Beispiel #1
0
CV_IMPL  CvBox2D
cvMinAreaRect2( const CvArr* array, CvMemStorage* storage )
{
    cv::Ptr<CvMemStorage> temp_storage;
    CvBox2D box;
    cv::AutoBuffer<CvPoint2D32f> _points;
    CvPoint2D32f* points;

    memset(&box, 0, sizeof(box));

    int i, n;
    CvSeqReader reader;
    CvContour contour_header;
    CvSeqBlock block;
    CvSeq* ptseq = (CvSeq*)array;
    CvPoint2D32f out[3];

    if( CV_IS_SEQ(ptseq) )
    {
        if( !CV_IS_SEQ_POINT_SET(ptseq) &&
            (CV_SEQ_KIND(ptseq) != CV_SEQ_KIND_CURVE ||
            CV_SEQ_ELTYPE(ptseq) != CV_SEQ_ELTYPE_PPOINT ))
            CV_Error( CV_StsUnsupportedFormat,
                "Input sequence must consist of 2d points or pointers to 2d points" );
        if( !storage )
            storage = ptseq->storage;
    }
    else
    {
        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
    }

    if( storage )
    {
        temp_storage = cvCreateChildMemStorage( storage );
    }
    else
    {
        temp_storage = cvCreateMemStorage(1 << 10);
    }

    ptseq = cvConvexHull2( ptseq, temp_storage, CV_CLOCKWISE, 1 );
    n = ptseq->total;

    _points.allocate(n);
    points = _points;
    cvStartReadSeq( ptseq, &reader );

    if( CV_SEQ_ELTYPE( ptseq ) == CV_32SC2 )
    {
        for( i = 0; i < n; i++ )
        {
            CvPoint pt;
            CV_READ_SEQ_ELEM( pt, reader );
            points[i].x = (float)pt.x;
            points[i].y = (float)pt.y;
        }
    }
    else
    {
        for( i = 0; i < n; i++ )
        {
            CV_READ_SEQ_ELEM( points[i], reader );
        }
    }

    if( n > 2 )
    {
        icvRotatingCalipers( points, n, CV_CALIPERS_MINAREARECT, (float*)out );
        box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
        box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
        box.size.width = (float)sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
        box.size.height = (float)sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
        box.angle = (float)atan2( (double)out[1].y, (double)out[1].x );
    }
    else if( n == 2 )
    {
        box.center.x = (points[0].x + points[1].x)*0.5f;
        box.center.y = (points[0].y + points[1].y)*0.5f;
        double dx = points[1].x - points[0].x;
        double dy = points[1].y - points[0].y;
        box.size.width = (float)sqrt(dx*dx + dy*dy);
        box.size.height = 0;
        box.angle = (float)atan2( dy, dx );
    }
    else
    {
        if( n == 1 )
            box.center = points[0];
    }

    box.angle = (float)(box.angle*180/CV_PI);
    return box;
}
Beispiel #2
0
CvSeq * find_quad( CvSeq * src_contour, CvMemStorage *storage, int min_size)
{
    // stolen from icvGenerateQuads
    CvMemStorage * temp_storage = cvCreateChildMemStorage( storage );
    
    int flags = CV_CALIB_CB_FILTER_QUADS;
    CvSeq *dst_contour = 0;
    
    const int min_approx_level = 2, max_approx_level = MAX_CONTOUR_APPROX;
    int approx_level;
    for( approx_level = min_approx_level; approx_level <= max_approx_level; approx_level++ )
    {
        dst_contour = cvApproxPoly( src_contour, sizeof(CvContour), temp_storage,
                                    CV_POLY_APPROX_DP, (float)approx_level );
        // we call this again on its own output, because sometimes
        // cvApproxPoly() does not simplify as much as it should.
        dst_contour = cvApproxPoly( dst_contour, sizeof(CvContour), temp_storage,
                                    CV_POLY_APPROX_DP, (float)approx_level );

        if( dst_contour->total == 4 )
            break;
    }

    // reject non-quadrangles
    if( dst_contour->total == 4 && cvCheckContourConvexity(dst_contour) )
    {
        CvPoint pt[4];
        double d1, d2, p = cvContourPerimeter(dst_contour);
        double area = fabs(cvContourArea(dst_contour, CV_WHOLE_SEQ));
        double dx, dy;

        for( int i = 0; i < 4; i++ )
            pt[i] = *(CvPoint*)cvGetSeqElem(dst_contour, i);

        dx = pt[0].x - pt[2].x;
        dy = pt[0].y - pt[2].y;
        d1 = sqrt(dx*dx + dy*dy);

        dx = pt[1].x - pt[3].x;
        dy = pt[1].y - pt[3].y;
        d2 = sqrt(dx*dx + dy*dy);

        // philipg.  Only accept those quadrangles which are more square
        // than rectangular and which are big enough
        double d3, d4;
        dx = pt[0].x - pt[1].x;
        dy = pt[0].y - pt[1].y;
        d3 = sqrt(dx*dx + dy*dy);
        dx = pt[1].x - pt[2].x;
        dy = pt[1].y - pt[2].y;
        d4 = sqrt(dx*dx + dy*dy);
        if( !(flags & CV_CALIB_CB_FILTER_QUADS) ||
            (d3*1.1 > d4 && d4*1.1 > d3 && d3*d4 < area*1.5 && area > min_size &&
            d1 >= 0.15 * p && d2 >= 0.15 * p) )
        {
            // CvContourEx* parent = (CvContourEx*)(src_contour->v_prev);
            // parent->counter++;
            // if( !board || board->counter < parent->counter )
            //     board = parent;
            // dst_contour->v_prev = (CvSeq*)parent;
            //for( i = 0; i < 4; i++ ) cvLine( debug_img, pt[i], pt[(i+1)&3], cvScalar(200,255,255), 1, CV_AA, 0 );
            // cvSeqPush( root, &dst_contour );
            return dst_contour;
        }
    }
    
    return NULL;
}
/* 
   Initializes scanner structure.
   Prepare image for scanning ( clear borders and convert all pixels to 0-1.
*/
CV_IMPL CvContourScanner
cvStartFindContours( void* _img, CvMemStorage* storage,
                     int  header_size, int mode, 
                     int  method, CvPoint offset )
{
    int y;
    int step;
    CvSize size;
    uchar *img = 0;
    CvContourScanner scanner = 0;
    CvMat stub, *mat = (CvMat*)_img;

    CV_FUNCNAME( "cvStartFindContours" );

    __BEGIN__;

    if( !storage )
        CV_ERROR( CV_StsNullPtr, "" );

    CV_CALL( mat = cvGetMat( mat, &stub ));

    if( !CV_IS_MASK_ARR( mat ))
        CV_ERROR( CV_StsUnsupportedFormat, "[Start]FindContours support only 8uC1 images" );

    size = cvSize( mat->width, mat->height );
    step = mat->step;
    img = (uchar*)(mat->data.ptr);

    if( method < 0 || method > CV_CHAIN_APPROX_TC89_KCOS )
        CV_ERROR_FROM_STATUS( CV_BADRANGE_ERR );

    if( header_size < (int) (method == CV_CHAIN_CODE ? sizeof( CvChain ) : sizeof( CvContour )))
        CV_ERROR_FROM_STATUS( CV_BADSIZE_ERR );

    scanner = (CvContourScanner)cvAlloc( sizeof( *scanner ));
    if( !scanner )
        CV_ERROR_FROM_STATUS( CV_OUTOFMEM_ERR );

    memset( scanner, 0, sizeof( *scanner ));

    scanner->storage1 = scanner->storage2 = storage;
    scanner->img0 = (char *) img;
    scanner->img = (char *) (img + step);
    scanner->img_step = step;
    scanner->img_size.width = size.width - 1;   /* exclude rightest column */
    scanner->img_size.height = size.height - 1; /* exclude bottomost row */
    scanner->mode = mode;
    scanner->offset = offset;
    scanner->pt.x = scanner->pt.y = 1;
    scanner->lnbd.x = 0;
    scanner->lnbd.y = 1;
    scanner->nbd = 2;
    scanner->mode = (int) mode;
    scanner->frame_info.contour = &(scanner->frame);
    scanner->frame_info.is_hole = 1;
    scanner->frame_info.next = 0;
    scanner->frame_info.parent = 0;
    scanner->frame_info.rect = cvRect( 0, 0, size.width, size.height );
    scanner->l_cinfo = 0;
    scanner->subst_flag = 0;

    scanner->frame.flags = CV_SEQ_FLAG_HOLE;

    scanner->approx_method2 = scanner->approx_method1 = method;

    if( method == CV_CHAIN_APPROX_TC89_L1 || method == CV_CHAIN_APPROX_TC89_KCOS )
        scanner->approx_method1 = CV_CHAIN_CODE;

    if( scanner->approx_method1 == CV_CHAIN_CODE )
    {
        scanner->seq_type1 = CV_SEQ_CHAIN_CONTOUR;
        scanner->header_size1 = scanner->approx_method1 == scanner->approx_method2 ?
            header_size : sizeof( CvChain );
        scanner->elem_size1 = sizeof( char );
    }
    else
    {
        scanner->seq_type1 = CV_SEQ_POLYGON;
        scanner->header_size1 = scanner->approx_method1 == scanner->approx_method2 ?
            header_size : sizeof( CvContour );
        scanner->elem_size1 = sizeof( CvPoint );
    }

    scanner->header_size2 = header_size;

    if( scanner->approx_method2 == CV_CHAIN_CODE )
    {
        scanner->seq_type2 = scanner->seq_type1;
        scanner->elem_size2 = scanner->elem_size1;
    }
    else
    {
        scanner->seq_type2 = CV_SEQ_POLYGON;
        scanner->elem_size2 = sizeof( CvPoint );
    }

    scanner->seq_type1 = scanner->approx_method1 == CV_CHAIN_CODE ?
        CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;

    scanner->seq_type2 = scanner->approx_method2 == CV_CHAIN_CODE ?
        CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;

    cvSaveMemStoragePos( storage, &(scanner->initial_pos) );

    if( method > CV_CHAIN_APPROX_SIMPLE )
    {
        scanner->storage1 = cvCreateChildMemStorage( scanner->storage2 );
    }

    if( mode > CV_RETR_LIST )
    {
        scanner->cinfo_storage = cvCreateChildMemStorage( scanner->storage2 );
        scanner->cinfo_set = cvCreateSet( 0, sizeof( CvSet ), sizeof( _CvContourInfo ),
                                          scanner->cinfo_storage );
        if( scanner->cinfo_storage == 0 || scanner->cinfo_set == 0 )
            CV_ERROR_FROM_STATUS( CV_OUTOFMEM_ERR );
    }

    /* make zero borders */
    memset( img, 0, size.width );
    memset( img + step * (size.height - 1), 0, size.width );

    for( y = 1, img += step; y < size.height - 1; y++, img += step )
    {
        img[0] = img[size.width - 1] = 0;
    }

    /* converts all pixels to 0 or 1 */
    cvThreshold( mat, mat, 0, 1, CV_THRESH_BINARY );
    CV_CHECK();

    __END__;

    if( cvGetErrStatus() < 0 )
        cvFree( &scanner );

    return scanner;
}
static int
icvFindContoursInInterval( const CvArr* src,
                           /*int minValue, int maxValue,*/
                           CvMemStorage* storage,
                           CvSeq** result,
                           int contourHeaderSize )
{
    int count = 0;
    CvMemStorage* storage00 = 0;
    CvMemStorage* storage01 = 0;
    CvSeq* first = 0;

    CV_FUNCNAME( "icvFindContoursInInterval" );

    __BEGIN__;

    int i, j, k, n;

    uchar*  src_data = 0;
    int  img_step = 0;
    CvSize  img_size;

    int  connect_flag;
    int  lower_total;
    int  upper_total;
    int  all_total;

    CvSeq*  runs;
    CvLinkedRunPoint  tmp;
    CvLinkedRunPoint*  tmp_prev;
    CvLinkedRunPoint*  upper_line = 0;
    CvLinkedRunPoint*  lower_line = 0;
    CvLinkedRunPoint*  last_elem;

    CvLinkedRunPoint*  upper_run = 0;
    CvLinkedRunPoint*  lower_run = 0;
    CvLinkedRunPoint*  prev_point = 0;

    CvSeqWriter  writer_ext;
    CvSeqWriter  writer_int;
    CvSeqWriter  writer;
    CvSeqReader  reader;

    CvSeq* external_contours;
    CvSeq* internal_contours;
    CvSeq* prev = 0;

    if( !storage )
        CV_ERROR( CV_StsNullPtr, "NULL storage pointer" );

    if( !result )
        CV_ERROR( CV_StsNullPtr, "NULL double CvSeq pointer" );

    if( contourHeaderSize < (int)sizeof(CvContour))
        CV_ERROR( CV_StsBadSize, "Contour header size must be >= sizeof(CvContour)" );

    CV_CALL( storage00 = cvCreateChildMemStorage(storage));
    CV_CALL( storage01 = cvCreateChildMemStorage(storage));

    {
        CvMat stub, *mat;

        CV_CALL( mat = cvGetMat( src, &stub ));
        if( !CV_IS_MASK_ARR(mat))
            CV_ERROR( CV_StsBadArg, "Input array must be 8uC1 or 8sC1" );
        src_data = mat->data.ptr;
        img_step = mat->step;
        img_size = cvGetMatSize( mat );
    }

    // Create temporary sequences
    runs = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvLinkedRunPoint), storage00 );
    cvStartAppendToSeq( runs, &writer );

    cvStartWriteSeq( 0, sizeof(CvSeq), sizeof(CvLinkedRunPoint*), storage01, &writer_ext );
    cvStartWriteSeq( 0, sizeof(CvSeq), sizeof(CvLinkedRunPoint*), storage01, &writer_int );

    tmp_prev = &(tmp);
    tmp_prev->next = 0;
    tmp_prev->link = 0;
    
    // First line. None of runs is binded
    tmp.pt.y = 0;
    i = 0;
    CV_WRITE_SEQ_ELEM( tmp, writer );
    upper_line = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
    
    tmp_prev = upper_line;
    for( j = 0; j < img_size.width; )
    {
        for( ; j < img_size.width && !ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
            ;
        if( j == img_size.width )
            break;

        tmp.pt.x = j;
        CV_WRITE_SEQ_ELEM( tmp, writer );
        tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
        tmp_prev = tmp_prev->next;

        for( ; j < img_size.width && ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
            ;

        tmp.pt.x = j-1;
        CV_WRITE_SEQ_ELEM( tmp, writer );
        tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
        tmp_prev->link = tmp_prev->next;
        // First point of contour
        CV_WRITE_SEQ_ELEM( tmp_prev, writer_ext );
        tmp_prev = tmp_prev->next;
    }
    cvFlushSeqWriter( &writer );
    upper_line = upper_line->next;
    upper_total = runs->total - 1;
    last_elem = tmp_prev;
    tmp_prev->next = 0;
    
    for( i = 1; i < img_size.height; i++ )
    {
//------// Find runs in next line
        src_data += img_step;
        tmp.pt.y = i;
        all_total = runs->total;
        for( j = 0; j < img_size.width; )
        {
            for( ; j < img_size.width && !ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
                ;
            if( j == img_size.width ) break;

            tmp.pt.x = j;
            CV_WRITE_SEQ_ELEM( tmp, writer );
            tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
            tmp_prev = tmp_prev->next;

            for( ; j < img_size.width && ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
                ;

            tmp.pt.x = j-1;
            CV_WRITE_SEQ_ELEM( tmp, writer );
            tmp_prev = tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
        }//j
        cvFlushSeqWriter( &writer );
        lower_line = last_elem->next;
        lower_total = runs->total - all_total;
        last_elem = tmp_prev;
        tmp_prev->next = 0;
//------//
//------// Find links between runs of lower_line and upper_line
        upper_run = upper_line;
        lower_run = lower_line;
        connect_flag = ICV_SINGLE;

        for( k = 0, n = 0; k < upper_total/2 && n < lower_total/2; )
        {
            switch( connect_flag )
            {
            case ICV_SINGLE:
                if( upper_run->next->pt.x < lower_run->next->pt.x )
                {
                    if( upper_run->next->pt.x >= lower_run->pt.x  -1 )
                    {
                        lower_run->link = upper_run;
                        connect_flag = ICV_CONNECTING_ABOVE;
                        prev_point = upper_run->next;
                    }
                    else
                        upper_run->next->link = upper_run;
                    k++;
                    upper_run = upper_run->next->next;
                }
                else
                {
                    if( upper_run->pt.x <= lower_run->next->pt.x  +1 )
                    {
                        lower_run->link = upper_run;
                        connect_flag = ICV_CONNECTING_BELOW;
                        prev_point = lower_run->next;
                    }
                    else
                    {
                        lower_run->link = lower_run->next;
                        // First point of contour
                        CV_WRITE_SEQ_ELEM( lower_run, writer_ext );
                    }
                    n++;
                    lower_run = lower_run->next->next;
                }
                break;
            case ICV_CONNECTING_ABOVE:
                if( upper_run->pt.x > lower_run->next->pt.x +1 )
                {
                    prev_point->link = lower_run->next;
                    connect_flag = ICV_SINGLE;
                    n++;
                    lower_run = lower_run->next->next;
                }
                else
                {
                    prev_point->link = upper_run;
                    if( upper_run->next->pt.x < lower_run->next->pt.x )
                    {
                        k++;
                        prev_point = upper_run->next;
                        upper_run = upper_run->next->next;
                    }
                    else
                    {
                        connect_flag = ICV_CONNECTING_BELOW;
                        prev_point = lower_run->next;
                        n++;
                        lower_run = lower_run->next->next;
                    }
                }
                break;
            case ICV_CONNECTING_BELOW:
                if( lower_run->pt.x > upper_run->next->pt.x +1 )
                {
                    upper_run->next->link = prev_point;
                    connect_flag = ICV_SINGLE;
                    k++;
                    upper_run = upper_run->next->next;
                }
                else
                {
                    // First point of contour
                    CV_WRITE_SEQ_ELEM( lower_run, writer_int );

                    lower_run->link = prev_point;
                    if( lower_run->next->pt.x < upper_run->next->pt.x )
                    {
                        n++;
                        prev_point = lower_run->next;
                        lower_run = lower_run->next->next;
                    }
                    else
                    {
                        connect_flag = ICV_CONNECTING_ABOVE;
                        k++;
                        prev_point = upper_run->next;
                        upper_run = upper_run->next->next;
                    }
                }
                break;          
            }
        }// k, n

        for( ; n < lower_total/2; n++ )
        {
            if( connect_flag != ICV_SINGLE )
            {
                prev_point->link = lower_run->next;
                connect_flag = ICV_SINGLE;
                lower_run = lower_run->next->next;
                continue;
            }
            lower_run->link = lower_run->next;

            //First point of contour
            CV_WRITE_SEQ_ELEM( lower_run, writer_ext );

            lower_run = lower_run->next->next;
        }

        for( ; k < upper_total/2; k++ )
        {
            if( connect_flag != ICV_SINGLE )
            {
                upper_run->next->link = prev_point;
                connect_flag = ICV_SINGLE;
                upper_run = upper_run->next->next;
                continue;
            }
            upper_run->next->link = upper_run;
            upper_run = upper_run->next->next;
        }
        upper_line = lower_line;
        upper_total = lower_total;
    }//i

    upper_run = upper_line;

    //the last line of image
    for( k = 0; k < upper_total/2; k++ )
    {
        upper_run->next->link = upper_run;
        upper_run = upper_run->next->next;
    }

//------//
//------//Find end read contours
    external_contours = cvEndWriteSeq( &writer_ext );
    internal_contours = cvEndWriteSeq( &writer_int );

    for( k = 0; k < 2; k++ )
    {
        CvSeq* contours = k == 0 ? external_contours : internal_contours;

        cvStartReadSeq( contours, &reader );

        for( j = 0; j < contours->total; j++, count++ )
        {
            CvLinkedRunPoint* p_temp;
            CvLinkedRunPoint* p00;
            CvLinkedRunPoint* p01;
            CvSeq* contour;

            CV_READ_SEQ_ELEM( p00, reader );
            p01 = p00;

            if( !p00->link )
                continue;

            cvStartWriteSeq( CV_SEQ_ELTYPE_POINT | CV_SEQ_POLYLINE | CV_SEQ_FLAG_CLOSED,
                             contourHeaderSize, sizeof(CvPoint), storage, &writer );
            do
            {
                CV_WRITE_SEQ_ELEM( p00->pt, writer );
                p_temp = p00;
                p00 = p00->link;
                p_temp->link = 0;
            }
            while( p00 != p01 );

            contour = cvEndWriteSeq( &writer );
            cvBoundingRect( contour, 1 );

            if( k != 0 )
                contour->flags |= CV_SEQ_FLAG_HOLE;

            if( !first )
                prev = first = contour;
            else
            {
                contour->h_prev = prev;
                prev = prev->h_next = contour;
            }
        }
    }

    __END__;

    if( !first )
        count = -1;

    if( result )
        *result = first;

    cvReleaseMemStorage(&storage00);
    cvReleaseMemStorage(&storage01);

    return count;
}
Beispiel #5
0
CvSeq * MBLBPDetectMultiScale( const IplImage* img,
                               MBLBPCascade * pCascade,
                               CvMemStorage* storage, 
                               int scale_factor1024x,
                               int min_neighbors, 
                               int min_size,
							   int max_size)
{
    IplImage stub;
    CvMat mat, *pmat;
    CvSeq* seq = 0;
    CvSeq* seq2 = 0;
    CvSeq* idx_seq = 0;
    CvSeq* result_seq = 0;
    CvSeq* positions = 0;
    CvMemStorage* temp_storage = 0;
    CvAvgComp* comps = 0;
    
    CV_FUNCNAME( "MBLBPDetectMultiScale" );

    __BEGIN__;

    int factor1024x;
    int factor1024x_max;
    int coi;

    if( ! pCascade) 
        CV_ERROR( CV_StsNullPtr, "Invalid classifier cascade" );

    if( !storage )
        CV_ERROR( CV_StsNullPtr, "Null storage pointer" );

    CV_CALL( img = cvGetImage( img, &stub));
    CV_CALL( pmat = cvGetMat( img, &mat, &coi));

    if( coi )
        CV_ERROR( CV_BadCOI, "COI is not supported" );

    if( CV_MAT_DEPTH(pmat->type) != CV_8U )
        CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );

    if( CV_MAT_CN(pmat->type) > 1 )
    	CV_ERROR( CV_StsUnsupportedFormat, "Only single-channel images are supported" );

    min_size  = MAX(pCascade->win_width,  min_size);
	if(max_size <=0 )
		max_size = MIN(img->width, img->height);
	if(max_size < min_size)
		return NULL;

	CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
    seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
    seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage );
    result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
    positions = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), temp_storage );

    if( min_neighbors == 0 )
        seq = result_seq;

    factor1024x = ((min_size<<10)+(pCascade->win_width/2)) / pCascade->win_width;
	factor1024x_max = (max_size<<10) / pCascade->win_width; //do not round it, to avoid the scan window be out of range

#ifdef _OPENMP
	omp_init_lock(&lock); 
#endif
    for( ; factor1024x <= factor1024x_max;
         factor1024x = ((factor1024x*scale_factor1024x+512)>>10) )
    {
        IplImage * pSmallImage = cvCreateImage( cvSize( ((img->width<<10)+factor1024x/2)/factor1024x, ((img->height<<10)+factor1024x/2)/factor1024x),
                                                IPL_DEPTH_8U, 1);
        try{
			cvResize(img, pSmallImage);
		}
		catch(...)
		{
			cvReleaseImage(&pSmallImage);
			return NULL;
		}
		
		
        CvSize winStride = cvSize( (factor1024x<=2048)+1,  (factor1024x<=2048)+1 );

		cvClearSeq(positions);

        MBLBPDetectSingleScale( pSmallImage, pCascade, positions, winStride);

        for(int i=0; i < (positions ? positions->total : 0); i++)
        {
            CvPoint pt = *(CvPoint*)cvGetSeqElem( positions, i );
            CvRect r = cvRect( (pt.x * factor1024x + 512)>>10,
                               (pt.y * factor1024x + 512)>>10,
                               (pCascade->win_width * factor1024x + 512)>>10,
                               (pCascade->win_height * factor1024x + 512)>>10);

            cvSeqPush(seq, &r);
        }

        cvReleaseImage(&pSmallImage);
    }
#ifdef _OPENMP
	omp_destroy_lock(&lock); 
#endif
  
    if( min_neighbors != 0 )
    {
        // group retrieved rectangles in order to filter out noise 
        int ncomp = cvSeqPartition( seq, 0, &idx_seq, (CvCmpFunc)is_equal, 0 );
        CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
        memset( comps, 0, (ncomp+1)*sizeof(comps[0]));

        // count number of neighbors
        for(int i = 0; i < seq->total; i++ )
        {
            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
            int idx = *(int*)cvGetSeqElem( idx_seq, i );
            assert( (unsigned)idx < (unsigned)ncomp );

            comps[idx].neighbors++;
             
            comps[idx].rect.x += r1.x;
            comps[idx].rect.y += r1.y;
            comps[idx].rect.width += r1.width;
            comps[idx].rect.height += r1.height;
        }

        // calculate average bounding box
        for(int i = 0; i < ncomp; i++ )
        {
            int n = comps[i].neighbors;
            if( n >= min_neighbors )
            {
                CvAvgComp comp;
                comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
                comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
                comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
                comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
                comp.neighbors = comps[i].neighbors;

                cvSeqPush( seq2, &comp );
            }
        }

        // filter out small face rectangles inside large face rectangles
        for(int i = 0; i < seq2->total; i++ )
        {
            CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i );
            int j, flag = 1;

            for( j = 0; j < seq2->total; j++ )
            {
                CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
                int distance = (r2.rect.width *2+5)/10;//cvRound( r2.rect.width * 0.2 );
            
                if( i != j &&
                    r1.rect.x >= r2.rect.x - distance &&
                    r1.rect.y >= r2.rect.y - distance &&
                    r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
                    r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
                    (r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
                {
                    flag = 0;
                    break;
                }
            }

            if( flag )
            {
                cvSeqPush( result_seq, &r1 );
                /* cvSeqPush( result_seq, &r1.rect ); */
            }
        }
    }   


    __END__;

    cvReleaseMemStorage( &temp_storage );
    cvFree( &comps );

    return result_seq;
}
Beispiel #6
0
CV_IMPL CvFileStorage*
cvOpenFileStorage( const char* query, CvMemStorage* dststorage, int flags, const char* encoding )
{
    CvFileStorage* fs = 0;
    int default_block_size = 1 << 18;
    bool append = (flags & 3) == CV_STORAGE_APPEND;
    bool mem = (flags & CV_STORAGE_MEMORY) != 0;
    bool write_mode = (flags & 3) != 0;
    bool write_base64 = (write_mode || append) && (flags & CV_STORAGE_BASE64) != 0;
    bool isGZ = false;
    size_t fnamelen = 0;
    const char * filename = query;

    std::vector<std::string> params;
    if ( !mem )
    {
        params = analyze_file_name( query );
        if ( !params.empty() )
            filename = params.begin()->c_str();

        if ( write_base64 == false && is_param_exist( params, "base64" ) )
            write_base64 = (write_mode || append);
    }

    if( !filename || filename[0] == '\0' )
    {
        if( !write_mode )
            CV_Error( CV_StsNullPtr, mem ? "NULL or empty filename" : "NULL or empty buffer" );
        mem = true;
    }
    else
        fnamelen = strlen(filename);

    if( mem && append )
        CV_Error( CV_StsBadFlag, "CV_STORAGE_APPEND and CV_STORAGE_MEMORY are not currently compatible" );

    fs = (CvFileStorage*)cvAlloc( sizeof(*fs) );
    CV_Assert(fs);
    memset( fs, 0, sizeof(*fs));

    fs->memstorage = cvCreateMemStorage( default_block_size );
    fs->dststorage = dststorage ? dststorage : fs->memstorage;

    fs->flags = CV_FILE_STORAGE;
    fs->write_mode = write_mode;

    if( !mem )
    {
        fs->filename = (char*)cvMemStorageAlloc( fs->memstorage, fnamelen+1 );
        strcpy( fs->filename, filename );

        char* dot_pos = strrchr(fs->filename, '.');
        char compression = '\0';

        if( dot_pos && dot_pos[1] == 'g' && dot_pos[2] == 'z' &&
            (dot_pos[3] == '\0' || (cv_isdigit(dot_pos[3]) && dot_pos[4] == '\0')) )
        {
            if( append )
            {
                cvReleaseFileStorage( &fs );
                CV_Error(CV_StsNotImplemented, "Appending data to compressed file is not implemented" );
            }
            isGZ = true;
            compression = dot_pos[3];
            if( compression )
                dot_pos[3] = '\0', fnamelen--;
        }

        if( !isGZ )
        {
            fs->file = fopen(fs->filename, !fs->write_mode ? "rt" : !append ? "wt" : "a+t" );
            if( !fs->file )
                goto _exit_;
        }
        else
        {
            #if USE_ZLIB
            char mode[] = { fs->write_mode ? 'w' : 'r', 'b', compression ? compression : '3', '\0' };
            fs->gzfile = gzopen(fs->filename, mode);
            if( !fs->gzfile )
                goto _exit_;
            #else
            cvReleaseFileStorage( &fs );
            CV_Error(CV_StsNotImplemented, "There is no compressed file storage support in this configuration");
            #endif
        }
    }

    fs->roots = 0;
    fs->struct_indent = 0;
    fs->struct_flags = 0;
    fs->wrap_margin = 71;

    if( fs->write_mode )
    {
        int fmt = flags & CV_STORAGE_FORMAT_MASK;

        if( mem )
            fs->outbuf = new std::deque<char>;

        if( fmt == CV_STORAGE_FORMAT_AUTO && filename )
        {
            const char* dot_pos = NULL;
            const char* dot_pos2 = NULL;
            // like strrchr() implementation, but save two last positions simultaneously
            for (const char* pos = filename; pos[0] != 0; pos++)
            {
                if (pos[0] == '.')
                {
                    dot_pos2 = dot_pos;
                    dot_pos = pos;
                }
            }
            if (cv_strcasecmp(dot_pos, ".gz") && dot_pos2 != NULL)
            {
                dot_pos = dot_pos2;
            }
            fs->fmt
                = (cv_strcasecmp(dot_pos, ".xml") || cv_strcasecmp(dot_pos, ".xml.gz"))
                ? CV_STORAGE_FORMAT_XML
                : (cv_strcasecmp(dot_pos, ".json") || cv_strcasecmp(dot_pos, ".json.gz"))
                ? CV_STORAGE_FORMAT_JSON
                : CV_STORAGE_FORMAT_YAML
                ;
        }
        else if ( fmt != CV_STORAGE_FORMAT_AUTO )
        {
            fs->fmt = fmt;
        }
        else
        {
            fs->fmt = CV_STORAGE_FORMAT_XML;
        }

        // we use factor=6 for XML (the longest characters (' and ") are encoded with 6 bytes (&apos; and &quot;)
        // and factor=4 for YAML ( as we use 4 bytes for non ASCII characters (e.g. \xAB))
        int buf_size = CV_FS_MAX_LEN*(fs->fmt == CV_STORAGE_FORMAT_XML ? 6 : 4) + 1024;

        if (append)
        {
            fseek( fs->file, 0, SEEK_END );
            if (ftell(fs->file) == 0)
                append = false;
        }

        fs->write_stack = cvCreateSeq( 0, sizeof(CvSeq), fs->fmt == CV_STORAGE_FORMAT_XML ?
                sizeof(CvXMLStackRecord) : sizeof(int), fs->memstorage );
        fs->is_first = 1;
        fs->struct_indent = 0;
        fs->struct_flags = CV_NODE_EMPTY;
        fs->buffer_start = fs->buffer = (char*)cvAlloc( buf_size + 1024 );
        fs->buffer_end = fs->buffer_start + buf_size;

        fs->base64_writer           = 0;
        fs->is_default_using_base64 = write_base64;
        fs->state_of_writing_base64 = base64::fs::Uncertain;

        fs->is_write_struct_delayed = false;
        fs->delayed_struct_key      = 0;
        fs->delayed_struct_flags    = 0;
        fs->delayed_type_name       = 0;

        if( fs->fmt == CV_STORAGE_FORMAT_XML )
        {
            size_t file_size = fs->file ? (size_t)ftell( fs->file ) : (size_t)0;
            fs->strstorage = cvCreateChildMemStorage( fs->memstorage );
            if( !append || file_size == 0 )
            {
                if( encoding )
                {
                    if( strcmp( encoding, "UTF-16" ) == 0 ||
                        strcmp( encoding, "utf-16" ) == 0 ||
                        strcmp( encoding, "Utf-16" ) == 0 )
                    {
                        cvReleaseFileStorage( &fs );
                        CV_Error( CV_StsBadArg, "UTF-16 XML encoding is not supported! Use 8-bit encoding\n");
                    }

                    CV_Assert( strlen(encoding) < 1000 );
                    char buf[1100];
                    sprintf(buf, "<?xml version=\"1.0\" encoding=\"%s\"?>\n", encoding);
                    icvPuts( fs, buf );
                }
                else
                    icvPuts( fs, "<?xml version=\"1.0\"?>\n" );
                icvPuts( fs, "<opencv_storage>\n" );
            }
            else
            {
                int xml_buf_size = 1 << 10;
                char substr[] = "</opencv_storage>";
                int last_occurence = -1;
                xml_buf_size = MIN(xml_buf_size, int(file_size));
                fseek( fs->file, -xml_buf_size, SEEK_END );
                char* xml_buf = (char*)cvAlloc( xml_buf_size+2 );
                // find the last occurrence of </opencv_storage>
                for(;;)
                {
                    int line_offset = (int)ftell( fs->file );
                    char* ptr0 = icvGets( fs, xml_buf, xml_buf_size ), *ptr;
                    if( !ptr0 )
                        break;
                    ptr = ptr0;
                    for(;;)
                    {
                        ptr = strstr( ptr, substr );
                        if( !ptr )
                            break;
                        last_occurence = line_offset + (int)(ptr - ptr0);
                        ptr += strlen(substr);
                    }
                }
                cvFree( &xml_buf );
                if( last_occurence < 0 )
                {
                    cvReleaseFileStorage( &fs );
                    CV_Error( CV_StsError, "Could not find </opencv_storage> in the end of file.\n" );
                }
                icvCloseFile( fs );
                fs->file = fopen( fs->filename, "r+t" );
                CV_Assert(fs->file);
                fseek( fs->file, last_occurence, SEEK_SET );
                // replace the last "</opencv_storage>" with " <!-- resumed -->", which has the same length
                icvPuts( fs, " <!-- resumed -->" );
                fseek( fs->file, 0, SEEK_END );
                icvPuts( fs, "\n" );
            }
            fs->start_write_struct = icvXMLStartWriteStruct;
            fs->end_write_struct = icvXMLEndWriteStruct;
            fs->write_int = icvXMLWriteInt;
            fs->write_real = icvXMLWriteReal;
            fs->write_string = icvXMLWriteString;
            fs->write_comment = icvXMLWriteComment;
            fs->start_next_stream = icvXMLStartNextStream;
        }
        else if( fs->fmt == CV_STORAGE_FORMAT_YAML )
        {
            if( !append)
                icvPuts( fs, "%YAML:1.0\n---\n" );
            else
                icvPuts( fs, "...\n---\n" );
            fs->start_write_struct = icvYMLStartWriteStruct;
            fs->end_write_struct = icvYMLEndWriteStruct;
            fs->write_int = icvYMLWriteInt;
            fs->write_real = icvYMLWriteReal;
            fs->write_string = icvYMLWriteString;
            fs->write_comment = icvYMLWriteComment;
            fs->start_next_stream = icvYMLStartNextStream;
        }
        else
        {
            if( !append )
                icvPuts( fs, "{\n" );
            else
            {
                bool valid = false;
                long roffset = 0;
                for ( ;
                      fseek( fs->file, roffset, SEEK_END ) == 0;
                      roffset -= 1 )
                {
                    const char end_mark = '}';
                    if ( fgetc( fs->file ) == end_mark )
                    {
                        fseek( fs->file, roffset, SEEK_END );
                        valid = true;
                        break;
                    }
                }

                if ( valid )
                {
                    icvCloseFile( fs );
                    fs->file = fopen( fs->filename, "r+t" );
                    CV_Assert(fs->file);
                    fseek( fs->file, roffset, SEEK_END );
                    fputs( ",", fs->file );
                }
                else
                {
                    CV_Error( CV_StsError, "Could not find '}' in the end of file.\n" );
                }
            }
            fs->struct_indent = 4;
            fs->start_write_struct = icvJSONStartWriteStruct;
            fs->end_write_struct = icvJSONEndWriteStruct;
            fs->write_int = icvJSONWriteInt;
            fs->write_real = icvJSONWriteReal;
            fs->write_string = icvJSONWriteString;
            fs->write_comment = icvJSONWriteComment;
            fs->start_next_stream = icvJSONStartNextStream;
        }
    }
    else
    {
        if( mem )
        {
            fs->strbuf = filename;
            fs->strbufsize = fnamelen;
        }

        size_t buf_size = 1 << 20;
        const char* yaml_signature = "%YAML";
        const char* json_signature = "{";
        const char* xml_signature  = "<?xml";
        char buf[16];
        icvGets( fs, buf, sizeof(buf)-2 );
        char* bufPtr = cv_skip_BOM(buf);
        size_t bufOffset = bufPtr - buf;

        if(strncmp( bufPtr, yaml_signature, strlen(yaml_signature) ) == 0)
            fs->fmt = CV_STORAGE_FORMAT_YAML;
        else if(strncmp( bufPtr, json_signature, strlen(json_signature) ) == 0)
            fs->fmt = CV_STORAGE_FORMAT_JSON;
        else if(strncmp( bufPtr, xml_signature, strlen(xml_signature) ) == 0)
            fs->fmt = CV_STORAGE_FORMAT_XML;
        else if(fs->strbufsize  == bufOffset)
            CV_Error(CV_BADARG_ERR, "Input file is empty");
        else
            CV_Error(CV_BADARG_ERR, "Unsupported file storage format");

        if( !isGZ )
        {
            if( !mem )
            {
                fseek( fs->file, 0, SEEK_END );
                buf_size = ftell( fs->file );
            }
            else
                buf_size = fs->strbufsize;
            buf_size = MIN( buf_size, (size_t)(1 << 20) );
            buf_size = MAX( buf_size, (size_t)(CV_FS_MAX_LEN*2 + 1024) );
        }
        icvRewind(fs);
        fs->strbufpos = bufOffset;

        fs->str_hash = cvCreateMap( 0, sizeof(CvStringHash),
                        sizeof(CvStringHashNode), fs->memstorage, 256 );

        fs->roots = cvCreateSeq( 0, sizeof(CvSeq),
                        sizeof(CvFileNode), fs->memstorage );

        fs->buffer = fs->buffer_start = (char*)cvAlloc( buf_size + 256 );
        fs->buffer_end = fs->buffer_start + buf_size;
        fs->buffer[0] = '\n';
        fs->buffer[1] = '\0';

        //mode = cvGetErrMode();
        //cvSetErrMode( CV_ErrModeSilent );
        CV_TRY
        {
            switch (fs->fmt)
            {
            case CV_STORAGE_FORMAT_XML : { icvXMLParse ( fs ); break; }
            case CV_STORAGE_FORMAT_YAML: { icvYMLParse ( fs ); break; }
            case CV_STORAGE_FORMAT_JSON: { icvJSONParse( fs ); break; }
            default: break;
            }
        }
        CV_CATCH_ALL
        {
            fs->is_opened = true;
            cvReleaseFileStorage( &fs );
            CV_RETHROW();
        }
        //cvSetErrMode( mode );

        // release resources that we do not need anymore
        cvFree( &fs->buffer_start );
        fs->buffer = fs->buffer_end = 0;
    }
    fs->is_opened = true;

_exit_:
    if( fs )
    {
        if( cvGetErrStatus() < 0 || (!fs->file && !fs->gzfile && !fs->outbuf && !fs->strbuf) )
        {
            cvReleaseFileStorage( &fs );
        }
        else if( !fs->write_mode )
        {
            icvCloseFile(fs);
            // we close the file since it's not needed anymore. But icvCloseFile() resets is_opened,
            // which may be misleading. Since we restore the value of is_opened.
            fs->is_opened = true;
        }
    }

    return  fs;
}