Beispiel #1
0
Color3 PathIntegrator::li(const Scene *scene_ptr, const Ray &ray, const hitRecord &record, const Sample* sample_ptr,
				Random462 &rng) {
	Color3 L = Color3::Black();
    if (record.shape_ptr == NULL)
		return L;

	for (uint32_t j = 0; j < num_per_path; j++) {
		bool specular_bounce = false;
		const hitRecord *current_h_ptr = &record;
		hitRecord path_record;
		Ray current_ray(ray);
		Color3 path_weight = Color3::White();
		LightSampleSet light_set;
		BSDFSampleSet bsdf_set;
		BSDFSample path_sample;
		float select;

		light_set.num = 1;
		bsdf_set.num = 1;

		Color3 new_path_l;
		Color3 bsdf_factor;
		Color3 weight_records[7];
		for (uint32_t i = 0; i < max_depth; i++) {
			Vector3 p = current_h_ptr->p;
			Vector3 n = current_h_ptr->n;
			Vector3 wo = -current_ray.d;
			BSDF *bsdf_ptr = current_h_ptr->bsdf_ptr;

			if (i == 0 || specular_bounce) {
				if (current_h_ptr->shape_ptr->light_ptr != NULL) {
					L += path_weight * 
						current_h_ptr->shape_ptr->light_ptr->L(n, wo);
				}
			}		

			// TODO: hit light source?
			if (current_h_ptr->shape_ptr->light_ptr != NULL)
				break;

			if (i < sample_depth) {
				light_set.light_1d = (float*) sample_ptr + 2 + light_offsets[j * sample_depth + i].offset_1d;
				light_set.light_2d = (float*) sample_ptr + 2 + light_offsets[j * sample_depth + i].offset_2d;
				bsdf_set.bsdf_1d = (float*) sample_ptr + 2 + bsdf_offsets[j * sample_depth + i].offset_1d;
				bsdf_set.bsdf_2d = (float*) sample_ptr + 2 + bsdf_offsets[j * sample_depth + i].offset_2d;
				float* path_sample_ptr = (float*) sample_ptr + 2 + path_offsets[j * sample_depth + i].offset_2d;
				path_sample.r1 = path_sample_ptr[0];
				path_sample.r2 = path_sample_ptr[1];
				path_sample.c = *((float*) sample_ptr + 2 + path_offsets[j * sample_depth + i].offset_1d);

				select = *((float*)sample_ptr + 2);
			}
			else {
				light_set.light_1d = NULL;
				light_set.light_2d = NULL;
				bsdf_set.bsdf_1d = NULL;
				bsdf_set.bsdf_2d = NULL;
				path_sample.r1 = rng.random();
				path_sample.r2 = rng.random();
				path_sample.c = rng.random();

				select = -1;
			}

			new_path_l = path_weight * uniform_sample_one_light(scene_ptr, bsdf_ptr, p, n,
				wo, select, &light_set, &bsdf_set, rng);
			L += new_path_l;

			Vector3 wi;
			float path_pdf;
			BxDFType flags;
			Color3 f = bsdf_ptr->sample_f(wo, path_sample.r1,path_sample.r2, path_sample.c, 
				&wi, n, &path_pdf, BSDF_ALL, &flags);
			if (f == Color3::Black() || path_pdf < 1e-3) 
				break;
			specular_bounce = (flags & BSDF_SPECULAR) > 0;
			bsdf_factor = f * std::fabs(dot(n, wi)) / path_pdf;
			weight_records[i] = bsdf_factor;
			path_weight *= bsdf_factor;

			if (i >= sample_depth) {
				// TODO : how to determine the prob?
				float continue_prob = std::min(0.5, path_weight.relative_luminance());
				if (rng.random() > continue_prob)
					break;
				path_weight /= continue_prob;
			}
			else if (i >= max_depth) {
				break;
			}

			Ray path_ray(p, wi);
			if (!scene_ptr->hit(path_ray, 1e-3, BIG_NUMBER, path_record, true)) {
				if (specular_bounce)
					for (uint32_t i = 0; i < scene_ptr->num_lights(); i++)
						L += path_weight * scene_ptr->get_lights()[i]->Le(path_ray);
				break;
			}

			current_ray.e = path_ray.e;
			current_ray.d = path_ray.d;
			current_h_ptr = &path_record;
		}
	}

	L /= num_per_path;

    return L;
}
Beispiel #2
0
rose::Spectrum rose::PathTracerIntegrator::IncomingRadiance(const rose::Ray &ray,
                                                            const rose::RayInterval &interval,
                                                            const rose::Scene &scene,
                                                            uint32_t) const {
    // Final incoming radiance and accumulation value
    Spectrum L(0.f), beta(1.f);
    Ray current_ray(ray);
    RayInterval current_interval(interval);
    bool specular_bounce = false;
    uint32_t bounces;
    // Keep track of specular bounce
    for (bounces = 0;; ++bounces) {
        SurfaceInteraction interaction;
        bool found_interaction = scene.Intersect(current_ray, current_interval, &interaction);

        // Possibly add emission
        if (bounces == 0 || specular_bounce) {
            // Add emitted light
            if (found_interaction) {
                L += beta * interaction.Le(Normalize(-current_ray.Direction()));
            } else {
                for (const auto &light : scene.Lights()) {
                    L += beta * light->Le(current_ray);
                }
            }
        }

        // Terminate path if ray escaped or max depth reached
        if (!found_interaction || bounces >= max_depth) { break; }

        // Compute scattering function
        std::unique_ptr<BSDF> bsdf = interaction.CreateBSDF(true);

        // Get shading variables
        const Vector3f n = interaction.sh_frame.N();
        const Vector3f wo = Normalize(-current_ray.Direction());

        // Loop over all lights and add direct contribution
        for (const auto &light : scene.Lights()) {
            // Sample light
            LightSample light_sample;
            OcclusionTester occlusion_tester;
            Spectrum Li = light->SampleLi(interaction, sampler->Next2D(), &light_sample, &occlusion_tester);
            // Check light return
            if (Li.IsBlack() || light_sample.pdf == 0.f) { continue; }
            // Evaluate BSDF
            Spectrum f = bsdf->F(wo, light_sample.wi);
            if (!f.IsBlack() && occlusion_tester.Unoccluded(scene)) {
                L += beta * f * Li * AbsDotProduct(n, light_sample.wi) / light_sample.pdf;
            }
        }

        // Sample BSDF to get new path
        BXDFSample bsdf_sample;
        Spectrum f = bsdf->SampleF(wo, sampler->Next2D(), &bsdf_sample);
        if (f.IsBlack() || bsdf_sample.pdf == 0.f) { break; }
        // Update beta
        beta *= f * AbsDotProduct(bsdf_sample.wi, n) / bsdf_sample.pdf;
        // Check if bounce is specular
        specular_bounce = (bsdf_sample.sampled_type & SPECULAR) != 0;
        // Compute new ray
        current_ray = interaction.SpawnRay(bsdf_sample.wi);

        // Possibly terminate path with Russian roulette
        if (bounces > 3) {
            float q = std::max(0.05f, 1.f - beta.Norm());
            if (sampler->Next1D() < q) { break; }
            beta /= 1.f - q;
        }
    }

    return L;
}
Spectrum PathTracer::Integration (
	const Scene * thisScene,
	const Ray & ray
)
{
	Spectrum intensity;

	Attenuation throughput;
	throughput.resetOne();

	Intersection intersectionInfo;

	double cos_i = 0;
	double pdf = 1;

	double rr = 1;

	Ray current_ray( ray.origin, ray.direction );
	size_t current_depth = 0;
	while ( !( current_depth == maxDepth ) )
	{
		if ( !thisScene->IntersectionWithScene( current_ray, intersectionInfo ) )
			break;

		Objects * obj = intersectionInfo.object;

		if ( obj->emitter )
		{
			intensity +=
				Attenuate_Light_Spectrum(
					throughput,
					obj->emission
				);
		}

		BRDFModels * brdf = obj->brdf_model;

		// Get surface (macro) normal direction
		Vector geometryNormalDirection;

		geometryNormalDirection = intersectionInfo.normal;

		Vector sampledNextDirection( 0, 0, 0 );
		Attenuation attenuationFactor;

		attenuationFactor = brdf->SampleBRDF(
			current_ray.direction,
			sampledNextDirection,
			geometryNormalDirection,
			pdf
		);

		//		double randnum = getUniformRandomNumber ( 0.0 , 0.99 );

		//		if ( randnum < rr)
		//			break;

		attenuationFactor.Scaled_by_Spectrum_Value( obj->material_type->color );

		cos_i = AbsDot( sampledNextDirection, geometryNormalDirection );

		throughput = throughput * ( attenuationFactor * ( cos_i / ( rr * pdf ) ) );

		// update ray
		current_ray.origin = intersectionInfo.intersectionPoint;
		current_ray.direction = sampledNextDirection;
		current_depth++;
	}

	return intensity;
}