/* solve a linear system using Cholesky, LU, and QR, with various orderings */
int demo2 (problem *Prob)
{
    cs *A, *C ;
    double *b, *x, *resid,  t, tol ;
    int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ;
    csd *D ;
    if (!Prob) return (0) ;
    A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
    m = A->m ; n = A->n ;
    tol = Prob->sym ? 0.001 : 1 ;               /* partial pivoting tolerance */
    D = cs_dmperm (C, 1) ;                      /* randomized dmperm analysis */
    if (!D) return (0) ;
    nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ;
    sprank = rr [3] ;
    for (ns = 0, k = 0 ; k < nb ; k++)
    {
        ns += ((r [k+1] == r [k]+1) && (s [k+1] == s [k]+1)) ;
    }
    printf ("blocks: %g singletons: %g structural rank: %g\n",
        (double) nb, (double) ns, (double) sprank) ;
    cs_dfree (D) ;
    for (order = 0 ; order <= 3 ; order += 3)   /* natural and amd(A'*A) */
    {
        if (!order && m > 1000) continue ;
        printf ("QR   ") ;
        print_order (order) ;
        rhs (x, b, m) ;                         /* compute right-hand side */
        t = tic () ;
        ok = cs_qrsol (order, C, x) ;           /* min norm(Ax-b) with QR */
        printf ("time: %8.2f ", toc (t)) ;
        print_resid (ok, C, x, b, resid) ;      /* print residual */
    }
    if (m != n || sprank < n) return (1) ;      /* return if rect. or singular*/
    for (order = 0 ; order <= 3 ; order++)      /* try all orderings */
    {
        if (!order && m > 1000) continue ;
        printf ("LU   ") ;
        print_order (order) ;
        rhs (x, b, m) ;                         /* compute right-hand side */
        t = tic () ;
        ok = cs_lusol (order, C, x, tol) ;      /* solve Ax=b with LU */
        printf ("time: %8.2f ", toc (t)) ;
        print_resid (ok, C, x, b, resid) ;      /* print residual */
    }
    if (!Prob->sym) return (1) ;
    for (order = 0 ; order <= 1 ; order++)      /* natural and amd(A+A') */
    {
        if (!order && m > 1000) continue ;
        printf ("Chol ") ;
        print_order (order) ;
        rhs (x, b, m) ;                         /* compute right-hand side */
        t = tic () ;
        ok = cs_cholsol (order, C, x) ;         /* solve Ax=b with Cholesky */
        printf ("time: %8.2f ", toc (t)) ;
        print_resid (ok, C, x, b, resid) ;      /* print residual */
    }
    return (1) ;
} 
Beispiel #2
0
/* allocate a cs_dmperm or cs_scc result */
csd *cs_dalloc (int m, int n)
{
    csd *D ;
    D = cs_calloc (1, sizeof (csd)) ;
    if (!D) return (NULL) ;
    D->p = cs_malloc (m, sizeof (int)) ;
    D->r = cs_malloc (m+6, sizeof (int)) ;
    D->q = cs_malloc (n, sizeof (int)) ;
    D->s = cs_malloc (n+6, sizeof (int)) ;
    return ((!D->p || !D->r || !D->q || !D->s) ? cs_dfree (D) : D) ;
}
Beispiel #3
0
/* cs_dmperm: maximum matching or Dulmage-Mendelsohn permutation. */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    double seed ;
    cs *A, Amatrix ;
    csd *D ;
    csi m, n, *jmatch, iseed ;
    if (nargin < 1 || nargin > 2 || nargout > 6)
    {
        mexErrMsgTxt ("Usage: [p,q,r,s,cc,rr] = cs_dmperm (A,seed)") ;
    }
    seed = (nargin > 1) ? mxGetScalar (pargin [1]) : 0 ;        /* get seed */
    iseed = (seed > 0 && seed < 1) ? (seed * RAND_MAX) : seed ;
    A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ;        /* get A */
    n = A->n ;
    m = A->m ;
    if (nargout <= 1)
    {
        jmatch = cs_maxtrans (A, iseed) ;                   /* max. matching */
        pargout [0] = cs_mex_put_int (jmatch+m, n, 1, 0) ;  /* return imatch */
        cs_free (jmatch) ;
    }
    else
    {
        D = cs_dmperm (A, iseed) ;      /* Dulmage-Mendelsohn decomposition */
        pargout [0] = cs_mex_put_int (D->p, m, 1, 0) ;
        pargout [1] = cs_mex_put_int (D->q, n, 1, 0) ;
        pargout [2] = cs_mex_put_int (D->r, D->nb+1, 1, 0) ;
        pargout [3] = cs_mex_put_int (D->s, D->nb+1, 1, 0) ;
        pargout [4] = cs_mex_put_int (D->cc, 5, 1, 0) ;
        pargout [5] = cs_mex_put_int (D->rr, 5, 1, 0) ;
        cs_dfree (D) ;
    }
}
Beispiel #4
0
/* free workspace and return a csd result */
csd *cs_ddone (csd *D, cs *C, void *w, int ok)
{
    cs_spfree (C) ;			/* free temporary matrix */
    cs_free (w) ;			/* free workspace */
    return (ok ? D : cs_dfree (D)) ;	/* return result if OK, else free it */
}
Beispiel #5
0
/* Given A, compute coarse and then fine dmperm */
csd *cs_dmperm (const cs *A, int seed)
{
    int m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci,
        *ps, *rs, nb1, nb2, *p, *q, *cc, *rr, *r, *s, ok ;
    cs *C ;
    csd *D, *scc ;
    /* --- Maximum matching ------------------------------------------------- */
    if (!CS_CSC (A)) return (NULL) ;            /* check inputs */
    m = A->m ; n = A->n ;
    D = cs_dalloc (m, n) ;                      /* allocate result */
    if (!D) return (NULL) ;
    p = D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ;
    jmatch = cs_maxtrans (A, seed) ;            /* max transversal */
    imatch = jmatch + m ;                       /* imatch = inverse of jmatch */
    if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ;
    /* --- Coarse decomposition --------------------------------------------- */
    wi = r ; wj = s ;                           /* use r and s as workspace */
    for (j = 0 ; j < n ; j++) wj [j] = -1 ;     /* unmark all cols for bfs */
    for (i = 0 ; i < m ; i++) wi [i] = -1 ;     /* unmark all rows for bfs */
    cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ;       /* find C1, R1 from C0*/
    ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ;  /* find R3, C3 from R0*/
    if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ;
    cs_unmatched (n, wj, q, cc, 0) ;                    /* unmatched set C0 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ;    /* set R1 and C1 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ;   /* set R2 and C2 */
    cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ;    /* set R3 and C3 */
    cs_unmatched (m, wi, p, rr, 3) ;                    /* unmatched set R0 */
    cs_free (jmatch) ;
    /* --- Fine decomposition ----------------------------------------------- */
    pinv = cs_pinv (p, m) ;         /* pinv=p' */
    if (!pinv) return (cs_ddone (D, NULL, NULL, 0)) ;
    C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */
    cs_free (pinv) ;
    if (!C) return (cs_ddone (D, NULL, NULL, 0)) ;
    Cp = C->p ;
    nc = cc [3] - cc [2] ;          /* delete cols C0, C1, and C3 from C */
    if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ;
    C->n = nc ;
    if (rr [2] - rr [1] < m)        /* delete rows R0, R1, and R3 from C */
    {
        cs_fkeep (C, cs_rprune, rr) ;
        cnz = Cp [nc] ;
        Ci = C->i ;
        if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ;
    }
    C->m = nc ;
    scc = cs_scc (C) ;              /* find strongly connected components of C*/
    if (!scc) return (cs_ddone (D, C, NULL, 0)) ;
    /* --- Combine coarse and fine decompositions --------------------------- */
    ps = scc->p ;                   /* C(ps,ps) is the permuted matrix */
    rs = scc->r ;                   /* kth block is rs[k]..rs[k+1]-1 */
    nb1 = scc->nb  ;                /* # of blocks of A(R2,C2) */
    for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ;
    for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ;
    for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ;
    for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ;
    nb2 = 0 ;                       /* create the fine block partitions */
    r [0] = s [0] = 0 ;
    if (cc [2] > 0) nb2++ ;         /* leading coarse block A (R1, [C0 C1]) */
    for (k = 0 ; k < nb1 ; k++)     /* coarse block A (R2,C2) */
    {
        r [nb2] = rs [k] + rr [1] ; /* A (R2,C2) splits into nb1 fine blocks */
        s [nb2] = rs [k] + cc [2] ;
        nb2++ ;
    }
    if (rr [2] < m)
    {
        r [nb2] = rr [2] ;          /* trailing coarse block A ([R3 R0], C3) */
        s [nb2] = cc [3] ;
        nb2++ ;
    }
    r [nb2] = m ;
    s [nb2] = n ;
    D->nb = nb2 ;
    cs_dfree (scc) ;
    return (cs_ddone (D, C, NULL, 1)) ;
}