Beispiel #1
0
/* Subroutine */ int cgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, complex *a, integer *lda, complex *w, complex *vl, 
	integer *ldvl, complex *vr, integer *ldvr, integer *ilo, integer *ihi, 
	 real *scale, real *abnrm, real *rconde, real *rcondv, complex *work, 
	integer *lwork, real *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    real r__1, r__2;
    complex q__1, q__2;

    /* Local variables */
    integer i__, k;
    char job[1];
    real scl, dum[1], eps;
    complex tmp;
    char side[1];
    real anrm;
    integer ierr, itau, iwrk, nout;
    integer icond;
    logical scalea;
    real cscale;
    logical select[1];
    real bignum;
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    real smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  Optionally also, it computes a balancing transformation to improve */
/*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/*  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
/*  (RCONDE), and reciprocal condition numbers for the right */
/*  eigenvectors (RCONDV). */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component real. */

/*  Balancing a matrix means permuting the rows and columns to make it */
/*  more nearly upper triangular, and applying a diagonal similarity */
/*  transformation D * A * D**(-1), where D is a diagonal matrix, to */
/*  make its rows and columns closer in norm and the condition numbers */
/*  of its eigenvalues and eigenvectors smaller.  The computed */
/*  reciprocal condition numbers correspond to the balanced matrix. */
/*  Permuting rows and columns will not change the condition numbers */
/*  (in exact arithmetic) but diagonal scaling will.  For further */
/*  explanation of balancing, see section 4.10.2 of the LAPACK */
/*  Users' Guide. */

/*  Arguments */
/*  ========= */

/*  BALANC  (input) CHARACTER*1 */
/*          Indicates how the input matrix should be diagonally scaled */
/*          and/or permuted to improve the conditioning of its */
/*          eigenvalues. */
/*          = 'N': Do not diagonally scale or permute; */
/*          = 'P': Perform permutations to make the matrix more nearly */
/*                 upper triangular. Do not diagonally scale; */
/*          = 'S': Diagonally scale the matrix, ie. replace A by */
/*                 D*A*D**(-1), where D is a diagonal matrix chosen */
/*                 to make the rows and columns of A more equal in */
/*                 norm. Do not permute; */
/*          = 'B': Both diagonally scale and permute A. */

/*          Computed reciprocal condition numbers will be for the matrix */
/*          after balancing and/or permuting. Permuting does not change */
/*          condition numbers (in exact arithmetic), but balancing does. */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of A are computed. */
/*          If SENSE = 'E' or 'B', JOBVL must = 'V'. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */
/*          If SENSE = 'E' or 'B', JOBVR must = 'V'. */

/*  SENSE   (input) CHARACTER*1 */
/*          Determines which reciprocal condition numbers are computed. */
/*          = 'N': None are computed; */
/*          = 'E': Computed for eigenvalues only; */
/*          = 'V': Computed for right eigenvectors only; */
/*          = 'B': Computed for eigenvalues and right eigenvectors. */

/*          If SENSE = 'E' or 'B', both left and right eigenvectors */
/*          must also be computed (JOBVL = 'V' and JOBVR = 'V'). */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten.  If JOBVL = 'V' or */
/*          JOBVR = 'V', A contains the Schur form of the balanced */
/*          version of the matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) COMPLEX array, dimension (N) */
/*          W contains the computed eigenvalues. */

/*  VL      (output) COMPLEX array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/*          after another in the columns of VL, in the same order */
/*          as their eigenvalues. */
/*          If JOBVL = 'N', VL is not referenced. */
/*          u(j) = VL(:,j), the j-th column of VL. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1; if */
/*          JOBVL = 'V', LDVL >= N. */

/*  VR      (output) COMPLEX array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/*          after another in the columns of VR, in the same order */
/*          as their eigenvalues. */
/*          If JOBVR = 'N', VR is not referenced. */
/*          v(j) = VR(:,j), the j-th column of VR. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1; if */
/*          JOBVR = 'V', LDVR >= N. */

/*  ILO     (output) INTEGER */
/*  IHI     (output) INTEGER */
/*          ILO and IHI are integer values determined when A was */
/*          balanced.  The balanced A(i,j) = 0 if I > J and */

/*  SCALE   (output) REAL array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          when balancing A.  If P(j) is the index of the row and column */
/*          interchanged with row and column j, and D(j) is the scaling */
/*          factor applied to row and column j, then */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  ABNRM   (output) REAL */
/*          The one-norm of the balanced matrix (the maximum */
/*          of the sum of absolute values of elements of any column). */

/*  RCONDE  (output) REAL array, dimension (N) */
/*          RCONDE(j) is the reciprocal condition number of the j-th */
/*          eigenvalue. */

/*  RCONDV  (output) REAL array, dimension (N) */
/*          RCONDV(j) is the reciprocal condition number of the j-th */
/*          right eigenvector. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  If SENSE = 'N' or 'E', */
/*          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B', */
/*          LWORK >= N*N+2*N. */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
/*                eigenvalues, and no eigenvectors or condition numbers */
/*                have been computed; elements 1:ILO-1 and i+1:N of W */
/*                contain eigenvalues which have converged. */

/*  ===================================================================== */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    wntsnn = lsame_(sense, "N");
    wntsne = lsame_(sense, "E");
    wntsnv = lsame_(sense, "V");
    wntsnb = lsame_(sense, "B");
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") 
	    || lsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! lsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -10;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -12;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to real */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by CHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
		    c__0);

	    if (wantvl) {
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
			vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
		} else {
		    chseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
		}
	    }
	    hswork = work[1].r;

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n << 1;
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = max(i__1,i__2);
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n << 1;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1].r = (real) maxwrk, work[1].i = 0.f;

	if (*lwork < minwrk && ! lquery) {
	    *info = -20;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = clange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    cgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = clange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors */
/*        Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate unitary matrix in VL */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors */
/*           Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors */
/*        Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate unitary matrix in VR */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only */
/*        If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from CHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors */
/*        (CWorkspace: need 2*N) */
/*        (RWorkspace: need N) */

	ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, 
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], &
		ierr);
    }

/*     Compute condition numbers if desired */
/*     (CWorkspace: need N*N+2*N unless SENSE = 'E') */
/*     (RWorkspace: need 2*N unless SENSE = 'E') */

    if (! wntsnn) {
	ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &rwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
		r__1 = vl[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
		rwork[k] = r__1 * r__1 + r__2 * r__2;
	    }
	    k = isamax_(n, &rwork[1], &c__1);
	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
	    r__1 = sqrt(rwork[k]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = k + i__ * vl_dim1;
	    i__3 = k + i__ * vl_dim1;
	    r__1 = vl[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
		r__1 = vr[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
		rwork[k] = r__1 * r__1 + r__2 * r__2;
	    }
	    k = isamax_(n, &rwork[1], &c__1);
	    r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
	    r__1 = sqrt(rwork[k]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = k + i__ * vr_dim1;
	    i__3 = k + i__ * vr_dim1;
	    r__1 = vr[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
, &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, 
		     &ierr);
	}
    }

    work[1].r = (real) maxwrk, work[1].i = 0.f;
    return 0;

/*     End of CGEEVX */

} /* cgeevx_ */
Beispiel #2
0
 int cgeev_(char *jobvl, char *jobvr, int *n, complex *a, 
	int *lda, complex *w, complex *vl, int *ldvl, complex *vr, 
	int *ldvr, complex *work, int *lwork, float *rwork, int *
	info)
{
    /* System generated locals */
    int a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    float r__1, r__2;
    complex q__1, q__2;

    /* Builtin functions */
    double sqrt(double), r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    int i__, k, ihi;
    float scl;
    int ilo;
    float dum[1], eps;
    complex tmp;
    int ibal;
    char side[1];
    float anrm;
    int ierr, itau, iwrk, nout;
    extern  int cscal_(int *, complex *, complex *, 
	    int *);
    extern int lsame_(char *, char *);
    extern double scnrm2_(int *, complex *, int *);
    extern  int cgebak_(char *, char *, int *, int *, 
	    int *, float *, int *, complex *, int *, int *), cgebal_(char *, int *, complex *, int *, 
	    int *, int *, float *, int *), slabad_(float *, 
	    float *);
    int scalea;
    extern double clange_(char *, int *, int *, complex *, 
	    int *, float *);
    float cscale;
    extern  int cgehrd_(int *, int *, int *, 
	    complex *, int *, complex *, complex *, int *, int *),
	     clascl_(char *, int *, int *, float *, float *, int *, 
	    int *, complex *, int *, int *);
    extern double slamch_(char *);
    extern  int csscal_(int *, float *, complex *, int 
	    *), clacpy_(char *, int *, int *, complex *, int *, 
	    complex *, int *), xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    int select[1];
    float bignum;
    extern int isamax_(int *, float *, int *);
    extern  int chseqr_(char *, char *, int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    complex *, int *, int *), ctrevc_(char *, 
	    char *, int *, int *, complex *, int *, complex *, 
	    int *, complex *, int *, int *, int *, complex *, 
	    float *, int *), cunghr_(int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    int *);
    int minwrk, maxwrk;
    int wantvl;
    float smlnum;
    int hswork, irwork;
    int lquery, wantvr;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component float. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of are computed. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,N). */

/*  W       (output) COMPLEX array, dimension (N) */
/*          W contains the computed eigenvalues. */

/*  VL      (output) COMPLEX array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/*          after another in the columns of VL, in the same order */
/*          as their eigenvalues. */
/*          If JOBVL = 'N', VL is not referenced. */
/*          u(j) = VL(:,j), the j-th column of VL. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1; if */
/*          JOBVL = 'V', LDVL >= N. */

/*  VR      (output) COMPLEX array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/*          after another in the columns of VR, in the same order */
/*          as their eigenvalues. */
/*          If JOBVR = 'N', VR is not referenced. */
/*          v(j) = VR(:,j), the j-th column of VR. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1; if */
/*          JOBVR = 'V', LDVR >= N. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= MAX(1,2*N). */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
/*                eigenvalues, and no eigenvectors have been computed; */
/*                elements and i+1:N of W contain eigenvalues which have */
/*                converged. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    if (! wantvl && ! lsame_(jobvl, "N")) {
	*info = -1;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < MAX(1,*n)) {
	*info = -5;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -8;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -10;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to float */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by CHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
		    c__0);
	    minwrk = *n << 1;
	    if (wantvl) {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = MAX(i__1,i__2);
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
			vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = MAX(i__1,i__2);
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    }
	    hswork = work[1].r;
/* Computing MAX */
	    i__1 = MAX(maxwrk,hswork);
	    maxwrk = MAX(i__1,minwrk);
	}
	work[1].r = (float) maxwrk, work[1].i = 0.f;

	if (*lwork < minwrk && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEEV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = clange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix */
/*     (CWorkspace: none) */
/*     (RWorkspace: need N) */

    ibal = 1;
    cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, 
	     &ierr);

    if (wantvl) {

/*        Want left eigenvectors */
/*        Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate unitary matrix in VL */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], 
		 &i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors */
/*           Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors */
/*        Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate unitary matrix in VR */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], 
		 &i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from CHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors */
/*        (CWorkspace: need 2*N) */
/*        (RWorkspace: need 2*N) */

	irwork = ibal + *n;
	ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, 
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[irwork], 
		&ierr);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset], 
		ldvl, &ierr);

/*        Normalize left eigenvectors and make largest component float */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
		r__1 = vl[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
		rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L10: */
	    }
	    k = isamax_(n, &rwork[irwork], &c__1);
	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
	    r__1 = sqrt(rwork[irwork + k - 1]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = k + i__ * vl_dim1;
	    i__3 = k + i__ * vl_dim1;
	    r__1 = vl[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset], 
		ldvr, &ierr);

/*        Normalize right eigenvectors and make largest component float */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
		r__1 = vr[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
		rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L30: */
	    }
	    k = isamax_(n, &rwork[irwork], &c__1);
	    r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
	    r__1 = sqrt(rwork[irwork + k - 1]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = k + i__ * vr_dim1;
	    i__3 = k + i__ * vr_dim1;
	    r__1 = vr[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = MAX(i__3,1);
	clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
, &i__2, &ierr);
	if (*info > 0) {
	    i__1 = ilo - 1;
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, 
		     &ierr);
	}
    }

    work[1].r = (float) maxwrk, work[1].i = 0.f;
    return 0;

/*     End of CGEEV */

} /* cgeev_ */
Beispiel #3
0
/* Subroutine */ int cchkhs_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *nounit, 
	complex *a, integer *lda, complex *h__, complex *t1, complex *t2, 
	complex *u, integer *ldu, complex *z__, complex *uz, complex *w1, 
	complex *w3, complex *evectl, complex *evectr, complex *evecty, 
	complex *evectx, complex *uu, complex *tau, complex *work, integer *
	nwork, real *rwork, integer *iwork, logical *select, real *result, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 CCHKHS: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 CCHKHS: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 CCHKHS: Selected \002,a,\002 Eigenvector"
	    "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N="
	    "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,"
	    "\002)\002)";

    /* System generated locals */
    integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, 
	    evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, 
	    evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, 
	    t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, 
	    uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    integer i__, j, k, n, n1, jj, in, ihi, ilo;
    real ulp, cond;
    integer jcol, nmax;
    real unfl, ovfl, temp1, temp2;
    logical badnn;
    extern /* Subroutine */ int cget10_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, real *, real *), 
	    cget22_(char *, char *, char *, integer *, complex *, integer *, 
	    complex *, integer *, complex *, complex *, real *, real *), cgemm_(char *, char *, integer *, 
	    integer *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, complex *, complex *, integer *);
    logical match;
    integer imode;
    extern /* Subroutine */ int chst01_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, real *, real *);
    real dumma[4];
    integer iinfo;
    real conds, aninv, anorm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    integer nmats, jsize, nerrs, itype, jtype, ntest;
    real rtulp;
    extern /* Subroutine */ int slabad_(real *, real *), cgehrd_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), clatme_(integer *, char *, integer *, 
	    complex *, integer *, real *, complex *, char *, char *, char *, 
	    char *, real *, integer *, real *, integer *, integer *, real *, 
	    complex *, integer *, complex *, integer *);
    complex cdumma[4];
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int chsein_(char *, char *, char *, logical *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *, integer *, complex *, real *, 
	    integer *, integer *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *);
    integer idumma[1];
    extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_(
	    integer *, integer *, char *, integer *, char *, complex *, 
	    integer *, real *, complex *, char *, char *, complex *, integer *
, real *, complex *, integer *, real *, char *, integer *, 
	    integer *, integer *, real *, real *, char *, complex *, integer *
, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, 
	    real *, integer *, real *, real *, integer *, integer *, char *, 
	    complex *, integer *, complex *, integer *), chseqr_(char *, char *, integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, integer *), ctrevc_(char *, char *, 
	    logical *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, integer *, integer *, complex *, real *, 
	    integer *), cunghr_(integer *, integer *, integer 
	    *, complex *, integer *, complex *, complex *, integer *, integer 
	    *), cunmhr_(char *, char *, integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *), slafts_(char *, 
	    integer *, integer *, integer *, integer *, real *, integer *, 
	    real *, integer *, integer *), slasum_(char *, integer *, 
	    integer *, integer *);
    real rtunfl, rtovfl, rtulpi, ulpinv;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     CCHKHS  checks the nonsymmetric eigenvalue problem routines. */

/*             CGEHRD factors A as  U H U' , where ' means conjugate */
/*             transpose, H is hessenberg, and U is unitary. */

/*             CUNGHR generates the unitary matrix U. */

/*             CUNMHR multiplies a matrix by the unitary matrix U. */

/*             CHSEQR factors H as  Z T Z' , where Z is unitary and T */
/*             is upper triangular.  It also computes the eigenvalues, */
/*             w(1), ..., w(n); we define a diagonal matrix W whose */
/*             (diagonal) entries are the eigenvalues. */

/*             CTREVC computes the left eigenvector matrix L and the */
/*             right eigenvector matrix R for the matrix T.  The */
/*             columns of L are the complex conjugates of the left */
/*             eigenvectors of T.  The columns of R are the right */
/*             eigenvectors of T.  L is lower triangular, and R is */
/*             upper triangular. */

/*             CHSEIN computes the left eigenvector matrix Y and the */
/*             right eigenvector matrix X for the matrix H.  The */
/*             columns of Y are the complex conjugates of the left */
/*             eigenvectors of H.  The columns of X are the right */
/*             eigenvectors of H.  Y is lower triangular, and X is */
/*             upper triangular. */

/*     When CCHKHS is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 14 */
/*     tests will be performed: */

/*     (1)     | A - U H U**H | / ( |A| n ulp ) */

/*     (2)     | I - UU**H | / ( n ulp ) */

/*     (3)     | H - Z T Z**H | / ( |H| n ulp ) */

/*     (4)     | I - ZZ**H | / ( n ulp ) */

/*     (5)     | A - UZ H (UZ)**H | / ( |A| n ulp ) */

/*     (6)     | I - UZ (UZ)**H | / ( n ulp ) */

/*     (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp ) */

/*     (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp ) */

/*     (9)     | TR - RW | / ( |T| |R| ulp ) */

/*     (10)    | L**H T - W**H L | / ( |T| |L| ulp ) */

/*     (11)    | HX - XW | / ( |H| |X| ulp ) */

/*     (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp ) */

/*     (13)    | AX - XW | / ( |A| |X| ulp ) */

/*     (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp ) */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random complex angles. */

/*     (7)  Same as (4), but multiplied by SQRT( overflow threshold ) */
/*     (8)  Same as (4), but multiplied by SQRT( underflow threshold ) */

/*     (9)  A matrix of the form  U' T U, where U is unitary and */
/*          T has evenly spaced entries 1, ..., ULP with random complex */
/*          angles on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is unitary and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (11) A matrix of the form  U' T U, where U is unitary and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (12) A matrix of the form  U' T U, where U is unitary and */
/*          T has complex eigenvalues randomly chosen from */
/*          ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random complex angles on the diagonal */
/*          and random O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
/*          from   ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (17) Same as (16), but multiplied by SQRT( overflow threshold ) */
/*     (18) Same as (16), but multiplied by SQRT( underflow threshold ) */

/*     (19) Nonsymmetric matrix with random entries chosen from |z| < 1 */
/*     (20) Same as (19), but multiplied by SQRT( overflow threshold ) */
/*     (21) Same as (19), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========== */

/*  NSIZES - INTEGER */
/*           The number of sizes of matrices to use.  If it is zero, */
/*           CCHKHS does nothing.  It must be at least zero. */
/*           Not modified. */

/*  NN     - INTEGER array, dimension (NSIZES) */
/*           An array containing the sizes to be used for the matrices. */
/*           Zero values will be skipped.  The values must be at least */
/*           zero. */
/*           Not modified. */

/*  NTYPES - INTEGER */
/*           The number of elements in DOTYPE.   If it is zero, CCHKHS */
/*           does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*           and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*           defined, which is to use whatever matrix is in A.  This */
/*           is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*           DOTYPE(MAXTYP+1) is .TRUE. . */
/*           Not modified. */

/*  DOTYPE - LOGICAL array, dimension (NTYPES) */
/*           If DOTYPE(j) is .TRUE., then for each size in NN a */
/*           matrix of that size and of type j will be generated. */
/*           If NTYPES is smaller than the maximum number of types */
/*           defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*           MAXTYP will not be generated.  If NTYPES is larger */
/*           than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*           will be ignored. */
/*           Not modified. */

/*  ISEED  - INTEGER array, dimension (4) */
/*           On entry ISEED specifies the seed of the random number */
/*           generator. The array elements should be between 0 and 4095; */
/*           if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*           be odd.  The random number generator uses a linear */
/*           congruential sequence limited to small integers, and so */
/*           should produce machine independent random numbers. The */
/*           values of ISEED are changed on exit, and can be used in the */
/*           next call to CCHKHS to continue the same random number */
/*           sequence. */
/*           Modified. */

/*  THRESH - REAL */
/*           A test will count as "failed" if the "error", computed as */
/*           described above, exceeds THRESH.  Note that the error */
/*           is scaled to be O(1), so THRESH should be a reasonably */
/*           small multiple of 1, e.g., 10 or 100.  In particular, */
/*           it should not depend on the precision (single vs. double) */
/*           or the size of the matrix.  It must be at least zero. */
/*           Not modified. */

/*  NOUNIT - INTEGER */
/*           The FORTRAN unit number for printing out error messages */
/*           (e.g., if a routine returns IINFO not equal to 0.) */
/*           Not modified. */

/*  A      - COMPLEX array, dimension (LDA,max(NN)) */
/*           Used to hold the matrix whose eigenvalues are to be */
/*           computed.  On exit, A contains the last matrix actually */
/*           used. */
/*           Modified. */

/*  LDA    - INTEGER */
/*           The leading dimension of A, H, T1 and T2.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  H      - COMPLEX array, dimension (LDA,max(NN)) */
/*           The upper hessenberg matrix computed by CGEHRD.  On exit, */
/*           H contains the Hessenberg form of the matrix in A. */
/*           Modified. */

/*  T1     - COMPLEX array, dimension (LDA,max(NN)) */
/*           The Schur (="quasi-triangular") matrix computed by CHSEQR */
/*           if Z is computed.  On exit, T1 contains the Schur form of */
/*           the matrix in A. */
/*           Modified. */

/*  T2     - COMPLEX array, dimension (LDA,max(NN)) */
/*           The Schur matrix computed by CHSEQR when Z is not computed. */
/*           This should be identical to T1. */
/*           Modified. */

/*  LDU    - INTEGER */
/*           The leading dimension of U, Z, UZ and UU.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  U      - COMPLEX array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by CGEHRD. */
/*           Modified. */

/*  Z      - COMPLEX array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by CHSEQR. */
/*           Modified. */

/*  UZ     - COMPLEX array, dimension (LDU,max(NN)) */
/*           The product of U times Z. */
/*           Modified. */

/*  W1     - COMPLEX array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a full Schur */
/*           decomposition H = Z T Z'.  On exit, W1 contains the */
/*           eigenvalues of the matrix in A. */
/*           Modified. */

/*  W3     - COMPLEX array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a partial Schur */
/*           decomposition (Z not computed, T only computed as much */
/*           as is necessary for determining eigenvalues).  On exit, */
/*           W3 contains the eigenvalues of the matrix in A, possibly */
/*           perturbed by CHSEIN. */
/*           Modified. */

/*  EVECTL - COMPLEX array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the (upper triangular) left */
/*           eigenvector matrix for the matrix in T1. */
/*           Modified. */

/*  EVECTR - COMPLEX array, dimension (LDU,max(NN)) */
/*           The (upper triangular) right eigenvector matrix for the */
/*           matrix in T1. */
/*           Modified. */

/*  EVECTY - COMPLEX array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the left eigenvector matrix */
/*           for the matrix in H. */
/*           Modified. */

/*  EVECTX - COMPLEX array, dimension (LDU,max(NN)) */
/*           The right eigenvector matrix for the matrix in H. */
/*           Modified. */

/*  UU     - COMPLEX array, dimension (LDU,max(NN)) */
/*           Details of the unitary matrix computed by CGEHRD. */
/*           Modified. */

/*  TAU    - COMPLEX array, dimension (max(NN)) */
/*           Further details of the unitary matrix computed by CGEHRD. */
/*           Modified. */

/*  WORK   - COMPLEX array, dimension (NWORK) */
/*           Workspace. */
/*           Modified. */

/*  NWORK  - INTEGER */
/*           The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2. */

/*  RWORK  - REAL array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not SELECT. */
/*           Modified. */

/*  IWORK  - INTEGER array, dimension (max(NN)) */
/*           Workspace. */
/*           Modified. */

/*  SELECT - LOGICAL array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not RWORK. */
/*           Modified. */

/*  RESULT - REAL array, dimension (14) */
/*           The values computed by the fourteen tests described above. */
/*           The values are currently limited to 1/ulp, to avoid */
/*           overflow. */
/*           Modified. */

/*  INFO   - INTEGER */
/*           If 0, then everything ran OK. */
/*            -1: NSIZES < 0 */
/*            -2: Some NN(j) < 0 */
/*            -3: NTYPES < 0 */
/*            -6: THRESH < 0 */
/*            -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
/*           -14: LDU < 1 or LDU < NMAX. */
/*           -26: NWORK too small. */
/*           If  CLATMR, CLATMS, or CLATME returns an error code, the */
/*               absolute value of it is returned. */
/*           If 1, then CHSEQR could not find all the shifts. */
/*           If 2, then the EISPACK code (for small blocks) failed. */
/*           If >2, then 30*N iterations were not enough to find an */
/*               eigenvalue or to decompose the problem. */
/*           Modified. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     MTEST           The number of tests defined: care must be taken */
/*                     that (1) the size of RESULT, (2) the number of */
/*                     tests actually performed, and (3) MTEST agree. */
/*     NTEST           The number of tests performed on this matrix */
/*                     so far.  This should be less than MTEST, and */
/*                     equal to it by the last test.  It will be less */
/*                     if any of the routines being tested indicates */
/*                     that it could not compute the matrices that */
/*                     would be tested. */
/*     NMAX            Largest value in NN. */
/*     NMATS           The number of matrices generated so far. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*                     so far (computed by SLAFTS). */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTOVFL, RTUNFL, */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selects whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1;
    t2 -= t2_offset;
    t1_dim1 = *lda;
    t1_offset = 1 + t1_dim1;
    t1 -= t1_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    uu_dim1 = *ldu;
    uu_offset = 1 + uu_dim1;
    uu -= uu_offset;
    evectx_dim1 = *ldu;
    evectx_offset = 1 + evectx_dim1;
    evectx -= evectx_offset;
    evecty_dim1 = *ldu;
    evecty_offset = 1 + evecty_dim1;
    evecty -= evecty_offset;
    evectr_dim1 = *ldu;
    evectr_offset = 1 + evectr_dim1;
    evectr -= evectr_offset;
    evectl_dim1 = *ldu;
    evectl_offset = 1 + evectl_dim1;
    evectl -= evectl_offset;
    uz_dim1 = *ldu;
    uz_offset = 1 + uz_dim1;
    uz -= uz_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --w1;
    --w3;
    --tau;
    --work;
    --rwork;
    --iwork;
    --select;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldu <= 1 || *ldu < nmax) {
	*info = -14;
    } else if ((nmax << 2) * nmax + 2 > *nwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CCHKHS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More important constants */

    unfl = slamch_("Safe minimum");
    ovfl = slamch_("Overflow");
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Epsilon") * slamch_("Base");
    ulpinv = 1.f / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	aninv = 1.f / (real) n1;

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L250;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 14; ++j) {
		result[j] = 0.f;
/* L30: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   hermitian, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random hermitian */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.f;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;
	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.f;
/* L80: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.f;
		    if (jcol > 1) {
			i__4 = jcol + (jcol - 1) * a_dim1;
			a[i__4].r = 1.f, a[i__4].i = 0.f;
		    }
/* L90: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &imode, &cond, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 5) {

/*              Hermitian, eigenvalues specified */

		clatms_(&n, &n, "D", &iseed[1], "H", &rwork[1], &imode, &cond, 
			 &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], &
			iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
			" ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
			&anorm, &a[a_offset], lda, &work[n + 1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Hermitian, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &c__0, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___35.ciunit = *nounit;
		s_wsfe(&io___35);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call CGEHRD to compute H and U, do tests. */

	    clacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
	    ntest = 1;

	    ilo = 1;
	    ihi = n;

	    i__3 = *nwork - n;
	    cgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 
		    1], &i__3, &iinfo);

	    if (iinfo != 0) {
		result[1] = ulpinv;
		io___38.ciunit = *nounit;
		s_wsfe(&io___38);
		do_fio(&c__1, "CGEHRD", (ftnlen)6);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    i__3 = n - 1;
	    for (j = 1; j <= i__3; ++j) {
		i__4 = j + 1 + j * uu_dim1;
		uu[i__4].r = 0.f, uu[i__4].i = 0.f;
		i__4 = n;
		for (i__ = j + 2; i__ <= i__4; ++i__) {
		    i__5 = i__ + j * u_dim1;
		    i__6 = i__ + j * h_dim1;
		    u[i__5].r = h__[i__6].r, u[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * uu_dim1;
		    i__6 = i__ + j * h_dim1;
		    uu[i__5].r = h__[i__6].r, uu[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * h_dim1;
		    h__[i__5].r = 0.f, h__[i__5].i = 0.f;
/* L110: */
		}
/* L120: */
	    }
	    i__3 = n - 1;
	    ccopy_(&i__3, &work[1], &c__1, &tau[1], &c__1);
	    i__3 = *nwork - n;
	    cunghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1], 
		     &i__3, &iinfo);
	    ntest = 2;

	    chst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, &
		    u[u_offset], ldu, &work[1], nwork, &rwork[1], &result[1]);

/*           Call CHSEQR to compute T1, T2 and Z, do tests. */

/*           Eigenvalues only (W3) */

	    clacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);
	    ntest = 3;
	    result[3] = ulpinv;

	    chseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w3[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0) {
		io___40.ciunit = *nounit;
		s_wsfe(&io___40);
		do_fio(&c__1, "CHSEQR(E)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		if (iinfo <= n + 2) {
		    *info = abs(iinfo);
		    goto L240;
		}
	    }

/*           Eigenvalues (W1) and Full Schur Form (T2) */

	    clacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);

	    chseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___41.ciunit = *nounit;
		s_wsfe(&io___41);
		do_fio(&c__1, "CHSEQR(S)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ) */

	    clacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda);
	    clacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], ldu);

	    chseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "CHSEQR(V)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Compute Z = U' UZ */

	    cgemm_("C", "N", &n, &n, &n, &c_b2, &u[u_offset], ldu, &uz[
		    uz_offset], ldu, &c_b1, &z__[z_offset], ldu);
	    ntest = 8;

/*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) */
/*                and 4: | I - Z Z' | / ( n ulp ) */

	    chst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, 
		    &z__[z_offset], ldu, &work[1], nwork, &rwork[1], &result[
		    3]);

/*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) */
/*                and 6: | I - UZ (UZ)' | / ( n ulp ) */

	    chst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, &
		    uz[uz_offset], ldu, &work[1], nwork, &rwork[1], &result[5]
);

/*           Do Test 7: | T2 - T1 | / ( |T| n ulp ) */

	    cget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1]
, &rwork[1], &result[7]);

/*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */

	    temp1 = 0.f;
	    temp2 = 0.f;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
		r__1 = temp1, r__2 = c_abs(&w1[j]), r__1 = max(r__1,r__2), 
			r__2 = c_abs(&w3[j]);
		temp1 = dmax(r__1,r__2);
/* Computing MAX */
		i__4 = j;
		i__5 = j;
		q__1.r = w1[i__4].r - w3[i__5].r, q__1.i = w1[i__4].i - w3[
			i__5].i;
		r__1 = temp2, r__2 = c_abs(&q__1);
		temp2 = dmax(r__1,r__2);
/* L130: */
	    }

/* Computing MAX */
	    r__1 = unfl, r__2 = ulp * dmax(temp1,temp2);
	    result[8] = temp2 / dmax(r__1,r__2);

/*           Compute the Left and Right Eigenvectors of T */

/*           Compute the Right eigenvector Matrix: */

	    ntest = 9;
	    result[9] = ulpinv;

/*           Select every other eigenvector */

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = FALSE_;
/* L140: */
	    }
	    i__3 = n;
	    for (j = 1; j <= i__3; j += 2) {
		select[j] = TRUE_;
/* L150: */
	    }
	    ctrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___47.ciunit = *nounit;
		s_wsfe(&io___47);
		do_fio(&c__1, "CTREVC(R,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 9:  | TR - RW | / ( |T| |R| ulp ) */

	    cget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[
		    evectr_offset], ldu, &w1[1], &work[1], &rwork[1], dumma);
	    result[9] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___49.ciunit = *nounit;
		s_wsfe(&io___49);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "CTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected right eigenvectors and confirm that */
/*           they agree with previous right eigenvectors */

	    ctrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "CTREVC(R,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectr_dim1;
			i__6 = jj + k * evectl_dim1;
			if (evectr[i__5].r != evectl[i__6].r || evectr[i__5]
				.i != evectl[i__6].i) {
			    match = FALSE_;
			    goto L180;
			}
/* L160: */
		    }
		    ++k;
		}
/* L170: */
	    }
L180:
	    if (! match) {
		io___54.ciunit = *nounit;
		s_wsfe(&io___54);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "CTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute the Left eigenvector Matrix: */

	    ntest = 10;
	    result[10] = ulpinv;
	    ctrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, &
		    evectl[evectl_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___55.ciunit = *nounit;
		s_wsfe(&io___55);
		do_fio(&c__1, "CTREVC(L,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 10:  | LT - WL | / ( |T| |L| ulp ) */

	    cget22_("C", "N", "C", &n, &t1[t1_offset], lda, &evectl[
		    evectl_offset], ldu, &w1[1], &work[1], &rwork[1], &dumma[
		    2]);
	    result[10] = dumma[2];
	    if (dumma[3] > *thresh) {
		io___56.ciunit = *nounit;
		s_wsfe(&io___56);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "CTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected left eigenvectors and confirm that */
/*           they agree with previous left eigenvectors */

	    ctrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, &
		    evectr[evectr_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___57.ciunit = *nounit;
		s_wsfe(&io___57);
		do_fio(&c__1, "CTREVC(L,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectl_dim1;
			i__6 = jj + k * evectr_dim1;
			if (evectl[i__5].r != evectr[i__6].r || evectl[i__5]
				.i != evectr[i__6].i) {
			    match = FALSE_;
			    goto L210;
			}
/* L190: */
		    }
		    ++k;
		}
/* L200: */
	    }
L210:
	    if (! match) {
		io___58.ciunit = *nounit;
		s_wsfe(&io___58);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "CTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Call CHSEIN for Right eigenvectors of H, do test 11 */

	    ntest = 11;
	    result[11] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L220: */
	    }

	    chsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], cdumma, ldu, &evectx[evectx_offset], ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___59.ciunit = *nounit;
		s_wsfe(&io___59);
		do_fio(&c__1, "CHSEIN(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 11:  | HX - XW | / ( |H| |X| ulp ) */

/*                        (from inverse iteration) */

		cget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[11] = dumma[0] * aninv;
		}
		if (dumma[1] > *thresh) {
		    io___60.ciunit = *nounit;
		    s_wsfe(&io___60);
		    do_fio(&c__1, "Right", (ftnlen)5);
		    do_fio(&c__1, "CHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call CHSEIN for Left eigenvectors of H, do test 12 */

	    ntest = 12;
	    result[12] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L230: */
	    }

	    chsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], &evecty[evecty_offset], ldu, cdumma, ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___61.ciunit = *nounit;
		s_wsfe(&io___61);
		do_fio(&c__1, "CHSEIN(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 12:  | YH - WY | / ( |H| |Y| ulp ) */

/*                        (from inverse iteration) */

		cget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[12] = dumma[2] * aninv;
		}
		if (dumma[3] > *thresh) {
		    io___62.ciunit = *nounit;
		    s_wsfe(&io___62);
		    do_fio(&c__1, "Left", (ftnlen)4);
		    do_fio(&c__1, "CHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(real));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call CUNMHR for Right eigenvectors of A, do test 13 */

	    ntest = 13;
	    result[13] = ulpinv;

	    cunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___63.ciunit = *nounit;
		s_wsfe(&io___63);
		do_fio(&c__1, "CUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 13:  | AX - XW | / ( |A| |X| ulp ) */

/*                        (from inverse iteration) */

		cget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[13] = dumma[0] * aninv;
		}
	    }

/*           Call CUNMHR for Left eigenvectors of A, do test 14 */

	    ntest = 14;
	    result[14] = ulpinv;

	    cunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___64.ciunit = *nounit;
		s_wsfe(&io___64);
		do_fio(&c__1, "CUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 14:  | YA - WY | / ( |A| |Y| ulp ) */

/*                        (from inverse iteration) */

		cget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[14] = dumma[2] * aninv;
		}
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L240:

	    ntestt += ntest;
	    slafts_("CHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, 
		     nounit, &nerrs);

L250:
	    ;
	}
/* L260: */
    }

/*     Summary */

    slasum_("CHS", nounit, &nerrs, &ntestt);

    return 0;


/*     End of CCHKHS */

} /* cchkhs_ */