Beispiel #1
0
 int ctgsna_(char *job, char *howmny, int *select, 
	int *n, complex *a, int *lda, complex *b, int *ldb, 
	complex *vl, int *ldvl, complex *vr, int *ldvr, float *s, float 
	*dif, int *mm, int *m, complex *work, int *lwork, int 
	*iwork, int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1;
    float r__1, r__2;
    complex q__1;

    /* Builtin functions */
    double c_abs(complex *);

    /* Local variables */
    int i__, k, n1, n2, ks;
    float eps, cond;
    int ierr, ifst;
    float lnrm;
    complex yhax, yhbx;
    int ilst;
    float rnrm, scale;
    extern /* Complex */ VOID cdotc_(complex *, int *, complex *, int 
	    *, complex *, int *);
    extern int lsame_(char *, char *);
    extern  int cgemv_(char *, int *, int *, complex *
, complex *, int *, complex *, int *, complex *, complex *
, int *);
    int lwmin;
    int wants;
    complex dummy[1];
    extern double scnrm2_(int *, complex *, int *), slapy2_(float *
, float *);
    complex dummy1[1];
    extern  int slabad_(float *, float *);
    extern double slamch_(char *);
    extern  int clacpy_(char *, int *, int *, complex 
	    *, int *, complex *, int *), ctgexc_(int *, 
	    int *, int *, complex *, int *, complex *, int *, 
	    complex *, int *, complex *, int *, int *, int *, 
	    int *), xerbla_(char *, int *);
    float bignum;
    int wantbh, wantdf, somcon;
    extern  int ctgsyl_(char *, int *, int *, int 
	    *, complex *, int *, complex *, int *, complex *, int 
	    *, complex *, int *, complex *, int *, complex *, int 
	    *, float *, float *, complex *, int *, int *, int *);
    float smlnum;
    int lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CTGSNA estimates reciprocal condition numbers for specified */
/*  eigenvalues and/or eigenvectors of a matrix pair (A, B). */

/*  (A, B) must be in generalized Schur canonical form, that is, A and */
/*  B are both upper triangular. */

/*  Arguments */
/*  ========= */

/*  JOB     (input) CHARACTER*1 */
/*          Specifies whether condition numbers are required for */
/*          eigenvalues (S) or eigenvectors (DIF): */
/*          = 'E': for eigenvalues only (S); */
/*          = 'V': for eigenvectors only (DIF); */
/*          = 'B': for both eigenvalues and eigenvectors (S and DIF). */

/*  HOWMNY  (input) CHARACTER*1 */
/*          = 'A': compute condition numbers for all eigenpairs; */
/*          = 'S': compute condition numbers for selected eigenpairs */
/*                 specified by the array SELECT. */

/*  SELECT  (input) LOGICAL array, dimension (N) */
/*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
/*          condition numbers are required. To select condition numbers */
/*          for the corresponding j-th eigenvalue and/or eigenvector, */
/*          SELECT(j) must be set to .TRUE.. */
/*          If HOWMNY = 'A', SELECT is not referenced. */

/*  N       (input) INTEGER */
/*          The order of the square matrix pair (A, B). N >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The upper triangular matrix A in the pair (A,B). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= MAX(1,N). */

/*  B       (input) COMPLEX array, dimension (LDB,N) */
/*          The upper triangular matrix B in the pair (A, B). */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= MAX(1,N). */

/*  VL      (input) COMPLEX array, dimension (LDVL,M) */
/*          IF JOB = 'E' or 'B', VL must contain left eigenvectors of */
/*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
/*          and SELECT.  The eigenvectors must be stored in consecutive */
/*          columns of VL, as returned by CTGEVC. */
/*          If JOB = 'V', VL is not referenced. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL. LDVL >= 1; and */
/*          If JOB = 'E' or 'B', LDVL >= N. */

/*  VR      (input) COMPLEX array, dimension (LDVR,M) */
/*          IF JOB = 'E' or 'B', VR must contain right eigenvectors of */
/*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
/*          and SELECT.  The eigenvectors must be stored in consecutive */
/*          columns of VR, as returned by CTGEVC. */
/*          If JOB = 'V', VR is not referenced. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR. LDVR >= 1; */
/*          If JOB = 'E' or 'B', LDVR >= N. */

/*  S       (output) REAL array, dimension (MM) */
/*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
/*          selected eigenvalues, stored in consecutive elements of the */
/*          array. */
/*          If JOB = 'V', S is not referenced. */

/*  DIF     (output) REAL array, dimension (MM) */
/*          If JOB = 'V' or 'B', the estimated reciprocal condition */
/*          numbers of the selected eigenvectors, stored in consecutive */
/*          elements of the array. */
/*          If the eigenvalues cannot be reordered to compute DIF(j), */
/*          DIF(j) is set to 0; this can only occur when the true value */
/*          would be very small anyway. */
/*          For each eigenvalue/vector specified by SELECT, DIF stores */
/*          a Frobenius norm-based estimate of Difl. */
/*          If JOB = 'E', DIF is not referenced. */

/*  MM      (input) INTEGER */
/*          The number of elements in the arrays S and DIF. MM >= M. */

/*  M       (output) INTEGER */
/*          The number of elements of the arrays S and DIF used to store */
/*          the specified condition numbers; for each selected eigenvalue */
/*          one element is used. If HOWMNY = 'A', M is set to N. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK  (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= MAX(1,N). */
/*          If JOB = 'V' or 'B', LWORK >= MAX(1,2*N*N). */

/*  IWORK   (workspace) INTEGER array, dimension (N+2) */
/*          If JOB = 'E', IWORK is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0: Successful exit */
/*          < 0: If INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The reciprocal of the condition number of the i-th generalized */
/*  eigenvalue w = (a, b) is defined as */

/*          S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v)) */

/*  where u and v are the right and left eigenvectors of (A, B) */
/*  corresponding to w; |z| denotes the absolute value of the complex */
/*  number, and norm(u) denotes the 2-norm of the vector u. The pair */
/*  (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the */
/*  matrix pair (A, B). If both a and b equal zero, then (A,B) is */
/*  singular and S(I) = -1 is returned. */

/*  An approximate error bound on the chordal distance between the i-th */
/*  computed generalized eigenvalue w and the corresponding exact */
/*  eigenvalue lambda is */

/*          chord(w, lambda) <=   EPS * norm(A, B) / S(I), */

/*  where EPS is the machine precision. */

/*  The reciprocal of the condition number of the right eigenvector u */
/*  and left eigenvector v corresponding to the generalized eigenvalue w */
/*  is defined as follows. Suppose */

/*                   (A, B) = ( a   *  ) ( b  *  )  1 */
/*                            ( 0  A22 ),( 0 B22 )  n-1 */
/*                              1  n-1     1 n-1 */

/*  Then the reciprocal condition number DIF(I) is */

/*          Difl[(a, b), (A22, B22)]  = sigma-MIN( Zl ) */

/*  where sigma-MIN(Zl) denotes the smallest singular value of */

/*         Zl = [ kron(a, In-1) -kron(1, A22) ] */
/*              [ kron(b, In-1) -kron(1, B22) ]. */

/*  Here In-1 is the identity matrix of size n-1 and X' is the conjugate */
/*  transpose of X. kron(X, Y) is the Kronecker product between the */
/*  matrices X and Y. */

/*  We approximate the smallest singular value of Zl with an upper */
/*  bound. This is done by CLATDF. */

/*  An approximate error bound for a computed eigenvector VL(i) or */
/*  VR(i) is given by */

/*                      EPS * norm(A, B) / DIF(i). */

/*  See ref. [2-3] for more details and further references. */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  References */
/*  ========== */

/*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */

/*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/*      Estimation: Theory, Algorithms and Software, Report */
/*      UMINF - 94.04, Department of Computing Science, Umea University, */
/*      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
/*      To appear in Numerical Algorithms, 1996. */

/*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
/*      for Solving the Generalized Sylvester Equation and Estimating the */
/*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
/*      Department of Computing Science, Umea University, S-901 87 Umea, */
/*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
/*      Note 75. */
/*      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters */

    /* Parameter adjustments */
    --select;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --s;
    --dif;
    --work;
    --iwork;

    /* Function Body */
    wantbh = lsame_(job, "B");
    wants = lsame_(job, "E") || wantbh;
    wantdf = lsame_(job, "V") || wantbh;

    somcon = lsame_(howmny, "S");

    *info = 0;
    lquery = *lwork == -1;

    if (! wants && ! wantdf) {
	*info = -1;
    } else if (! lsame_(howmny, "A") && ! somcon) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < MAX(1,*n)) {
	*info = -6;
    } else if (*ldb < MAX(1,*n)) {
	*info = -8;
    } else if (wants && *ldvl < *n) {
	*info = -10;
    } else if (wants && *ldvr < *n) {
	*info = -12;
    } else {

/*        Set M to the number of eigenpairs for which condition numbers */
/*        are required, and test MM. */

	if (somcon) {
	    *m = 0;
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		if (select[k]) {
		    ++(*m);
		}
/* L10: */
	    }
	} else {
	    *m = *n;
	}

	if (*n == 0) {
	    lwmin = 1;
	} else if (lsame_(job, "V") || lsame_(job, 
		"B")) {
	    lwmin = (*n << 1) * *n;
	} else {
	    lwmin = *n;
	}
	work[1].r = (float) lwmin, work[1].i = 0.f;

	if (*mm < *m) {
	    *info = -15;
	} else if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTGSNA", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S") / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    ks = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {

/*        Determine whether condition numbers are required for the k-th */
/*        eigenpair. */

	if (somcon) {
	    if (! select[k]) {
		goto L20;
	    }
	}

	++ks;

	if (wants) {

/*           Compute the reciprocal condition number of the k-th */
/*           eigenvalue. */

	    rnrm = scnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
	    lnrm = scnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
	    cgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + 1]
, &c__1, &c_b20, &work[1], &c__1);
	    cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
	    yhax.r = q__1.r, yhax.i = q__1.i;
	    cgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + 1]
, &c__1, &c_b20, &work[1], &c__1);
	    cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
	    yhbx.r = q__1.r, yhbx.i = q__1.i;
	    r__1 = c_abs(&yhax);
	    r__2 = c_abs(&yhbx);
	    cond = slapy2_(&r__1, &r__2);
	    if (cond == 0.f) {
		s[ks] = -1.f;
	    } else {
		s[ks] = cond / (rnrm * lnrm);
	    }
	}

	if (wantdf) {
	    if (*n == 1) {
		r__1 = c_abs(&a[a_dim1 + 1]);
		r__2 = c_abs(&b[b_dim1 + 1]);
		dif[ks] = slapy2_(&r__1, &r__2);
	    } else {

/*              Estimate the reciprocal condition number of the k-th */
/*              eigenvectors. */

/*              Copy the matrix (A, B) to the array WORK and move the */
/*              (k,k)th pair to the (1,1) position. */

		clacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
		clacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], 
			n);
		ifst = k;
		ilst = 1;

		ctgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1]
, n, dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &ierr)
			;

		if (ierr > 0) {

/*                 Ill-conditioned problem - swap rejected. */

		    dif[ks] = 0.f;
		} else {

/*                 Reordering successful, solve generalized Sylvester */
/*                 equation for R and L, */
/*                            A22 * R - L * A11 = A12 */
/*                            B22 * R - L * B11 = B12, */
/*                 and compute estimate of Difl[(A11,B11), (A22, B22)]. */

		    n1 = 1;
		    n2 = *n - n1;
		    i__ = *n * *n + 1;
		    ctgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, 
			    &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 
			    + i__], n, &work[i__], n, &work[n1 + i__], n, &
			    scale, &dif[ks], dummy, &c__1, &iwork[1], &ierr);
		}
	    }
	}

L20:
	;
    }
    work[1].r = (float) lwmin, work[1].i = 0.f;
    return 0;

/*     End of CTGSNA */

} /* ctgsna_ */
/* Subroutine */ int ctgsen_(integer *ijob, logical *wantq, logical *wantz, 
	logical *select, integer *n, complex *a, integer *lda, complex *b, 
	integer *ldb, complex *alpha, complex *beta, complex *q, integer *ldq,
	 complex *z__, integer *ldz, integer *m, real *pl, real *pr, real *
	dif, complex *work, integer *lwork, integer *iwork, integer *liwork, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CTGSEN reorders the generalized Schur decomposition of a complex   
    matrix pair (A, B) (in terms of an unitary equivalence trans-   
    formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues   
    appears in the leading diagonal blocks of the pair (A,B). The leading   
    columns of Q and Z form unitary bases of the corresponding left and   
    right eigenspaces (deflating subspaces). (A, B) must be in   
    generalized Schur canonical form, that is, A and B are both upper   
    triangular.   

    CTGSEN also computes the generalized eigenvalues   

             w(j)= ALPHA(j) / BETA(j)   

    of the reordered matrix pair (A, B).   

    Optionally, the routine computes estimates of reciprocal condition   
    numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),   
    (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)   
    between the matrix pairs (A11, B11) and (A22,B22) that correspond to   
    the selected cluster and the eigenvalues outside the cluster, resp.,   
    and norms of "projections" onto left and right eigenspaces w.r.t.   
    the selected cluster in the (1,1)-block.   


    Arguments   
    =========   

    IJOB    (input) integer   
            Specifies whether condition numbers are required for the   
            cluster of eigenvalues (PL and PR) or the deflating subspaces   
            (Difu and Difl):   
             =0: Only reorder w.r.t. SELECT. No extras.   
             =1: Reciprocal of norms of "projections" onto left and right   
                 eigenspaces w.r.t. the selected cluster (PL and PR).   
             =2: Upper bounds on Difu and Difl. F-norm-based estimate   
                 (DIF(1:2)).   
             =3: Estimate of Difu and Difl. 1-norm-based estimate   
                 (DIF(1:2)).   
                 About 5 times as expensive as IJOB = 2.   
             =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic   
                 version to get it all.   
             =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)   

    WANTQ   (input) LOGICAL   
            .TRUE. : update the left transformation matrix Q;   
            .FALSE.: do not update Q.   

    WANTZ   (input) LOGICAL   
            .TRUE. : update the right transformation matrix Z;   
            .FALSE.: do not update Z.   

    SELECT  (input) LOGICAL array, dimension (N)   
            SELECT specifies the eigenvalues in the selected cluster. To   
            select an eigenvalue w(j), SELECT(j) must be set to   
            .TRUE..   

    N       (input) INTEGER   
            The order of the matrices A and B. N >= 0.   

    A       (input/output) COMPLEX array, dimension(LDA,N)   
            On entry, the upper triangular matrix A, in generalized   
            Schur canonical form.   
            On exit, A is overwritten by the reordered matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    B       (input/output) COMPLEX array, dimension(LDB,N)   
            On entry, the upper triangular matrix B, in generalized   
            Schur canonical form.   
            On exit, B is overwritten by the reordered matrix B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    ALPHA   (output) COMPLEX array, dimension (N)   
    BETA    (output) COMPLEX array, dimension (N)   
            The diagonal elements of A and B, respectively,   
            when the pair (A,B) has been reduced to generalized Schur   
            form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized   
            eigenvalues.   

    Q       (input/output) COMPLEX array, dimension (LDQ,N)   
            On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.   
            On exit, Q has been postmultiplied by the left unitary   
            transformation matrix which reorder (A, B); The leading M   
            columns of Q form orthonormal bases for the specified pair of   
            left eigenspaces (deflating subspaces).   
            If WANTQ = .FALSE., Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q. LDQ >= 1.   
            If WANTQ = .TRUE., LDQ >= N.   

    Z       (input/output) COMPLEX array, dimension (LDZ,N)   
            On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.   
            On exit, Z has been postmultiplied by the left unitary   
            transformation matrix which reorder (A, B); The leading M   
            columns of Z form orthonormal bases for the specified pair of   
            left eigenspaces (deflating subspaces).   
            If WANTZ = .FALSE., Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z. LDZ >= 1.   
            If WANTZ = .TRUE., LDZ >= N.   

    M       (output) INTEGER   
            The dimension of the specified pair of left and right   
            eigenspaces, (deflating subspaces) 0 <= M <= N.   

    PL, PR  (output) REAL   
            If IJOB = 1, 4 or 5, PL, PR are lower bounds on the   
            reciprocal  of the norm of "projections" onto left and right   
            eigenspace with respect to the selected cluster.   
            0 < PL, PR <= 1.   
            If M = 0 or M = N, PL = PR  = 1.   
            If IJOB = 0, 2 or 3 PL, PR are not referenced.   

    DIF     (output) REAL array, dimension (2).   
            If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.   
            If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on   
            Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based   
            estimates of Difu and Difl, computed using reversed   
            communication with CLACON.   
            If M = 0 or N, DIF(1:2) = F-norm([A, B]).   
            If IJOB = 0 or 1, DIF is not referenced.   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            IF IJOB = 0, WORK is not referenced.  Otherwise,   
            on exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >=  1   
            If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)   
            If IJOB = 3 or 5, LWORK >=  4*M*(N-M)   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace/output) INTEGER, dimension (LIWORK)   
            IF IJOB = 0, IWORK is not referenced.  Otherwise,   
            on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK. LIWORK >= 1.   
            If IJOB = 1, 2 or 4, LIWORK >=  N+2;   
            If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));   

            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal size of the IWORK array,   
            returns this value as the first entry of the IWORK array, and   
            no error message related to LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
              =0: Successful exit.   
              <0: If INFO = -i, the i-th argument had an illegal value.   
              =1: Reordering of (A, B) failed because the transformed   
                  matrix pair (A, B) would be too far from generalized   
                  Schur form; the problem is very ill-conditioned.   
                  (A, B) may have been partially reordered.   
                  If requested, 0 is returned in DIF(*), PL and PR.   


    Further Details   
    ===============   

    CTGSEN first collects the selected eigenvalues by computing unitary   
    U and W that move them to the top left corner of (A, B). In other   
    words, the selected eigenvalues are the eigenvalues of (A11, B11) in   

                  U'*(A, B)*W = (A11 A12) (B11 B12) n1   
                                ( 0  A22),( 0  B22) n2   
                                  n1  n2    n1  n2   

    where N = n1+n2 and U' means the conjugate transpose of U. The first   
    n1 columns of U and W span the specified pair of left and right   
    eigenspaces (deflating subspaces) of (A, B).   

    If (A, B) has been obtained from the generalized real Schur   
    decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the   
    reordered generalized Schur form of (C, D) is given by   

             (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',   

    and the first n1 columns of Q*U and Z*W span the corresponding   
    deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).   

    Note that if the selected eigenvalue is sufficiently ill-conditioned,   
    then its value may differ significantly from its value before   
    reordering.   

    The reciprocal condition numbers of the left and right eigenspaces   
    spanned by the first n1 columns of U and W (or Q*U and Z*W) may   
    be returned in DIF(1:2), corresponding to Difu and Difl, resp.   

    The Difu and Difl are defined as:   

         Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )   
    and   
         Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],   

    where sigma-min(Zu) is the smallest singular value of the   
    (2*n1*n2)-by-(2*n1*n2) matrix   

         Zu = [ kron(In2, A11)  -kron(A22', In1) ]   
              [ kron(In2, B11)  -kron(B22', In1) ].   

    Here, Inx is the identity matrix of size nx and A22' is the   
    transpose of A22. kron(X, Y) is the Kronecker product between   
    the matrices X and Y.   

    When DIF(2) is small, small changes in (A, B) can cause large changes   
    in the deflating subspace. An approximate (asymptotic) bound on the   
    maximum angular error in the computed deflating subspaces is   

         EPS * norm((A, B)) / DIF(2),   

    where EPS is the machine precision.   

    The reciprocal norm of the projectors on the left and right   
    eigenspaces associated with (A11, B11) may be returned in PL and PR.   
    They are computed as follows. First we compute L and R so that   
    P*(A, B)*Q is block diagonal, where   

         P = ( I -L ) n1           Q = ( I R ) n1   
             ( 0  I ) n2    and        ( 0 I ) n2   
               n1 n2                    n1 n2   

    and (L, R) is the solution to the generalized Sylvester equation   

         A11*R - L*A22 = -A12   
         B11*R - L*B22 = -B12   

    Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).   
    An approximate (asymptotic) bound on the average absolute error of   
    the selected eigenvalues is   

         EPS * norm((A, B)) / PL.   

    There are also global error bounds which valid for perturbations up   
    to a certain restriction:  A lower bound (x) on the smallest   
    F-norm(E,F) for which an eigenvalue of (A11, B11) may move and   
    coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),   
    (i.e. (A + E, B + F), is   

     x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).   

    An approximate bound on x can be computed from DIF(1:2), PL and PR.   

    If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed   
    (L', R') and unperturbed (L, R) left and right deflating subspaces   
    associated with the selected cluster in the (1,1)-blocks can be   
    bounded as   

     max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))   
     max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))   

    See LAPACK User's Guide section 4.11 or the following references   
    for more information.   

    Note that if the default method for computing the Frobenius-norm-   
    based estimate DIF is not wanted (see CLATDF), then the parameter   
    IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF   
    (IJOB = 2 will be used)). See CTGSYL for more details.   

    Based on contributions by   
       Bo Kagstrom and Peter Poromaa, Department of Computing Science,   
       Umea University, S-901 87 Umea, Sweden.   

    References   
    ==========   

    [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the   
        Generalized Real Schur Form of a Regular Matrix Pair (A, B), in   
        M.S. Moonen et al (eds), Linear Algebra for Large Scale and   
        Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.   

    [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified   
        Eigenvalues of a Regular Matrix Pair (A, B) and Condition   
        Estimation: Theory, Algorithms and Software, Report   
        UMINF - 94.04, Department of Computing Science, Umea University,   
        S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.   
        To appear in Numerical Algorithms, 1996.   

    [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software   
        for Solving the Generalized Sylvester Equation and Estimating the   
        Separation between Regular Matrix Pairs, Report UMINF - 93.23,   
        Department of Computing Science, Umea University, S-901 87 Umea,   
        Sweden, December 1993, Revised April 1994, Also as LAPACK working   
        Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,   
        1996.   

    =====================================================================   


       Decode and test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3;
    complex q__1, q__2;
    /* Builtin functions */
    double sqrt(doublereal), c_abs(complex *);
    void r_cnjg(complex *, complex *);
    /* Local variables */
    static integer kase, ierr;
    static real dsum;
    static logical swap;
    static integer i__, k;
    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
	    integer *);
    static logical wantd;
    static integer lwmin;
    static logical wantp;
    static integer n1, n2;
    static logical wantd1, wantd2;
    static real dscale;
    static integer ks;
    extern /* Subroutine */ int clacon_(integer *, complex *, complex *, real 
	    *, integer *);
    extern doublereal slamch_(char *);
    static real rdscal;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *);
    static real safmin;
    extern /* Subroutine */ int ctgexc_(logical *, logical *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, integer *, integer *, integer *), xerbla_(
	    char *, integer *), classq_(integer *, complex *, integer 
	    *, real *, real *);
    static integer liwmin;
    extern /* Subroutine */ int ctgsyl_(char *, integer *, integer *, integer 
	    *, complex *, integer *, complex *, integer *, complex *, integer 
	    *, complex *, integer *, complex *, integer *, complex *, integer 
	    *, real *, real *, complex *, integer *, integer *, integer *);
    static integer mn2;
    static logical lquery;
    static integer ijb;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]


    --select;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --alpha;
    --beta;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --dif;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (*ijob < 0 || *ijob > 5) {
	*info = -1;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldq < 1 || *wantq && *ldq < *n) {
	*info = -13;
    } else if (*ldz < 1 || *wantz && *ldz < *n) {
	*info = -15;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTGSEN", &i__1);
	return 0;
    }

    ierr = 0;

    wantp = *ijob == 1 || *ijob >= 4;
    wantd1 = *ijob == 2 || *ijob == 4;
    wantd2 = *ijob == 3 || *ijob == 5;
    wantd = wantd1 || wantd2;

/*     Set M to the dimension of the specified pair of deflating   
       subspaces. */

    *m = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	i__2 = k;
	i__3 = a_subscr(k, k);
	alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
	i__2 = k;
	i__3 = b_subscr(k, k);
	beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;
	if (k < *n) {
	    if (select[k]) {
		++(*m);
	    }
	} else {
	    if (select[*n]) {
		++(*m);
	    }
	}
/* L10: */
    }

    if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 1) * (*n - *m);
	lwmin = max(i__1,i__2);
/* Computing MAX */
	i__1 = 1, i__2 = *n + 2;
	liwmin = max(i__1,i__2);
    } else if (*ijob == 3 || *ijob == 5) {
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 2) * (*n - *m);
	lwmin = max(i__1,i__2);
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 = 
		*n + 2;
	liwmin = max(i__1,i__2);
    } else {
	lwmin = 1;
	liwmin = 1;
    }

    work[1].r = (real) lwmin, work[1].i = 0.f;
    iwork[1] = liwmin;

    if (*lwork < lwmin && ! lquery) {
	*info = -21;
    } else if (*liwork < liwmin && ! lquery) {
	*info = -23;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTGSEN", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible. */

    if (*m == *n || *m == 0) {
	if (wantp) {
	    *pl = 1.f;
	    *pr = 1.f;
	}
	if (wantd) {
	    dscale = 0.f;
	    dsum = 1.f;
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		classq_(n, &a_ref(1, i__), &c__1, &dscale, &dsum);
		classq_(n, &b_ref(1, i__), &c__1, &dscale, &dsum);
/* L20: */
	    }
	    dif[1] = dscale * sqrt(dsum);
	    dif[2] = dif[1];
	}
	goto L70;
    }

/*     Get machine constant */

    safmin = slamch_("S");

/*     Collect the selected blocks at the top-left corner of (A, B). */

    ks = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	swap = select[k];
	if (swap) {
	    ++ks;

/*           Swap the K-th block to position KS. Compute unitary Q   
             and Z that will swap adjacent diagonal blocks in (A, B). */

	    if (k != ks) {
		ctgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb,
			 &q[q_offset], ldq, &z__[z_offset], ldz, &k, &ks, &
			ierr);
	    }

	    if (ierr > 0) {

/*              Swap is rejected: exit. */

		*info = 1;
		if (wantp) {
		    *pl = 0.f;
		    *pr = 0.f;
		}
		if (wantd) {
		    dif[1] = 0.f;
		    dif[2] = 0.f;
		}
		goto L70;
	    }
	}
/* L30: */
    }
    if (wantp) {

/*        Solve generalized Sylvester equation for R and L:   
                     A11 * R - L * A22 = A12   
                     B11 * R - L * B22 = B12 */

	n1 = *m;
	n2 = *n - *m;
	i__ = n1 + 1;
	clacpy_("Full", &n1, &n2, &a_ref(1, i__), lda, &work[1], &n1);
	clacpy_("Full", &n1, &n2, &b_ref(1, i__), ldb, &work[n1 * n2 + 1], &
		n1);
	ijb = 0;
	i__1 = *lwork - (n1 << 1) * n2;
	ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a_ref(i__, i__), lda,
		 &work[1], &n1, &b[b_offset], ldb, &b_ref(i__, i__), ldb, &
		work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1)
		 + 1], &i__1, &iwork[1], &ierr);

/*        Estimate the reciprocal of norms of "projections" onto   
          left and right eigenspaces */

	rdscal = 0.f;
	dsum = 1.f;
	i__1 = n1 * n2;
	classq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
	*pl = rdscal * sqrt(dsum);
	if (*pl == 0.f) {
	    *pl = 1.f;
	} else {
	    *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
	}
	rdscal = 0.f;
	dsum = 1.f;
	i__1 = n1 * n2;
	classq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
	*pr = rdscal * sqrt(dsum);
	if (*pr == 0.f) {
	    *pr = 1.f;
	} else {
	    *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
	}
    }
    if (wantd) {

/*        Compute estimates Difu and Difl. */

	if (wantd1) {
	    n1 = *m;
	    n2 = *n - *m;
	    i__ = n1 + 1;
	    ijb = 3;

/*           Frobenius norm-based Difu estimate. */

	    i__1 = *lwork - (n1 << 1) * n2;
	    ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a_ref(i__, i__), 
		    lda, &work[1], &n1, &b[b_offset], ldb, &b_ref(i__, i__), 
		    ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 
		    * n2 << 1) + 1], &i__1, &iwork[1], &ierr);

/*           Frobenius norm-based Difl estimate. */

	    i__1 = *lwork - (n1 << 1) * n2;
	    ctgsyl_("N", &ijb, &n2, &n1, &a_ref(i__, i__), lda, &a[a_offset], 
		    lda, &work[1], &n2, &b_ref(i__, i__), ldb, &b[b_offset], 
		    ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 
		    * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
	} else {

/*           Compute 1-norm-based estimates of Difu and Difl using   
             reversed communication with CLACON. In each step a   
             generalized Sylvester equation or a transposed variant   
             is solved. */

	    kase = 0;
	    n1 = *m;
	    n2 = *n - *m;
	    i__ = n1 + 1;
	    ijb = 0;
	    mn2 = (n1 << 1) * n2;

/*           1-norm-based estimate of Difu. */

L40:
	    clacon_(&mn2, &work[mn2 + 1], &work[1], &dif[1], &kase);
	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve generalized Sylvester equation */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a_ref(
			    i__, i__), lda, &work[1], &n1, &b[b_offset], ldb, 
			    &b_ref(i__, i__), ldb, &work[n1 * n2 + 1], &n1, &
			    dscale, &dif[1], &work[(n1 * n2 << 1) + 1], &i__1,
			     &iwork[1], &ierr);
		} else {

/*                 Solve the transposed variant. */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ctgsyl_("C", &ijb, &n1, &n2, &a[a_offset], lda, &a_ref(
			    i__, i__), lda, &work[1], &n1, &b[b_offset], ldb, 
			    &b_ref(i__, i__), ldb, &work[n1 * n2 + 1], &n1, &
			    dscale, &dif[1], &work[(n1 * n2 << 1) + 1], &i__1,
			     &iwork[1], &ierr);
		}
		goto L40;
	    }
	    dif[1] = dscale / dif[1];

/*           1-norm-based estimate of Difl. */

L50:
	    clacon_(&mn2, &work[mn2 + 1], &work[1], &dif[2], &kase);
	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve generalized Sylvester equation */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ctgsyl_("N", &ijb, &n2, &n1, &a_ref(i__, i__), lda, &a[
			    a_offset], lda, &work[1], &n2, &b_ref(i__, i__), 
			    ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &
			    dscale, &dif[2], &work[(n1 * n2 << 1) + 1], &i__1,
			     &iwork[1], &ierr);
		} else {

/*                 Solve the transposed variant. */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ctgsyl_("C", &ijb, &n2, &n1, &a_ref(i__, i__), lda, &a[
			    a_offset], lda, &work[1], &n2, &b[b_offset], ldb, 
			    &b_ref(i__, i__), ldb, &work[n1 * n2 + 1], &n2, &
			    dscale, &dif[2], &work[(n1 * n2 << 1) + 1], &i__1,
			     &iwork[1], &ierr);
		}
		goto L50;
	    }
	    dif[2] = dscale / dif[2];
	}
    }

/*     If B(K,K) is complex, make it real and positive (normalization   
       of the generalized Schur form) and Store the generalized   
       eigenvalues of reordered pair (A, B) */

    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	dscale = c_abs(&b_ref(k, k));
	if (dscale > safmin) {
	    i__2 = b_subscr(k, k);
	    q__2.r = b[i__2].r / dscale, q__2.i = b[i__2].i / dscale;
	    r_cnjg(&q__1, &q__2);
	    work[1].r = q__1.r, work[1].i = q__1.i;
	    i__2 = b_subscr(k, k);
	    q__1.r = b[i__2].r / dscale, q__1.i = b[i__2].i / dscale;
	    work[2].r = q__1.r, work[2].i = q__1.i;
	    i__2 = b_subscr(k, k);
	    b[i__2].r = dscale, b[i__2].i = 0.f;
	    i__2 = *n - k;
	    cscal_(&i__2, &work[1], &b_ref(k, k + 1), ldb);
	    i__2 = *n - k + 1;
	    cscal_(&i__2, &work[1], &a_ref(k, k), lda);
	    if (*wantq) {
		cscal_(n, &work[2], &q_ref(1, k), &c__1);
	    }
	} else {
	    i__2 = b_subscr(k, k);
	    b[i__2].r = 0.f, b[i__2].i = 0.f;
	}

	i__2 = k;
	i__3 = a_subscr(k, k);
	alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
	i__2 = k;
	i__3 = b_subscr(k, k);
	beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;

/* L60: */
    }

L70:

    work[1].r = (real) lwmin, work[1].i = 0.f;
    iwork[1] = liwmin;

    return 0;

/*     End of CTGSEN */

} /* ctgsen_ */
/* Subroutine */ int ctgsna_(char *job, char *howmny, logical *select, 
	integer *n, complex *a, integer *lda, complex *b, integer *ldb, 
	complex *vl, integer *ldvl, complex *vr, integer *ldvr, real *s, real 
	*dif, integer *mm, integer *m, complex *work, integer *lwork, integer 
	*iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CTGSNA estimates reciprocal condition numbers for specified   
    eigenvalues and/or eigenvectors of a matrix pair (A, B).   

    (A, B) must be in generalized Schur canonical form, that is, A and   
    B are both upper triangular.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            Specifies whether condition numbers are required for   
            eigenvalues (S) or eigenvectors (DIF):   
            = 'E': for eigenvalues only (S);   
            = 'V': for eigenvectors only (DIF);   
            = 'B': for both eigenvalues and eigenvectors (S and DIF).   

    HOWMNY  (input) CHARACTER*1   
            = 'A': compute condition numbers for all eigenpairs;   
            = 'S': compute condition numbers for selected eigenpairs   
                   specified by the array SELECT.   

    SELECT  (input) LOGICAL array, dimension (N)   
            If HOWMNY = 'S', SELECT specifies the eigenpairs for which   
            condition numbers are required. To select condition numbers   
            for the corresponding j-th eigenvalue and/or eigenvector,   
            SELECT(j) must be set to .TRUE..   
            If HOWMNY = 'A', SELECT is not referenced.   

    N       (input) INTEGER   
            The order of the square matrix pair (A, B). N >= 0.   

    A       (input) COMPLEX array, dimension (LDA,N)   
            The upper triangular matrix A in the pair (A,B).   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    B       (input) COMPLEX array, dimension (LDB,N)   
            The upper triangular matrix B in the pair (A, B).   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    VL      (input) COMPLEX array, dimension (LDVL,M)   
            IF JOB = 'E' or 'B', VL must contain left eigenvectors of   
            (A, B), corresponding to the eigenpairs specified by HOWMNY   
            and SELECT.  The eigenvectors must be stored in consecutive   
            columns of VL, as returned by CTGEVC.   
            If JOB = 'V', VL is not referenced.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL. LDVL >= 1; and   
            If JOB = 'E' or 'B', LDVL >= N.   

    VR      (input) COMPLEX array, dimension (LDVR,M)   
            IF JOB = 'E' or 'B', VR must contain right eigenvectors of   
            (A, B), corresponding to the eigenpairs specified by HOWMNY   
            and SELECT.  The eigenvectors must be stored in consecutive   
            columns of VR, as returned by CTGEVC.   
            If JOB = 'V', VR is not referenced.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR. LDVR >= 1;   
            If JOB = 'E' or 'B', LDVR >= N.   

    S       (output) REAL array, dimension (MM)   
            If JOB = 'E' or 'B', the reciprocal condition numbers of the   
            selected eigenvalues, stored in consecutive elements of the   
            array.   
            If JOB = 'V', S is not referenced.   

    DIF     (output) REAL array, dimension (MM)   
            If JOB = 'V' or 'B', the estimated reciprocal condition   
            numbers of the selected eigenvectors, stored in consecutive   
            elements of the array.   
            If the eigenvalues cannot be reordered to compute DIF(j),   
            DIF(j) is set to 0; this can only occur when the true value   
            would be very small anyway.   
            For each eigenvalue/vector specified by SELECT, DIF stores   
            a Frobenius norm-based estimate of Difl.   
            If JOB = 'E', DIF is not referenced.   

    MM      (input) INTEGER   
            The number of elements in the arrays S and DIF. MM >= M.   

    M       (output) INTEGER   
            The number of elements of the arrays S and DIF used to store   
            the specified condition numbers; for each selected eigenvalue   
            one element is used. If HOWMNY = 'A', M is set to N.   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            If JOB = 'E', WORK is not referenced.  Otherwise,   
            on exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK  (input) INTEGER   
            The dimension of the array WORK. LWORK >= 1.   
            If JOB = 'V' or 'B', LWORK >= 2*N*N.   

    IWORK   (workspace) INTEGER array, dimension (N+2)   
            If JOB = 'E', IWORK is not referenced.   

    INFO    (output) INTEGER   
            = 0: Successful exit   
            < 0: If INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The reciprocal of the condition number of the i-th generalized   
    eigenvalue w = (a, b) is defined as   

            S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v))   

    where u and v are the right and left eigenvectors of (A, B)   
    corresponding to w; |z| denotes the absolute value of the complex   
    number, and norm(u) denotes the 2-norm of the vector u. The pair   
    (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the   
    matrix pair (A, B). If both a and b equal zero, then (A,B) is   
    singular and S(I) = -1 is returned.   

    An approximate error bound on the chordal distance between the i-th   
    computed generalized eigenvalue w and the corresponding exact   
    eigenvalue lambda is   

            chord(w, lambda) <=   EPS * norm(A, B) / S(I),   

    where EPS is the machine precision.   

    The reciprocal of the condition number of the right eigenvector u   
    and left eigenvector v corresponding to the generalized eigenvalue w   
    is defined as follows. Suppose   

                     (A, B) = ( a   *  ) ( b  *  )  1   
                              ( 0  A22 ),( 0 B22 )  n-1   
                                1  n-1     1 n-1   

    Then the reciprocal condition number DIF(I) is   

            Difl[(a, b), (A22, B22)]  = sigma-min( Zl )   

    where sigma-min(Zl) denotes the smallest singular value of   

           Zl = [ kron(a, In-1) -kron(1, A22) ]   
                [ kron(b, In-1) -kron(1, B22) ].   

    Here In-1 is the identity matrix of size n-1 and X' is the conjugate   
    transpose of X. kron(X, Y) is the Kronecker product between the   
    matrices X and Y.   

    We approximate the smallest singular value of Zl with an upper   
    bound. This is done by CLATDF.   

    An approximate error bound for a computed eigenvector VL(i) or   
    VR(i) is given by   

                        EPS * norm(A, B) / DIF(i).   

    See ref. [2-3] for more details and further references.   

    Based on contributions by   
       Bo Kagstrom and Peter Poromaa, Department of Computing Science,   
       Umea University, S-901 87 Umea, Sweden.   

    References   
    ==========   

    [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the   
        Generalized Real Schur Form of a Regular Matrix Pair (A, B), in   
        M.S. Moonen et al (eds), Linear Algebra for Large Scale and   
        Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.   

    [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified   
        Eigenvalues of a Regular Matrix Pair (A, B) and Condition   
        Estimation: Theory, Algorithms and Software, Report   
        UMINF - 94.04, Department of Computing Science, Umea University,   
        S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.   
        To appear in Numerical Algorithms, 1996.   

    [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software   
        for Solving the Generalized Sylvester Equation and Estimating the   
        Separation between Regular Matrix Pairs, Report UMINF - 93.23,   
        Department of Computing Science, Umea University, S-901 87 Umea,   
        Sweden, December 1993, Revised April 1994, Also as LAPACK Working   
        Note 75.   
        To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.   

    =====================================================================   


       Decode and test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static complex c_b19 = {1.f,0.f};
    static complex c_b20 = {0.f,0.f};
    static logical c_false = FALSE_;
    static integer c__3 = 3;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    real r__1, r__2;
    complex q__1;
    /* Builtin functions */
    double c_abs(complex *);
    /* Local variables */
    static real cond;
    static integer ierr, ifst;
    static real lnrm;
    static complex yhax, yhbx;
    static integer ilst;
    static real rnrm;
    static integer i__, k;
    static real scale;
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
	    , complex *, integer *, complex *, integer *, complex *, complex *
	    , integer *);
    static integer lwmin;
    static logical wants;
    static integer llwrk, n1, n2;
    static complex dummy[1];
    extern doublereal scnrm2_(integer *, complex *, integer *), slapy2_(real *
	    , real *);
    static complex dummy1[1];
    extern /* Subroutine */ int slabad_(real *, real *);
    static integer ks;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), ctgexc_(logical *, 
	    logical *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, complex *, integer *, integer *, integer *, 
	    integer *), xerbla_(char *, integer *);
    static real bignum;
    static logical wantbh, wantdf, somcon;
    extern /* Subroutine */ int ctgsyl_(char *, integer *, integer *, integer 
	    *, complex *, integer *, complex *, integer *, complex *, integer 
	    *, complex *, integer *, complex *, integer *, complex *, integer 
	    *, real *, real *, complex *, integer *, integer *, integer *);
    static real smlnum;
    static logical lquery;
    static real eps;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1
#define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)]
#define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1
#define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)]


    --select;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    --s;
    --dif;
    --work;
    --iwork;

    /* Function Body */
    wantbh = lsame_(job, "B");
    wants = lsame_(job, "E") || wantbh;
    wantdf = lsame_(job, "V") || wantbh;

    somcon = lsame_(howmny, "S");

    *info = 0;
    lquery = *lwork == -1;

    if (lsame_(job, "V") || lsame_(job, "B")) {
/* Computing MAX */
	i__1 = 1, i__2 = (*n << 1) * *n;
	lwmin = max(i__1,i__2);
    } else {
	lwmin = 1;
    }

    if (! wants && ! wantdf) {
	*info = -1;
    } else if (! lsame_(howmny, "A") && ! somcon) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else if (wants && *ldvl < *n) {
	*info = -10;
    } else if (wants && *ldvr < *n) {
	*info = -12;
    } else {

/*        Set M to the number of eigenpairs for which condition numbers   
          are required, and test MM. */

	if (somcon) {
	    *m = 0;
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		if (select[k]) {
		    ++(*m);
		}
/* L10: */
	    }
	} else {
	    *m = *n;
	}

	if (*mm < *m) {
	    *info = -15;
	} else if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	}
    }

    if (*info == 0) {
	work[1].r = (real) lwmin, work[1].i = 0.f;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTGSNA", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S") / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    llwrk = *lwork - (*n << 1) * *n;
    ks = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {

/*        Determine whether condition numbers are required for the k-th   
          eigenpair. */

	if (somcon) {
	    if (! select[k]) {
		goto L20;
	    }
	}

	++ks;

	if (wants) {

/*           Compute the reciprocal condition number of the k-th   
             eigenvalue. */

	    rnrm = scnrm2_(n, &vr_ref(1, ks), &c__1);
	    lnrm = scnrm2_(n, &vl_ref(1, ks), &c__1);
	    cgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr_ref(1, ks), &
		    c__1, &c_b20, &work[1], &c__1);
	    cdotc_(&q__1, n, &work[1], &c__1, &vl_ref(1, ks), &c__1);
	    yhax.r = q__1.r, yhax.i = q__1.i;
	    cgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr_ref(1, ks), &
		    c__1, &c_b20, &work[1], &c__1);
	    cdotc_(&q__1, n, &work[1], &c__1, &vl_ref(1, ks), &c__1);
	    yhbx.r = q__1.r, yhbx.i = q__1.i;
	    r__1 = c_abs(&yhax);
	    r__2 = c_abs(&yhbx);
	    cond = slapy2_(&r__1, &r__2);
	    if (cond == 0.f) {
		s[ks] = -1.f;
	    } else {
		s[ks] = cond / (rnrm * lnrm);
	    }
	}

	if (wantdf) {
	    if (*n == 1) {
		r__1 = c_abs(&a_ref(1, 1));
		r__2 = c_abs(&b_ref(1, 1));
		dif[ks] = slapy2_(&r__1, &r__2);
		goto L20;
	    }

/*           Estimate the reciprocal condition number of the k-th   
             eigenvectors.   

             Copy the matrix (A, B) to the array WORK and move the   
             (k,k)th pair to the (1,1) position. */

	    clacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
	    clacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
	    ifst = k;
	    ilst = 1;

	    ctgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
		     dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &ierr);

	    if (ierr > 0) {

/*              Ill-conditioned problem - swap rejected. */

		dif[ks] = 0.f;
	    } else {

/*              Reordering successful, solve generalized Sylvester   
                equation for R and L,   
                           A22 * R - L * A11 = A12   
                           B22 * R - L * B11 = B12,   
                and compute estimate of Difl[(A11,B11), (A22, B22)]. */

		n1 = 1;
		n2 = *n - n1;
		i__ = *n * *n + 1;
		ctgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, &
			work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 + 
			i__], n, &work[i__], n, &work[n1 + i__], n, &scale, &
			dif[ks], &work[(*n * *n << 1) + 1], &llwrk, &iwork[1],
			 &ierr);
	    }
	}

L20:
	;
    }
    work[1].r = (real) lwmin, work[1].i = 0.f;
    return 0;

/*     End of CTGSNA */

} /* ctgsna_ */