int CV_ThreshHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = CvTS::OK; int i; float* ptr0 = values->data.fl; float* ptr = 0; CvSparseMat* sparse = 0; if( hist_type == CV_HIST_ARRAY ) ptr = (float*)cvPtr1D( hist[0]->bins, 0 ); else sparse = (CvSparseMat*)hist[0]->bins; if( code > 0 ) { for( i = 0; i < orig_nz_count; i++ ) { float v0 = ptr0[i], v; if( hist_type == CV_HIST_ARRAY ) v = ptr[i]; else { v = (float)cvGetRealND( sparse, indices->data.i + i*cdims ); cvClearND( sparse, indices->data.i + i*cdims ); } if( v0 <= threshold ) v0 = 0.f; if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( CvTS::LOG, "The %d-th bin is invalid (=%g)\n", i, v ); code = CvTS::FAIL_INVALID_OUTPUT; break; } else if( fabs(v0 - v) > FLT_EPSILON*10*fabs(v0) ) { ts->printf( CvTS::LOG, "The %d-th bin is incorrect (=%g, should be =%g)\n", i, v, v0 ); code = CvTS::FAIL_BAD_ACCURACY; break; } } } if( code > 0 && hist_type == CV_HIST_SPARSE ) { if( sparse->heap->active_count > 0 ) { ts->printf( CvTS::LOG, "There some extra histogram bins in the sparse histogram after the thresholding\n" ); code = CvTS::FAIL_INVALID_OUTPUT; } } if( code < 0 ) ts->set_failed_test_info( code ); return code; }
void CvAdaptiveSkinDetector::Histogram::mergeWith(CvAdaptiveSkinDetector::Histogram *source, double weight) { float myweight = (float)(1-weight); float maxVal1 = 0, maxVal2 = 0, *f1, *f2, ff1, ff2; cvGetMinMaxHistValue(source->fHistogram, NULL, &maxVal2); if (maxVal2 > 0 ) { cvGetMinMaxHistValue(fHistogram, NULL, &maxVal1); if (maxVal1 <= 0) { for (int i = 0; i < HistogramSize; i++) { f1 = (float*)cvPtr1D(fHistogram->bins, i); f2 = (float*)cvPtr1D(source->fHistogram->bins, i); (*f1) = (*f2); } } else { for (int i = 0; i < HistogramSize; i++) { f1 = (float*)cvPtr1D(fHistogram->bins, i); f2 = (float*)cvPtr1D(source->fHistogram->bins, i); ff1 = ((*f1)/maxVal1)*myweight; if (ff1 < 0) ff1 = -ff1; ff2 = (float)(((*f2)/maxVal2)*weight); if (ff2 < 0) ff2 = -ff2; (*f1) = (ff1 + ff2); } } } };
int CV_ThreshHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { CvRNG* rng = ts->get_rng(); threshold = cvTsRandReal(rng)*gen_hist_max_val; if( hist_type == CV_HIST_ARRAY ) { orig_nz_count = total_size; values = cvCreateMat( 1, total_size, CV_32F ); memcpy( values->data.fl, cvPtr1D( hist[0]->bins, 0 ), total_size*sizeof(float) ); } else { CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins; CvSparseMatIterator iterator; CvSparseNode* node; int i, k; orig_nz_count = sparse->heap->active_count; values = cvCreateMat( 1, orig_nz_count+1, CV_32F ); indices = cvCreateMat( 1, (orig_nz_count+1)*cdims, CV_32S ); for( node = cvInitSparseMatIterator( sparse, &iterator ), i = 0; node != 0; node = cvGetNextSparseNode( &iterator ), i++ ) { const int* idx = CV_NODE_IDX(sparse,node); OPENCV_ASSERT( i < orig_nz_count, "CV_ThreshHistTest::prepare_test_case", "Buffer overflow" ); values->data.fl[i] = *(float*)CV_NODE_VAL(sparse,node); for( k = 0; k < cdims; k++ ) indices->data.i[i*cdims + k] = idx[k]; } OPENCV_ASSERT( i == orig_nz_count, "Unmatched buffer size", "CV_ThreshHistTest::prepare_test_case" ); } } return code; }
int CV_NormHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = CvTS::OK; double sum = 0; if( hist_type == CV_HIST_ARRAY ) { int i; const float* ptr = (float*)cvPtr1D( hist[0]->bins, 0 ); for( i = 0; i < total_size; i++ ) sum += ptr[i]; } else { CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins; CvSparseMatIterator iterator; CvSparseNode *node; for( node = cvInitSparseMatIterator( sparse, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { sum += *(float*)CV_NODE_VAL(sparse,node); } } if( cvIsNaN(sum) || cvIsInf(sum) ) { ts->printf( CvTS::LOG, "The normalized histogram has invalid sum =%g\n", sum ); code = CvTS::FAIL_INVALID_OUTPUT; } else if( fabs(sum - factor) > FLT_EPSILON*10*fabs(factor) ) { ts->printf( CvTS::LOG, "The normalized histogram has incorrect sum =%g, while it should be =%g\n", sum, factor ); code = CvTS::FAIL_BAD_ACCURACY; } if( code < 0 ) ts->set_failed_test_info( code ); return code; }
static double icvGetThreshVal_Otsu( const CvHistogram* hist ) { double max_val = 0; CV_FUNCNAME( "icvGetThreshVal_Otsu" ); __BEGIN__; int i, count; const float* h; double sum = 0, mu = 0; bool uniform = false; double low = 0, high = 0, delta = 0; float* nu_thresh = 0; double mu1 = 0, q1 = 0; double max_sigma = 0; if( !CV_IS_HIST(hist) || CV_IS_SPARSE_HIST(hist) || hist->mat.dims != 1 ) CV_ERROR( CV_StsBadArg, "The histogram in Otsu method must be a valid dense 1D histogram" ); count = hist->mat.dim[0].size; h = (float*)cvPtr1D( hist->bins, 0 ); if( !CV_HIST_HAS_RANGES(hist) || CV_IS_UNIFORM_HIST(hist) ) { if( CV_HIST_HAS_RANGES(hist) ) { low = hist->thresh[0][0]; high = hist->thresh[0][1]; } else { low = 0; high = count; } delta = (high-low)/count; low += delta*0.5; uniform = true; } else nu_thresh = hist->thresh2[0]; for( i = 0; i < count; i++ ) { sum += h[i]; if( uniform ) mu += (i*delta + low)*h[i]; else mu += (nu_thresh[i*2] + nu_thresh[i*2+1])*0.5*h[i]; } sum = fabs(sum) > FLT_EPSILON ? 1./sum : 0; mu *= sum; mu1 = 0; q1 = 0; for( i = 0; i < count; i++ ) { double p_i, q2, mu2, val_i, sigma; p_i = h[i]*sum; mu1 *= q1; q1 += p_i; q2 = 1. - q1; if( MIN(q1,q2) < FLT_EPSILON || MAX(q1,q2) > 1. - FLT_EPSILON ) continue; if( uniform ) val_i = i*delta + low; else val_i = (nu_thresh[i*2] + nu_thresh[i*2+1])*0.5; mu1 = (mu1 + val_i*p_i)/q1; mu2 = (mu - q1*mu1)/q2; sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); if( sigma > max_sigma ) { max_sigma = sigma; max_val = val_i; } } __END__; return max_val; }
void CV_QueryHistTest::run_func(void) { int i, iters = values->cols; CvArr* h = hist[0]->bins; const int* idx = indices->data.i; float* val = values->data.fl; float default_value = 0.f; // stage 1: write bins if( cdims == 1 ) for( i = 0; i < iters; i++ ) { float v0 = values0->data.fl[i]; if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal1D( h, idx[i], v0 ); else *(float*)cvPtr1D( h, idx[i] ) = v0; } else cvSetRealND( h, idx+i, v0 ); } else if( cdims == 2 ) for( i = 0; i < iters; i++ ) { float v0 = values0->data.fl[i]; if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal2D( h, idx[i*2], idx[i*2+1], v0 ); else *(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] ) = v0; } else cvSetRealND( h, idx+i*2, v0 ); } else if( cdims == 3 ) for( i = 0; i < iters; i++ ) { float v0 = values0->data.fl[i]; if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2], v0 ); else *(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ) = v0; } else cvSetRealND( h, idx+i*3, v0 ); } else for( i = 0; i < iters; i++ ) { float v0 = values0->data.fl[i]; if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) cvSetRealND( h, idx+i*cdims, v0 ); else *(float*)cvPtrND( h, idx+i*cdims ) = v0; } // stage 2: read bins if( cdims == 1 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr1D( h, idx[i] ); else val[i] = (float)cvGetReal1D( h, idx[i] ); } else if( cdims == 2 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] ); else val[i] = (float)cvGetReal2D( h, idx[i*2], idx[i*2+1] ); } else if( cdims == 3 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ); else val[i] = (float)cvGetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ); } else for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtrND( h, idx+i*cdims ); else val[i] = (float)cvGetRealND( h, idx+i*cdims ); } }
int CV_CompareHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = CvTS::OK; int i; double result0[MAX_METHOD+1]; double s0 = 0, s1 = 0, sq0 = 0, sq1 = 0, t; for( i = 0; i < MAX_METHOD; i++ ) result0[i] = 0; if( hist_type == CV_HIST_ARRAY ) { float* ptr0 = (float*)cvPtr1D( hist[0]->bins, 0 ); float* ptr1 = (float*)cvPtr1D( hist[1]->bins, 0 ); for( i = 0; i < total_size; i++ ) { double v0 = ptr0[i], v1 = ptr1[i]; result0[CV_COMP_CORREL] += v0*v1; result0[CV_COMP_INTERSECT] += MIN(v0,v1); if( fabs(v0 + v1) > DBL_EPSILON ) result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/(v0 + v1); s0 += v0; s1 += v1; sq0 += v0*v0; sq1 += v1*v1; result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1); } } else { CvSparseMat* sparse0 = (CvSparseMat*)hist[0]->bins; CvSparseMat* sparse1 = (CvSparseMat*)hist[1]->bins; CvSparseMatIterator iterator; CvSparseNode* node; for( node = cvInitSparseMatIterator( sparse0, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator ) ) { const int* idx = CV_NODE_IDX(sparse0, node); double v0 = *(float*)CV_NODE_VAL(sparse0, node); double v1 = (float)cvGetRealND(sparse1, idx); result0[CV_COMP_CORREL] += v0*v1; result0[CV_COMP_INTERSECT] += MIN(v0,v1); if( fabs(v0 + v1) > DBL_EPSILON ) result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/(v0 + v1); s0 += v0; sq0 += v0*v0; result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1); } for( node = cvInitSparseMatIterator( sparse1, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator ) ) { const int* idx = CV_NODE_IDX(sparse1, node); double v1 = *(float*)CV_NODE_VAL(sparse1, node); double v0 = (float)cvGetRealND(sparse0, idx); if( fabs(v0) < DBL_EPSILON ) result0[CV_COMP_CHISQR] += v1; s1 += v1; sq1 += v1*v1; } } t = (sq0 - s0*s0/total_size)*(sq1 - s1*s1/total_size); result0[CV_COMP_CORREL] = fabs(t) > DBL_EPSILON ? (result0[CV_COMP_CORREL] - s0*s1/total_size)/sqrt(t) : 1; s1 *= s0; s0 = result0[CV_COMP_BHATTACHARYYA]; s0 = 1. - s0*(s1 > FLT_EPSILON ? 1./sqrt(s1) : 1.); result0[CV_COMP_BHATTACHARYYA] = sqrt(MAX(s0,0.)); for( i = 0; i < MAX_METHOD; i++ ) { double v = result[i], v0 = result0[i]; const char* method_name = i == CV_COMP_CHISQR ? "Chi-Square" : i == CV_COMP_CORREL ? "Correlation" : i == CV_COMP_INTERSECT ? "Intersection" : i == CV_COMP_BHATTACHARYYA ? "Bhattacharyya" : "Unknown"; if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( CvTS::LOG, "The comparison result using the method #%d (%s) is invalid (=%g)\n", i, method_name, v ); code = CvTS::FAIL_INVALID_OUTPUT; break; } else if( fabs(v0 - v) > FLT_EPSILON*10*MAX(fabs(v0),0.1) ) { ts->printf( CvTS::LOG, "The comparison result using the method #%d (%s)\n\tis inaccurate (=%g, should be =%g)\n", i, method_name, v, v0 ); code = CvTS::FAIL_BAD_ACCURACY; break; } } if( code < 0 ) ts->set_failed_test_info( code ); return code; }