } else { D = cs_dmperm (A, iseed) ; /* Dulmage-Mendelsohn decomposition */ pargout [0] = cs_mex_put_int (D->p, m, 1, 0) ; pargout [1] = cs_mex_put_int (D->q, n, 1, 0) ; pargout [2] = cs_mex_put_int (D->r, D->nb+1, 1, 0) ; pargout [3] = cs_mex_put_int (D->s, D->nb+1, 1, 0) ; pargout [4] = cs_mex_put_int (D->cc, 5, 1, 0) ; pargout [5] = cs_mex_put_int (D->rr, 5, 1, 0) ; cs_dfree (D) ; } }
/* free workspace and return a csd result */ csd *cs_ddone (csd *D, cs *C, void *w, int ok) { cs_spfree (C) ; /* free temporary matrix */ cs_free (w) ; /* free workspace */ return (ok ? D : cs_dfree (D)) ; /* return result if OK, else free it */ }
/* Given A, compute coarse and then fine dmperm */ csd *cs_dmperm (const cs *A, int seed) { int m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci, *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ; cs *C ; csd *D, *scc ; /* --- Maximum matching ------------------------------------------------- */ if (!CS_CSC (A)) return (NULL) ; /* check inputs */ m = A->m ; n = A->n ; D = cs_dalloc (m, n) ; /* allocate result */ if (!D) return (NULL) ; p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ; jmatch = cs_maxtrans (A, seed) ; /* max transversal */ imatch = jmatch + m ; /* imatch = inverse of jmatch */ if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ; /* --- Coarse decomposition --------------------------------------------- */ wi = r ; wj = s ; /* use r and s as workspace */ for (j = 0 ; j < n ; j++) wj [j] = -1 ; /* unmark all cols for bfs */ for (i = 0 ; i < m ; i++) wi [i] = -1 ; /* unmark all rows for bfs */ cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ; /* find C1, R1 from C0*/ ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ; /* find R3, C3 from R0*/ if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ; cs_unmatched (n, wj, q, cc, 0) ; /* unmatched set C0 */ cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ; /* set R1 and C1 */ cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */ cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */ cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set R0 */ cs_free (jmatch) ; /* --- Fine decomposition ----------------------------------------------- */ pinv = cs_pinv (p, m) ; /* pinv=p' */ if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ; C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */ cs_free (pinv) ; if (!C) return (cs_ddone (D, NULL, NULL, 0)) ; Cp = C->p ; nc = cc [3] - cc [2] ; /* delete cols C0, C1, and C3 from C */ if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ; C->n = nc ; if (rr [2] - rr [1] < m) /* delete rows R0, R1, and R3 from C */ { cs_fkeep (C, cs_rprune, rr) ; cnz = Cp [nc] ; Ci = C->i ; if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ; } C->m = nc ; scc = cs_scc (C) ; /* find strongly connected components of C*/ if (!scc) return (cs_ddone (D, C, NULL, 0)) ; /* --- Combine coarse and fine decompositions --------------------------- */ ps = scc->p ; /* C(ps,ps) is the permuted matrix */ rs = scc->r ; /* kth block is rs[k]..rs[k+1]-1 */ nb1 = scc->nb ; /* # of blocks of A(R2,C2) */ for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ; for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ; for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ; for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ; nb2 = 0 ; /* create the fine block partitions */ r [0] = s [0] = 0 ; if (cc [2] > 0) nb2++ ; /* leading coarse block A (R1, [C0 C1]) */ for (k = 0 ; k < nb1 ; k++) /* coarse block A (R2,C2) */ { r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */ s [nb2] = rs [k] + cc [2] ; nb2++ ; } if (rr [2] < m) { r [nb2] = rr [2] ; /* trailing coarse block A ([R3 R0], C3) */ s [nb2] = cc [3] ; nb2++ ; } r [nb2] = m ; s [nb2] = n ; D->nb = nb2 ; cs_dfree (scc) ; return (cs_ddone (D, C, NULL, 1)) ; }