void tlin::createS(SuperMatrix &A, int rows, int cols, int nnz)
{
	double *values = doubleMalloc(nnz);
	int *rowind = intMalloc(nnz);
	int *colptr = intMalloc(cols + 1);

	dCreate_CompCol_Matrix(&A, rows, cols, nnz, values, rowind, colptr, SLU_NC, SLU_D, SLU_GE);
}
void tlin::allocS(SuperMatrix *&A, int rows, int cols, int nnz)
{
	A = (SuperMatrix *)SUPERLU_MALLOC(sizeof(SuperMatrix));
	double *values = doubleMalloc(nnz);
	int *rowind = intMalloc(nnz);
	int *colptr = intMalloc(cols + 1);

	dCreate_CompCol_Matrix(A, rows, cols, nnz, values, rowind, colptr, SLU_NC, SLU_D, SLU_GE);
}
Beispiel #3
0
Error_t floorplan_matrix_build
(
    FloorplanMatrix_t *flpmatrix,
    CellIndex_t        nrows,
    CellIndex_t        ncolumns,
    CellIndex_t        nnz
)
{
    flpmatrix->NRows    = nrows ;
    flpmatrix->NColumns = ncolumns ;
    flpmatrix->NNz      = nnz ;

    flpmatrix->RowIndices = (CellIndex_t *) malloc (sizeof(CellIndex_t) * nnz) ;

    if (flpmatrix->RowIndices == NULL)

        return TDICE_FAILURE ;

    flpmatrix->ColumnPointers = (CellIndex_t *) malloc (sizeof(CellIndex_t) * (ncolumns + 1)) ;

    if (flpmatrix->ColumnPointers == NULL)
    {
        free (flpmatrix->RowIndices) ;
        return TDICE_FAILURE ;
    }

    flpmatrix->Values = (Source_t *) malloc (sizeof(Source_t) * nnz) ;

    if (flpmatrix->Values == NULL)
    {
        free (flpmatrix->ColumnPointers) ;
        free (flpmatrix->RowIndices) ;
        return TDICE_FAILURE ;
    }

    dCreate_CompCol_Matrix

        (&flpmatrix->SLUMatrix, flpmatrix->NRows, flpmatrix->NColumns, flpmatrix->NNz,
         flpmatrix->Values, (int*) flpmatrix->RowIndices, (int*) flpmatrix->ColumnPointers,
         SLU_NC, SLU_D, SLU_GE) ;

    return TDICE_SUCCESS ;
}
static SuperMatrix* supermatrix_new(adj_graph_t* graph)
{
  SuperMatrix* A = polymec_malloc(sizeof(SuperMatrix));
  
  // Fetch sparsity information from the graph.
  int* edge_offsets = adj_graph_edge_offsets(graph);
  int num_rows = adj_graph_num_vertices(graph);
  int num_edges = edge_offsets[num_rows];
  int num_nz = num_rows + num_edges;

  // Translate the sparsity information in the graph to column indices and 
  // row pointers. Since the graph is effectively stored in compressed 
  // row format, we will use SuperLU's compressed row matrix format.
  int* row_ptrs = intMalloc(num_rows + 1);
  int* col_indices = intMalloc(num_nz);
  int* edges = adj_graph_adjacency(graph);
  int offset = 0;
  for (int i = 0; i < num_rows; ++i)
  {
    row_ptrs[i] = offset;
    col_indices[offset++] = i; // diagonal column

    // Off-diagonal columns.
    for (int j = edge_offsets[i]; j < edge_offsets[i+1]; ++j)
      col_indices[offset++] = edges[j];
    int_qsort(&col_indices[row_ptrs[i]+1], edge_offsets[i+1]-edge_offsets[i]);
  }
  row_ptrs[num_rows] = offset;
  ASSERT(offset == num_nz);

  // Create zeros for the matrix.
  real_t* mat_zeros = SUPERLU_MALLOC(sizeof(real_t) * num_nz);
  memset(mat_zeros, 0, sizeof(real_t) * num_nz);

  // Hand over these resources to create the Supermatrix.
  dCreate_CompCol_Matrix(A, num_rows, num_rows, num_nz, 
                         mat_zeros, col_indices, row_ptrs, 
                         SLU_NC, SLU_D, SLU_GE);
  return A;
}
Beispiel #5
0
void
dgssvx(char *fact, char *trans, char *refact,
       SuperMatrix *A, factor_param_t *factor_params, int *perm_c,
       int *perm_r, int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *  
 *      1.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A is
 *           overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N')
 *           or diag(C)*B (if trans = 'T' or 'C').
 *
 *      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *           matrix that usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U,
 *           with Pr determined by partial pivoting.
 *
 *      1.4. Compute the reciprocal pivot growth factor.
 *
 *      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form of 
 *           A is used to estimate the condition number of the matrix A. If
 *           the reciprocal of the condition number is less than machine
 *           precision, info = A->ncol+1 is returned as a warning, but the
 *           routine still goes on to solve for X and computes error bounds
 *           as described below.
 *
 *      1.6. The system of equations is solved for X using the factored form
 *           of A.
 *
 *      1.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      1.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the transpose of A:
 *
 *      2.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A'*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A' is
 *           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *      2.2. Permute columns of transpose(A) (rows of A), 
 *           forming transpose(A)*Pc, where Pc is a permutation matrix that 
 *           usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           transpose(A) (after equilibration if fact = 'E') as 
 *           Pr*transpose(A)*Pc = L*U with the permutation Pr determined by
 *           partial pivoting.
 *
 *      2.4. Compute the reciprocal pivot growth factor.
 *
 *      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form 
 *           of transpose(A) is used to estimate the condition number of the
 *           matrix A. If the reciprocal of the condition number
 *           is less than machine precision, info = A->nrow+1 is returned as
 *           a warning, but the routine still goes on to solve for X and
 *           computes error bounds as described below.
 *
 *      2.6. The system of equations is solved for X using the factored form
 *           of transpose(A).
 *
 *      2.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      2.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * fact    (input) char*
 *         Specifies whether or not the factored form of the matrix
 *         A is supplied on entry, and if not, whether the matrix A should
 *         be equilibrated before it is factored.
 *         = 'F': On entry, L, U, perm_r and perm_c contain the factored
 *                form of A. If equed is not 'N', the matrix A has been
 *                equilibrated with scaling factors R and C.
 *                A, L, U, perm_r are not modified.
 *         = 'N': The matrix A will be factored, and the factors will be
 *                stored in L and U.
 *         = 'E': The matrix A will be equilibrated if necessary, then
 *                factored into L and U.
 *
 * trans   (input) char*
 *         Specifies the form of the system of equations:
 *         = 'N': A * X = B        (No transpose)
 *         = 'T': A**T * X = B     (Transpose)
 *         = 'C': A**H * X = B     (Transpose)
 *
 * refact  (input) char*
 *         Specifies whether we want to re-factor the matrix.
 *         = 'N': Factor the matrix A.
 *         = 'Y': Matrix A was factored before, now we want to re-factor
 *                matrix A with perm_r and etree as inputs. Use
 *                the same storage for the L\U factors previously allocated,
 *                expand it if necessary. User should insure to use the same
 *                memory model.  In this case, perm_r may be modified due to
 *                different pivoting determined by diagonal threshold.
 *         If fact = 'F', then refact is not accessed.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of the linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = D_, Mtype = GE. In the future,
 *         more general A can be handled.
 *
 *         On entry, If fact = 'F' and equed is not 'N', then A must have
 *         been equilibrated by the scaling factors in R and/or C.  
 *         A is not modified if fact = 'F' or 'N', or if fact = 'E' and 
 *         equed = 'N' on exit.
 *
 *         On exit, if fact = 'E' and equed is not 'N', A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = 'R':  A := diag(R) * A
 *           equed = 'C':  A := A * diag(C)
 *           equed = 'B':  A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *           equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * factor_params (input) factor_param_t*
 *         The structure defines the input scalar parameters, consisting of
 *         the following fields. If factor_params = NULL, the default
 *         values are used for all the fields; otherwise, the values
 *         are given by the user.
 *         - panel_size (int): Panel size. A panel consists of at most
 *             panel_size consecutive columns. If panel_size = -1, use 
 *             default value 8.
 *         - relax (int): To control degree of relaxing supernodes. If the
 *             number of nodes (columns) in a subtree of the elimination
 *             tree is less than relax, this subtree is considered as one
 *             supernode, regardless of the row structures of those columns.
 *             If relax = -1, use default value 8.
 *         - diag_pivot_thresh (double): Diagonal pivoting threshold.
 *             At step j of the Gaussian elimination, if
 *                 abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *             then use A_jj as pivot. 0 <= diag_pivot_thresh <= 1.
 *             If diag_pivot_thresh = -1, use default value 1.0,
 *             which corresponds to standard partial pivoting.
 *         - drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED)
 *             At step j of the Gaussian elimination, if
 *                 abs(A_ij)/(max_i abs(A_ij)) < drop_tol,
 *             then drop entry A_ij. 0 <= drop_tol <= 1.
 *             If drop_tol = -1, use default value 0.0, which corresponds to
 *             standard Gaussian elimination.
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If refact is not 'Y', perm_r is output argument;
 *         If refact = 'Y', the pivoting routine will try to use the input
 *         perm_r, unless a certain threshold criterion is violated.
 *         In that case, perm_r is overwritten by a new permutation
 *         determined by partial pivoting or diagonal threshold pivoting.
 * 
 * etree   (input/output) int*,  dimension (A->ncol)
 *         Elimination tree of Pc'*A'*A*Pc.
 *         If fact is not 'F' and refact = 'Y', etree is an input argument,
 *         otherwise it is an output argument.
 *         Note: etree is a vector of parent pointers for a forest whose
 *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *         Specifies the form of equilibration that was done.
 *         = 'N': No equilibration.
 *         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = 'B': Both row and column equilibration, i.e., A was replaced 
 *                by diag(R)*A*diag(C).
 *         If fact = 'F', equed is an input argument, otherwise it is
 *         an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = 'R' or 'B', A (if A->Stype = NC) or transpose(A) (if
 *             A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = 'N' or 'C', R is not accessed.
 *         If fact = 'F', R is an input argument; otherwise, R is output.
 *         If fact = 'F' and equed = 'R' or 'B', each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = 'C' or 'B', A (if A->Stype = NC) or transpose(A) (if 
 *             A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = 'N' or 'R', C is not accessed.
 *         If fact = 'F', C is an input argument; otherwise, C is output.
 *         If fact = 'F' and equed = 'C' or 'B', each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = D_, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NC, Dtype = D_, Mtype = TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *         User supplied workspace, should be large enough
 *         to hold data structures for factors L and U.
 *         On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               mem_usage->total_needed; no other side effects.
 *
 *         See argument 'mem_usage' for memory usage statistics.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = D_, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = 'N', B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = 'N' and equed = 'R' or 'B', B is overwritten by
 *                  diag(R)*B;
 *               if trans = 'T' or 'C' and equed = 'C' of 'B', B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = 'N' and equed = 'C' or 'B', B is overwritten by
 *                  diag(C)*B;
 *               if trans = 'T' or 'C' and equed = 'R' of 'B', B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = D_, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not 'N', and the solution to the equilibrated
 *         system is inv(diag(C))*X if trans = 'N' and equed = 'C' or 'B',
 *         or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *         The infinity norm is used. If recip_pivot_growth is much less
 *         than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * FERR    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * BERR    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * mem_usage (output) mem_usage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ;
    char      trant[1], norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh, drop_tol;
    double    t0;      /* temporary time */
    double    *utime;
    extern SuperLUStat_t SuperLUStat;

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

#if 0
printf("dgssvx: fact=%c, trans=%c, refact=%c, equed=%c\n",
       *fact, *trans, *refact, *equed);
#endif
    
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (!nofact && !equil && !lsame_(fact, "F")) *info = -1;
    else if (!notran && !lsame_(trans, "T") && !lsame_(trans, "C")) *info = -2;
    else if ( !(lsame_(refact,"Y") || lsame_(refact, "N")) ) *info = -3;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != NC && A->Stype != NR) ||
	      A->Dtype != D_ || A->Mtype != GE )
	*info = -4;
    else if (lsame_(fact, "F") && !(rowequ || colequ || lsame_(equed, "N")))
	*info = -9;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -10;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -11;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -15;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != DN || B->Dtype != D_ || 
		      B->Mtype != GE )
		*info = -16;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != DN ||
		      X->Dtype != D_ || X->Mtype != GE )
		*info = -17;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("dgssvx", &i);
	return;
    }
    
    /* Default values for factor_params */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = 1.0;
    drop_tol   = 0.0;
    if ( factor_params != NULL ) {
	if ( factor_params->panel_size != -1 )
	    panel_size = factor_params->panel_size;
	if ( factor_params->relax != -1 ) relax = factor_params->relax;
	if ( factor_params->diag_pivot_thresh != -1 )
	    diag_pivot_thresh = factor_params->diag_pivot_thresh;
	if ( factor_params->drop_tol != -1 )
	    drop_tol = factor_params->drop_tol;
    }

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
    
    /* Convert A to NC format when necessary. */
    if ( A->Stype == NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    *trant = 'T';
	    notran = 0;
	} else {
	    *trant = 'N';
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	*trant = *trans;
	AA = A;
    }

    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* Scale the right hand side if equilibration was performed. */
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
		  Bmat[i + j*ldb] *= R[i];
	        }
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
	      Bmat[i + j*ldb] *= C[i];
	    }
    }

    if ( nofact || equil ) {
	
	t0 = SuperLU_timer_();
	sp_preorder(refact, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_r, perm_c, L, U, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	}
	return;
    }

    /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
    *recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);

    /* Estimate the reciprocal of the condition number of A. */
    t0 = SuperLU_timer_();
    if ( notran ) {
	*(unsigned char *)norm = '1';
    } else {
	*(unsigned char *)norm = 'I';
    }
    anorm = dlangs(norm, AA);
    dgscon(norm, L, U, anorm, rcond, info);
    utime[RCOND] = SuperLU_timer_() - t0;
    
    /* Compute the solution matrix X. */
    for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	for (i = 0; i < B->nrow; i++)
	    Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
    t0 = SuperLU_timer_();
    dgstrs (trant, L, U, perm_r, perm_c, X, info);
    utime[SOLVE] = SuperLU_timer_() - t0;
    
    /* Use iterative refinement to improve the computed solution and compute
       error bounds and backward error estimates for it. */
    t0 = SuperLU_timer_();
    dgsrfs(trant, AA, L, U, perm_r, perm_c, equed, R, C, B,
	      X, ferr, berr, info);
    utime[REFINE] = SuperLU_timer_() - t0;

    /* Transform the solution matrix X to a solution of the original system. */
    if ( notran ) {
	if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                  Xmat[i + j*ldx] *= C[i];
	        }
	}
    } else if ( rowequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
	      Xmat[i + j*ldx] *= R[i];
            }
    }

    /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
    if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;

    dQuerySpace(L, U, panel_size, mem_usage);

    if ( nofact || equil ) Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

/*     PrintStat( &SuperLUStat ); */
    StatFree();
}
Beispiel #6
0
int main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * DDRIVE is the main test program for the DOUBLE linear 
 * equation driver routines DGSSV and DGSSVX.
 * 
 * The program is invoked by a shell script file -- dtest.csh.
 * The output from the tests are written into a file -- dtest.out.
 *
 * =====================================================================
 */
    double         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    GlobalLU_t   Glu; /* Not needed on return. */
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    double  zero = 0.0;
    double         *R, *C;
    double         *ferr, *berr;
    double         *rwork;
    double	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    double         *xact;
    double         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    double         rpg, rcond;
    int            i, j, k1;
    double         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    double         anorm, cndnum;
    double         *Afull;
    double         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];
    FILE           *fp;

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int dgst01(int, int, SuperMatrix *, SuperMatrix *, 
		      SuperMatrix *, int *, int *, double *);
    extern int dgst02(trans_t, int, int, int, SuperMatrix *, double *,
                      int, double *, int, double *resid);
    extern int dgst04(int, int, double *, int, 
                      double *, int, double rcond, double *resid);
    extern int dgst07(trans_t, int, int, SuperMatrix *, double *, int,
                         double *, int, double *, int, 
                         double *, double *, double *);
    extern int dlatb4_slu(char *, int *, int *, int *, char *, int *, int *, 
	               double *, int *, double *, char *);
    extern int dlatms_slu(int *, int *, char *, int *, char *, double *d,
                       int *, double *, double *, int *, int *,
                       char *, double *, int *, double *, int *);
    extern int sp_dconvert(int, int, double *, int, int, int,
	                   double *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "DGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u, &fp);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SLU_DOUBLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = doubleCalloc(lda * n);
	dallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	dreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
    }

    dallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = doubleMalloc(m * nrhs);
    bsav = doubleMalloc(m * nrhs);
    solx = doubleMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    dCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (double *) SUPERLU_MALLOC(m*sizeof(double));
    C       = (double *) SUPERLU_MALLOC(n*sizeof(double));
    ferr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    berr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (double *) SUPERLU_MALLOC(j*sizeof(double));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = doubleCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with DLATB4 and generate a test matrix
	       with DLATMS.  */
	    dlatb4_slu(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    dlatms_slu(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "DLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_dconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	dCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_D, SLU_GE);
	dCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	dGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    dCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    dgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( strncmp(equed, "R", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( strncmp(equed, "C", 1)==0 ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( strncmp(equed, "B", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    dlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			dgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &Glu, &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			dCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			dFillRHS(trans, nrhs, xact, ldx, &A, &B);
			dCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test dgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    dCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    dgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "dgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                dgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    dCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    dgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "dgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing dgssv */
    
			/*----------------
			 * Test dgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    dlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using dgssvx.      */
			dgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &Glu,
			       &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "dgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                dgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				dCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				dgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				dgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				dgst07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "dgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing dgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif
        Destroy_SuperMatrix_Store(&A);
        Destroy_SuperMatrix_Store(&ASAV);
        StatFree(&stat);

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("DGE", nfail, nrun, nerrs);

    if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull);
    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
#if 0
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
#else
    SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa);
    SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save);
#endif
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}
Beispiel #7
0
int main ( int argc, char *argv[] )

/**********************************************************************/
/*
  Purpose:

    SUPER_LU_D0 runs a small 5 by 5 example of the use of SUPER_LU.

  Modified:

    23 April 2004

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide,
    Sections 1 and 2.
*/
{
  double *a;
  SuperMatrix A;
  int *asub;
  SuperMatrix B;
  int i;
  int info;
  SuperMatrix L;
  int m;
  int n;
  int nnz;
  int nrhs;
  superlu_options_t options;
  int *perm_c;
  int *perm_r;
  int permc_spec;
  double *rhs;
  double sol[5];
  SuperLUStat_t stat;
  SuperMatrix U;
  int *xa;
/*
  Say hello.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_D0:\n" );
  printf ( "  Simple 5 by 5 example of SUPER_LU solver.\n" );
/* 
  Initialize parameters. 
*/
  m = 5;
  n = 5;
  nnz = 12;
/* 
  Set aside space for the arrays. 
*/
  a = doubleMalloc ( nnz );
  if ( !a ) 
  {
    ABORT ( "Malloc fails for a[]." );
  }

  asub = intMalloc ( nnz );
  if ( !asub ) 
  {
    ABORT ( "Malloc fails for asub[]." );
  }

  xa = intMalloc ( n+1 );
  if ( !xa ) 
  { 
    ABORT ( "Malloc fails for xa[]." );
  }
/* 
  Initialize matrix A. 
*/
  a[0] = 19.0; 
  a[1] = 12.0; 
  a[2] = 12.0; 
  a[3] = 21.0; 
  a[4] = 12.0; 
  a[5] = 12.0;
  a[6] = 21.0; 
  a[7] = 16.0; 
  a[8] = 21.0; 
  a[9] =  5.0; 
  a[10]= 21.0; 
  a[11]= 18.0;

  asub[0] = 0; 
  asub[1] = 1; 
  asub[2] = 4; 
  asub[3] = 1;
  asub[4] = 2; 
  asub[5] = 4; 
  asub[6] = 0; 
  asub[7] = 2;
  asub[8] = 0; 
  asub[9] = 3; 
  asub[10]= 3; 
  asub[11]= 4;

  xa[0] = 0; 
  xa[1] = 3; 
  xa[2] = 6; 
  xa[3] = 8; 
  xa[4] = 10; 
  xa[5] = 12;

  sol[0] = -0.031250000;
  sol[1] =  0.065476190;
  sol[2] =  0.013392857;
  sol[3] =  0.062500000;
  sol[4] =  0.032738095;
/* 
  Create matrix A in the format expected by SuperLU. 
*/
  dCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE );
/* 
  Create the right-hand side matrix B. 
*/
  nrhs = 1;
  rhs = doubleMalloc ( m * nrhs );
  if ( !rhs ) 
  {
    ABORT("Malloc fails for rhs[].");
  }

  for ( i = 0; i < m; i++ ) 
  {
    rhs[i] = 1.0;
  }

  dCreate_Dense_Matrix ( &B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE );
/* 
  Set up the arrays for the permutations. 
*/
  perm_r = intMalloc ( m );
  if ( !perm_r ) 
  {
    ABORT ( "Malloc fails for perm_r[]." );
  }

  perm_c = intMalloc ( n );
  if ( !perm_c ) 
  {
    ABORT ( "Malloc fails for perm_c[]." );
  }
/* 
  Set the default input options, and then adjust some of them.
*/
  set_default_options ( &options );
  options.ColPerm = NATURAL;
/* 
  Initialize the statistics variables. 
*/
  StatInit ( &stat );
/*
  Factor the matrix and solve the linear system.
*/
  dgssv ( &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info );
/*
  Print some of the results.
*/
  dPrint_CompCol_Matrix ( "Matrix A", &A );
  dPrint_SuperNode_Matrix ( "Factor L", &L );
  dPrint_CompCol_Matrix ( "Factor U", &U );
  dPrint_Dense_Matrix ( "Solution X", &B );

  printf ( "\n" );
  printf ( "  The exact solution:\n" );
  printf ( "\n" );
  for ( i = 0; i < n; i++ )
  {
    printf ( "%d  %f\n", i, sol[i] );
  }

  printf ( "\n" );
  print_int_vec ( "perm_r", m, perm_r );
/* 
  De-allocate storage.
*/
  SUPERLU_FREE ( rhs );
  SUPERLU_FREE ( perm_r );
  SUPERLU_FREE ( perm_c );
  Destroy_CompCol_Matrix ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperNode_Matrix ( &L );
  Destroy_CompCol_Matrix ( &U );
  StatFree ( &stat );

  printf ( "\n" );
  printf ( "SUPER_LU_D0:\n" );
  printf ( "  Normal end of execution.\n" );

  return 0;
}
Beispiel #8
0
void
dgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *  
 *      1.1. If options->Equil = YES, scaling factors are computed to
 *           equilibrate the system:
 *           options->Trans = NOTRANS:
 *               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *           options->Trans = TRANS:
 *               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           options->Trans = CONJ:
 *               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A is
 *           overwritten by diag(R)*A*diag(C) and B by diag(R)*B
 *           (if options->Trans=NOTRANS) or diag(C)*B (if options->Trans
 *           = TRANS or CONJ).
 *
 *      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *           matrix that usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.3. If options->Fact != FACTORED, the LU decomposition is used to
 *           factor the matrix A (after equilibration if options->Equil = YES)
 *           as Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *      1.4. Compute the reciprocal pivot growth factor.
 *
 *      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form of 
 *           A is used to estimate the condition number of the matrix A. If
 *           the reciprocal of the condition number is less than machine
 *           precision, info = A->ncol+1 is returned as a warning, but the
 *           routine still goes on to solve for X and computes error bounds
 *           as described below.
 *
 *      1.6. The system of equations is solved for X using the factored form
 *           of A.
 *
 *      1.7. If options->IterRefine != NOREFINE, iterative refinement is
 *           applied to improve the computed solution matrix and calculate
 *           error bounds and backward error estimates for it.
 *
 *      1.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if options->Trans = NOTRANS) or diag(R)
 *           (if options->Trans = TRANS or CONJ) so that it solves the
 *           original system before equilibration.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
 *      to the transpose of A:
 *
 *      2.1. If options->Equil = YES, scaling factors are computed to
 *           equilibrate the system:
 *           options->Trans = NOTRANS:
 *               diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *           options->Trans = TRANS:
 *               (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           options->Trans = CONJ:
 *               (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A' is
 *           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *      2.2. Permute columns of transpose(A) (rows of A), 
 *           forming transpose(A)*Pc, where Pc is a permutation matrix that 
 *           usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.3. If options->Fact != FACTORED, the LU decomposition is used to
 *           factor the transpose(A) (after equilibration if 
 *           options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the
 *           permutation Pr determined by partial pivoting.
 *
 *      2.4. Compute the reciprocal pivot growth factor.
 *
 *      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form 
 *           of transpose(A) is used to estimate the condition number of the
 *           matrix A. If the reciprocal of the condition number
 *           is less than machine precision, info = A->nrow+1 is returned as
 *           a warning, but the routine still goes on to solve for X and
 *           computes error bounds as described below.
 *
 *      2.6. The system of equations is solved for X using the factored form
 *           of transpose(A).
 *
 *      2.7. If options->IterRefine != NOREFINE, iterative refinement is
 *           applied to improve the computed solution matrix and calculate
 *           error bounds and backward error estimates for it.
 *
 *      2.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if options->Trans = NOTRANS) or diag(R) 
 *           (if options->Trans = TRANS or CONJ) so that it solves the
 *           original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *         The structure defines the input parameters to control
 *         how the LU decomposition will be performed and how the
 *         system will be solved.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of the linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR, Dtype = SLU_D, Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 *         On entry, If options->Fact = FACTORED and equed is not 'N', 
 *         then A must have been equilibrated by the scaling factors in
 *         R and/or C.  
 *         On exit, A is not modified if options->Equil = NO, or if 
 *         options->Equil = YES but equed = 'N' on exit.
 *         Otherwise, if options->Equil = YES and equed is not 'N',
 *         A is scaled as follows:
 *         If A->Stype = SLU_NC:
 *           equed = 'R':  A := diag(R) * A
 *           equed = 'C':  A := A * diag(C)
 *           equed = 'B':  A := diag(R) * A * diag(C).
 *         If A->Stype = SLU_NR:
 *           equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *           equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If options->Fact = SamePattern_SameRowPerm, the pivoting routine
 *         will try to use the input perm_r, unless a certain threshold
 *         criterion is violated. In that case, perm_r is overwritten by a
 *         new permutation determined by partial pivoting or diagonal
 *         threshold pivoting.
 *         Otherwise, perm_r is output argument.
 * 
 * etree   (input/output) int*,  dimension (A->ncol)
 *         Elimination tree of Pc'*A'*A*Pc.
 *         If options->Fact != FACTORED and options->Fact != DOFACT,
 *         etree is an input argument, otherwise it is an output argument.
 *         Note: etree is a vector of parent pointers for a forest whose
 *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *         Specifies the form of equilibration that was done.
 *         = 'N': No equilibration.
 *         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = 'B': Both row and column equilibration, i.e., A was replaced 
 *                by diag(R)*A*diag(C).
 *         If options->Fact = FACTORED, equed is an input argument,
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *             (if A->Stype = SLU_NR) is multiplied on the left by diag(R).
 *         If equed = 'N' or 'C', R is not accessed.
 *         If options->Fact = FACTORED, R is an input argument,
 *             otherwise, R is output.
 *         If options->zFact = FACTORED and equed = 'R' or 'B', each element
 *             of R must be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *             (if A->Stype = SLU_NR) is multiplied on the right by diag(C).
 *         If equed = 'N' or 'R', C is not accessed.
 *         If options->Fact = FACTORED, C is an input argument,
 *             otherwise, C is output.
 *         If options->Fact = FACTORED and equed = 'C' or 'B', each element
 *             of C must be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype SLU_= NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *         User supplied workspace, should be large enough
 *         to hold data structures for factors L and U.
 *         On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               mem_usage->total_needed; no other side effects.
 *
 *         See argument 'mem_usage' for memory usage statistics.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         If B->ncol = 0, only LU decomposition is performed, the triangular
 *                         solve is skipped.
 *         On exit,
 *            if equed = 'N', B is not modified; otherwise
 *            if A->Stype = SLU_NC:
 *               if options->Trans = NOTRANS and equed = 'R' or 'B',
 *                  B is overwritten by diag(R)*B;
 *               if options->Trans = TRANS or CONJ and equed = 'C' of 'B',
 *                  B is overwritten by diag(C)*B;
 *            if A->Stype = SLU_NR:
 *               if options->Trans = NOTRANS and equed = 'C' or 'B',
 *                  B is overwritten by diag(C)*B;
 *               if options->Trans = TRANS or CONJ and equed = 'R' of 'B',
 *                  B is overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not 'N', and the solution to the equilibrated
 *         system is inv(diag(C))*X if options->Trans = NOTRANS and
 *         equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C'
 *         and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *         The infinity norm is used. If recip_pivot_growth is much less
 *         than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * FERR    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *         If options->IterRefine = NOREFINE, ferr = 1.0.
 *
 * BERR    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *         If options->IterRefine = NOREFINE, berr = 1.0.
 *
 * mem_usage (output) mem_usage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * stat   (output) SuperLUStat_t*
 *        Record the statistics on runtime and floating-point operation count.
 *        See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    drop_tol;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double hypre_F90_NAME_LAPACK(dlamch,DLAMCH)(const char *);

    Bstore = (DNformat*) B->Store;
    Xstore = (DNformat*) X->Store;
    Bmat   = (  double*) Bstore->nzval;
    Xmat   = (  double*) Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = superlu_lsame(equed, "R") || superlu_lsame(equed, "B");
	colequ = superlu_lsame(equed, "C") || superlu_lsame(equed, "B");
        smlnum = hypre_F90_NAME_LAPACK(dlamch,DLAMCH)("Safe minimum");
	bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	!notran && options->Trans != TRANS && options->Trans != CONJ &&
	!equil && options->Equil != NO)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || superlu_lsame(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	superlu_xerbla("dgssvx", &i);
	return;
    }
    
    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    drop_tol   = 0.0;

    utime = stat->utime;
    
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = (NRformat*) A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       (double*) Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact && equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = superlu_lsame(equed, "R") || superlu_lsame(equed, "B");
	    colequ = superlu_lsame(equed, "C") || superlu_lsame(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
		        Bmat[i + j*ldb] *= R[i];
	            }
	    }
        } else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
	            Bmat[i + j*ldb] *= C[i];
	        }
        }
    }

    if ( nofact ) {
	
        t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgstrf(options, &AC, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_c, perm_r, L, U, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
	    if ( *info <= A->ncol ) {
	        /* Compute the reciprocal pivot growth factor of the leading
	           rank-deficient *info columns of A. */
	        *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	    }
	    return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
	    *(unsigned char *)norm = '1';
        } else {
	    *(unsigned char *)norm = 'I';
        }
        anorm = dlangs(norm, AA);
        dgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }
    
    if ( nrhs > 0 ) {
        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
	        Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
        t0 = SuperLU_timer_();
        dgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;
    
        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            dgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
	    if ( colequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        Xmat[i + j*ldx] *= C[i];
	            }
	    }
        } else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
	            Xmat[i + j*ldx] *= R[i];
                }
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
       if (*rcond < hypre_F90_NAME_LAPACK(dlamch,DLAMCH)("E")) *info=A->ncol+1;
    }

    if ( nofact ) {
        dQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
void
dgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,
      SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * Purpose
 * =======
 *
 * DGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from DGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR; Dtype = SLU_D; Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = SLU_NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = SLU_D, Mtype = TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    double   t1;	/* Temporary time */
    char     refact[1], trans[1];
    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    double   diag_pivot_thresh = 1.0;
    double   drop_tol = 0;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    double   *utime;
    extern SuperLUStat_t SuperLUStat;

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -1;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("dgssv", &i);
	return;
    }
    
    *refact = 'N';
    *trans = 'N';
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
 
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	*trans = 'T';
    } else if ( A->Stype == SLU_NC ) AA = A;

    etree = intMalloc(A->ncol);

    t1 = SuperLU_timer_();
    sp_preorder(refact, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t1;

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t1 = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    dgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_r, perm_c, L, U, info);
    utime[FACT] = SuperLU_timer_() - t1;

    t1 = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_r, perm_c, B, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t1;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /*PrintStat( &SuperLUStat );*/
    StatFree();

}
Beispiel #10
0
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    double   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    double   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = COLAMD;
        options.DiagPivotThresh = 1.0;
        options.Trans = NOTRANS;
        options.IterRefine = NOREFINE;
        options.SymmetricMode = NO;
        options.PivotGrowth = NO;
        options.ConditionNumber = NO;
        options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Now we modify the default options to use the symmetric mode. */
    options.SymmetricMode = YES;
    options.ColPerm = MMD_AT_PLUS_A;
    options.DiagPivotThresh = 0.001;

#if 1
    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
        printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
                "-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
                "-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
                "-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
                argv[0]);
        return 0;
    }
    else
    {
        switch (argv[1][1])
        {
            case 'H':
            case 'h':
                printf("Input a Harwell-Boeing format matrix:\n");
                dreadhb(&m, &n, &nnz, &a, &asub, &xa);
                break;
            case 'R':
            case 'r':
                printf("Input a Rutherford-Boeing format matrix:\n");
                dreadrb(&m, &n, &nnz, &a, &asub, &xa);
                break;
            case 'T':
            case 't':
                printf("Input a triplet format matrix:\n");
                dreadtriple(&m, &n, &nnz, &a, &asub, &xa);
                break;
            default:
                printf("Unrecognized format.\n");
                return 0;
        }
    }
#else
    /* Read the matrix in Harwell-Boeing format. */
    dreadhb(&m, &n, &nnz, &a, &asub, &xa);
#endif

    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);

    nrhs   = 1;
    if ( !(rhs = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);

    dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);

    if ( info == 0 ) {

        /* This is how you could access the solution matrix. */
        double *sol = (double*) ((DNformat*) B.Store)->nzval;

         /* Compute the infinity norm of the error. */
        dinf_norm_error(nrhs, &B, xact);

        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
        printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
        printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
        printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
        printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

        dQuerySpace(&L, &U, &mem_usage);
        printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
               mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);

    } else {
        printf("dgssv() error returns INFO= %d\n", info);
        if ( info <= n ) { /* factorization completes */
            dQuerySpace(&L, &U, &mem_usage);
            printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
                   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
        }
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
void tlin::createS(SuperMatrix &A, int rows, int cols, int nnz, int *colptr, int *rowind, double *values)
{
	dCreate_CompCol_Matrix(&A, rows, cols, nnz, values, rowind, colptr, SLU_NC, SLU_D, SLU_GE);
}
Beispiel #12
0
void
dgstrf (superlu_options_t *options, SuperMatrix *A, double drop_tol,
        int relax, int panel_size, int *etree, void *work, int lwork,
        int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
        SuperLUStat_t *stat, int *info)
{
/*
 * Purpose
 * =======
 *
 * DGSTRF computes an LU factorization of a general sparse m-by-n
 * matrix A using partial pivoting with row interchanges.
 * The factorization has the form
 *     Pr * A = L * U
 * where Pr is a row permutation matrix, L is lower triangular with unit
 * diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
 * triangular (upper trapezoidal if A->nrow < A->ncol).
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *         The structure defines the input parameters to control
 *         how the LU decomposition will be performed.
 *
 * A        (input) SuperMatrix*
 *	    Original matrix A, permuted by columns, of dimension
 *          (A->nrow, A->ncol). The type of A can be:
 *          Stype = SLU_NCP; Dtype = SLU_D; Mtype = SLU_GE.
 *
 * drop_tol (input) double (NOT IMPLEMENTED)
 *	    Drop tolerance parameter. At step j of the Gaussian elimination,
 *          if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *          0 <= drop_tol <= 1. The default value of drop_tol is 0.
 *
 * relax    (input) int
 *          To control degree of relaxing supernodes. If the number
 *          of nodes (columns) in a subtree of the elimination tree is less
 *          than relax, this subtree is considered as one supernode,
 *          regardless of the row structures of those columns.
 *
 * panel_size (input) int
 *          A panel consists of at most panel_size consecutive columns.
 *
 * etree    (input) int*, dimension (A->ncol)
 *          Elimination tree of A'*A.
 *          Note: etree is a vector of parent pointers for a forest whose
 *          vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *          On input, the columns of A should be permuted so that the
 *          etree is in a certain postorder.
 *
 * work     (input/output) void*, size (lwork) (in bytes)
 *          User-supplied work space and space for the output data structures.
 *          Not referenced if lwork = 0;
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               *info; no other side effects.
 *
 * perm_c   (input) int*, dimension (A->ncol)
 *	    Column permutation vector, which defines the
 *          permutation matrix Pc; perm_c[i] = j means column i of A is
 *          in position j in A*Pc.
 *          When searching for diagonal, perm_c[*] is applied to the
 *          row subscripts of A, so that diagonal threshold pivoting
 *          can find the diagonal of A, rather than that of A*Pc.
 *
 * perm_r   (input/output) int*, dimension (A->nrow)
 *          Row permutation vector which defines the permutation matrix Pr,
 *          perm_r[i] = j means row i of A is in position j in Pr*A.
 *          If options->Fact = SamePattern_SameRowPerm, the pivoting routine
 *             will try to use the input perm_r, unless a certain threshold
 *             criterion is violated. In that case, perm_r is overwritten by
 *             a new permutation determined by partial pivoting or diagonal
 *             threshold pivoting.
 *          Otherwise, perm_r is output argument;
 *
 * L        (output) SuperMatrix*
 *          The factor L from the factorization Pr*A=L*U; use compressed row
 *          subscripts storage for supernodes, i.e., L has type:
 *          Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U        (output) SuperMatrix*
 *	    The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
 *          storage scheme, i.e., U has types: Stype = SLU_NC,
 *          Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info     (output) int*
 *          = 0: successful exit
 *          < 0: if info = -i, the i-th argument had an illegal value
 *          > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                and division by zero will occur if it is used to solve a
 *                system of equations.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol. If lwork = -1, it is
 *                the estimated amount of space needed, plus A->ncol.
 *
 * ======================================================================
 *
 * Local Working Arrays:
 * ======================
 *   m = number of rows in the matrix
 *   n = number of columns in the matrix
 *
 *   xprune[0:n-1]: xprune[*] points to locations in subscript
 *	vector lsub[*]. For column i, xprune[i] denotes the point where
 *	structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need
 *	to be traversed for symbolic factorization.
 *
 *   marker[0:3*m-1]: marker[i] = j means that node i has been
 *	reached when working on column j.
 *	Storage: relative to original row subscripts
 *	NOTE: There are 3 of them: marker/marker1 are used for panel dfs,
 *	      see dpanel_dfs.c; marker2 is used for inner-factorization,
 *            see dcolumn_dfs.c.
 *
 *   parent[0:m-1]: parent vector used during dfs
 *      Storage: relative to new row subscripts
 *
 *   xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
 *	unexplored neighbor of i in lsub[*]
 *
 *   segrep[0:nseg-1]: contains the list of supernodal representatives
 *	in topological order of the dfs. A supernode representative is the
 *	last column of a supernode.
 *      The maximum size of segrep[] is n.
 *
 *   repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
 *	supernodal representative r, repfnz[r] is the location of the first
 *	nonzero in this segment.  It is also used during the dfs: repfnz[r]>0
 *	indicates the supernode r has been explored.
 *	NOTE: There are W of them, each used for one column of a panel.
 *
 *   panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
 *      the panel diagonal. These are filled in during dpanel_dfs(), and are
 *      used later in the inner LU factorization within the panel.
 *	panel_lsub[]/dense[] pair forms the SPA data structure.
 *	NOTE: There are W of them.
 *
 *   dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
 *	    	   NOTE: there are W of them.
 *
 *   tempv[0:*]: real temporary used for dense numeric kernels;
 *	The size of this array is defined by NUM_TEMPV() in dsp_defs.h.
 *
 */
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when
                                  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *iwork;
    double    *dwork;
    int	      *segrep, *repfnz, *parent, *xplore;
    int	      *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int	      *xprune;
    int	      *marker;
    double    *dense, *tempv;
    int       *relax_end;
    double    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = dLUMemInit(fact, work, lwork, m, n, Astore->nnz,
                       panel_size, L, U, &Glu, &iwork, &dwork);
    if ( *info ) return;

    xsup    = Glu.xsup;
    supno   = Glu.supno;
    xlsub   = Glu.xlsub;
    xlusup  = Glu.xlusup;
    xusub   = Glu.xusub;

    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &xprune, &marker);
    dSetRWork(m, panel_size, dwork, &dense, &tempv);

    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
	iperm_r_allocated = 1;
    }
    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES ) {
        heap_relax_snode(n, etree, relax, marker, relax_end);
    } else {
        relax_snode(n, etree, relax, marker, relax_end);
    }

    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /*
     * Work on one "panel" at a time. A panel is one of the following:
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
   	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol)
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = dsnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
				    xprune, marker, &Glu)) != 0 )
		return;

            nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu.nzlumax;
	    while ( new_next > nzlumax ) {
		if ( (*info = dLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) )
		    return;
	    }

	    for (icol = jcol; icol<= kcol; icol++) {
		xusub[icol+1] = nextu;

    		/* Scatter into SPA dense[*] */
    		for (k = xa_begin[icol]; k < xa_end[icol]; k++)
        	    dense[asub[k]] = a[k];

	       	/* Numeric update within the snode */
	        dsnode_bmod(icol, jsupno, fsupc, dense, tempv, &Glu, stat);

		if ( (*info = dpivotL(icol, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;

#ifdef DEBUG
		dprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
#endif

	    }

	    jcol = icol;

	} else { /* Work on one panel of panel_size columns */

	    /* Adjust panel_size so that a panel won't overlap with the next
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    dpanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
		      dense, panel_lsub, segrep, repfnz, xprune,
		      marker, parent, xplore, &Glu);

	    /* numeric sup-panel updates in topological order */
	    dpanel_bmod(m, panel_size, jcol, nseg1, dense,
		        tempv, segrep, repfnz, &Glu, stat);

	    /* Sparse LU within the panel, and below panel diagonal */
    	    for ( jj = jcol; jj < jcol + panel_size; jj++) {
 		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

	    	if ((*info = dcolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
					segrep, &repfnz[k], xprune, marker,
					parent, xplore, &Glu)) != 0) return;

	      	/* Numeric updates */
	    	if ((*info = dcolumn_bmod(jj, (nseg - nseg1), &dense[k],
					 tempv, &segrep[nseg1], &repfnz[k],
					 jcol, &Glu, stat)) != 0) return;

	        /* Copy the U-segments to ucol[*] */
		if ((*info = dcopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					  perm_r, &dense[k], &Glu)) != 0)
		    return;

	    	if ( (*info = dpivotL(jj, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;

		/* Prune columns (0:jj-1) using column jj */
	    	dpruneL(jj, perm_r, pivrow, nseg, segrep,
                        &repfnz[k], xprune, &Glu);

		/* Reset repfnz[] for this column */
	    	resetrep_col (nseg, segrep, &repfnz[k]);

#ifdef DEBUG
		dprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
#endif

	    }

   	    jcol += panel_size;	/* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;

    if ( m > n ) {
	k = 0;
        for (i = 0; i < m; ++i)
            if ( perm_r[i] == EMPTY ) {
    		perm_r[i] = n + k;
		++k;
	    }
    }

    countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
    fixupL(min_mn, perm_r, &Glu);

    dLUWorkFree(iwork, dwork, &Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
        /* L and U structures may have changed due to possibly different
	   pivoting, even though the storage is available.
	   There could also be memory expansions, so the array locations
           may have changed, */
        ((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu.supno[n];
	((SCformat *)L->Store)->nzval = Glu.lusup;
	((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
	((SCformat *)L->Store)->rowind = Glu.lsub;
	((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
	((NCformat *)U->Store)->nnz = nnzU;
	((NCformat *)U->Store)->nzval = Glu.ucol;
	((NCformat *)U->Store)->rowind = Glu.usub;
	((NCformat *)U->Store)->colptr = Glu.xusub;
    } else {
        dCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL, Glu.lusup,
	                         Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
			         Glu.xsup, SLU_SC, SLU_D, SLU_TRLU);
    	dCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
			       Glu.usub, Glu.xusub, SLU_NC, SLU_D, SLU_TRU);
    }

    ops[FACT] += ops[TRSV] + ops[GEMV];

    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);

}
Beispiel #13
0
PetscErrorCode MatLUFactorNumeric_SuperLU(Mat F,Mat A,const MatFactorInfo *info)
{
  Mat_SuperLU    *lu = (Mat_SuperLU*)F->spptr;
  Mat_SeqAIJ     *aa;
  PetscErrorCode ierr;
  PetscInt       sinfo;
  PetscReal      ferr, berr; 
  NCformat       *Ustore;
  SCformat       *Lstore;
  
  PetscFunctionBegin;
  if (lu->flg == SAME_NONZERO_PATTERN){ /* successing numerical factorization */
    lu->options.Fact = SamePattern;
    /* Ref: ~SuperLU_3.0/EXAMPLE/dlinsolx2.c */
    Destroy_SuperMatrix_Store(&lu->A); 
    if (lu->options.Equil){
      ierr = MatCopy_SeqAIJ(A,lu->A_dup,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
    }
    if ( lu->lwork >= 0 ) { 
      Destroy_SuperNode_Matrix(&lu->L);
      Destroy_CompCol_Matrix(&lu->U);
      lu->options.Fact = SamePattern;
    }
  }

  /* Create the SuperMatrix for lu->A=A^T:
       Since SuperLU likes column-oriented matrices,we pass it the transpose,
       and then solve A^T X = B in MatSolve(). */
  if (lu->options.Equil){
    aa = (Mat_SeqAIJ*)(lu->A_dup)->data;
  } else {
    aa = (Mat_SeqAIJ*)(A)->data;
  }
#if defined(PETSC_USE_COMPLEX)
  zCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,(doublecomplex*)aa->a,aa->j,aa->i,
                           SLU_NC,SLU_Z,SLU_GE);
#else
  dCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,aa->a,aa->j,aa->i,
                           SLU_NC,SLU_D,SLU_GE);
#endif

  /* Numerical factorization */
  lu->B.ncol = 0;  /* Indicate not to solve the system */
  if (F->factortype == MAT_FACTOR_LU){
#if defined(PETSC_USE_COMPLEX)
    zgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else if (F->factortype == MAT_FACTOR_ILU){
    /* Compute the incomplete factorization, condition number and pivot growth */
#if defined(PETSC_USE_COMPLEX)
    zgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r,lu->etree, lu->equed, lu->R, lu->C, 
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C, 
          &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, 
          &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else {
    SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");
  }
  if ( !sinfo || sinfo == lu->A.ncol+1 ) {
    if ( lu->options.PivotGrowth ) 
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. pivot growth = %e\n", lu->rpg);
    if ( lu->options.ConditionNumber )
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. condition number = %e\n", lu->rcond);
  } else if ( sinfo > 0 ){
    if ( lu->lwork == -1 ) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  ** Estimated memory: %D bytes\n", sinfo - lu->A.ncol);
    } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot in row %D",sinfo);
  } else { /* sinfo < 0 */
    SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB, "info = %D, the %D-th argument in gssvx() had an illegal value", sinfo,-sinfo); 
  }

  if ( lu->options.PrintStat ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"MatLUFactorNumeric_SuperLU():\n");
    StatPrint(&lu->stat);
    Lstore = (SCformat *) lu->L.Store;
    Ustore = (NCformat *) lu->U.Store;
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor L = %D\n", Lstore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor U = %D\n", Ustore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in L+U = %D\n", Lstore->nnz + Ustore->nnz - lu->A.ncol);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  L\\U MB %.3f\ttotal MB needed %.3f\n",
	       lu->mem_usage.for_lu/1e6, lu->mem_usage.total_needed/1e6);
  }

  lu->flg = SAME_NONZERO_PATTERN;
  F->ops->solve          = MatSolve_SuperLU;
  F->ops->solvetranspose = MatSolveTranspose_SuperLU;
  F->ops->matsolve       = MatMatSolve_SuperLU;
  PetscFunctionReturn(0);
}
Beispiel #14
0
bool SparseMatrix::solveSLU (Vector& B)
{
  int ierr = ncol+1;
  if (!factored) this->optimiseSLU();

#ifdef HAS_SUPERLU_MT
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata;
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }
  else {
    Destroy_SuperMatrix_Store(&slu->A);
    Destroy_SuperNode_Matrix(&slu->L);
    Destroy_CompCol_Matrix(&slu->U);
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }

  // Get column permutation vector perm_c[], according to permc_spec:
  //   permc_spec = 0: natural ordering
  //   permc_spec = 1: minimum degree ordering on structure of A'*A
  //   permc_spec = 2: minimum degree ordering on structure of A'+A
  //   permc_spec = 3: approximate minimum degree for unsymmetric matrices
  int permc_spec = 1;
  get_perm_c(permc_spec, &slu->A, slu->perm_c);

  // Create right-hand-side/solution vector(s)
  size_t nrhs = B.size() / nrow;
  SuperMatrix Bmat;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  // Invoke the simple driver
  pdgssv(numThreads, &slu->A, slu->perm_c, slu->perm_r,
         &slu->L, &slu->U, &Bmat, &ierr);

  if (ierr > 0)
    std::cerr <<"SuperLU_MT Failure "<< ierr << std::endl;

  Destroy_SuperMatrix_Store(&Bmat);

#elif defined(HAS_SUPERLU)
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata(1);
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }
  else if (factored)
    slu->opts->Fact = FACTORED; // Re-use previous factorization
  else {
    Destroy_SuperMatrix_Store(&slu->A);
    Destroy_SuperNode_Matrix(&slu->L);
    Destroy_CompCol_Matrix(&slu->U);
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }

  // Create right-hand-side/solution vector(s)
  size_t nrhs = B.size() / nrow;
  SuperMatrix Bmat;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  SuperLUStat_t stat;
  StatInit(&stat);

  // Invoke the simple driver
  dgssv(slu->opts, &slu->A, slu->perm_c, slu->perm_r,
        &slu->L, &slu->U, &Bmat, &stat, &ierr);

  if (ierr > 0)
    std::cerr <<"SuperLU Failure "<< ierr << std::endl;
  else
    factored = true;

  if (printSLUstat)
    StatPrint(&stat);
  StatFree(&stat);

  Destroy_SuperMatrix_Store(&Bmat);
#else
  std::cerr <<"SparseMatrix::solve: SuperLU solver not available"<< std::endl;
#endif
  return ierr == 0;
}
Beispiel #15
0
main(int argc, char *argv[])
{
    SuperMatrix A, AC, L, U, B;
    NCformat    *Astore;
    SCPformat   *Lstore;
    NCPformat   *Ustore;
    superlumt_options_t superlumt_options;
    pxgstrf_shared_t pxgstrf_shared;
    pdgstrf_threadarg_t *pdgstrf_threadarg;
    int         nprocs;
    fact_t      fact;
    trans_t     trans;
    yes_no_t    refact, usepr;
    double      u, drop_tol;
    double      *a;
    int         *asub, *xa;
    int         *perm_c; /* column permutation vector */
    int         *perm_r; /* row permutations from partial pivoting */
    void        *work;
    int         info, lwork, nrhs, ldx; 
    int         m, n, nnz, permc_spec, panel_size, relax;
    int         i, firstfact;
    double      *rhsb, *xact;
    Gstat_t Gstat;
    flops_t     flopcnt;
    void parse_command_line();

    /* Default parameters to control factorization. */
    nprocs = 1;
    fact  = EQUILIBRATE;
    trans = NOTRANS;
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);
    u     = 1.0;
    usepr = NO;
    drop_tol = 0.0;
    work = NULL;
    lwork = 0;
    nrhs  = 1;

    /* Get the number of processes from command line. */
    parse_command_line(argc, argv, &nprocs);

    /* Read the input matrix stored in Harwell-Boeing format. */
    dreadhb(&m, &n, &nnz, &a, &asub, &xa);

    /* Set up the sparse matrix data structure for A. */
    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

    if (!(rhsb = doubleMalloc(m * nrhs))) SUPERLU_ABORT("Malloc fails for rhsb[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if (!(perm_r = intMalloc(m))) SUPERLU_ABORT("Malloc fails for perm_r[].");
    if (!(perm_c = intMalloc(n))) SUPERLU_ABORT("Malloc fails for perm_c[].");


    /********************************
     * THE FIRST TIME FACTORIZATION *
     ********************************/

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);

    /* ------------------------------------------------------------
       Get column permutation vector perm_c[], according to permc_spec:
       permc_spec = 0: natural ordering 
       permc_spec = 1: minimum degree ordering on structure of A'*A
       permc_spec = 2: minimum degree ordering on structure of A'+A
       permc_spec = 3: approximate minimum degree for unsymmetric matrices
       ------------------------------------------------------------*/ 	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    refact= NO;
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 u, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, &A, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info);
    
    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    Gstat.ops[FACT] = flopcnt;

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info);
    
    printf("\n** Result of sparse LU **\n");
    dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */

    Destroy_CompCol_Permuted(&AC); /* Free extra arrays in AC. */


    /*********************************
     * THE SUBSEQUENT FACTORIZATIONS *
     *********************************/

    /* ------------------------------------------------------------
       Re-initialize statistics variables and options used by the
       factorization routine pdgstrf().
       ------------------------------------------------------------*/
    StatInit(n, nprocs, &Gstat);
    refact= YES;
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 u, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, &A, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, &L, &U, &Gstat, &info);
    
    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    Gstat.ops[FACT] = flopcnt;

    /* ------------------------------------------------------------
       Re-generate right-hand side B, then solve A*X= B.
       ------------------------------------------------------------*/
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);
    dgstrs(trans, &L, &U, perm_r, perm_c, &B, &Gstat, &info);

    
     /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);

    printf("\n** Result of sparse LU **\n");
    dinf_norm_error(nrhs, &B, xact); /* Check inf. norm of the error */

    Lstore = (SCPformat *) L.Store;
    Ustore = (NCPformat *) U.Store;
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    fflush(stdout);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_SCP(&L);
        Destroy_CompCol_NCP(&U);
    }
    StatFree(&Gstat);
}
Beispiel #16
0
bool SparseMatrix::solveSLUx (Vector& B, Real* rcond)
{
  int ierr = ncol+1;
  if (!factored) this->optimiseSLU();

#ifdef HAS_SUPERLU_MT
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata(numThreads);
    slu->equed = NOEQUIL;
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    slu->C = new Real[ncol];
    slu->R = new Real[nrow];
    slu->opts->etree = new int[ncol];
    slu->opts->colcnt_h = new int[ncol];
    slu->opts->part_super_h = new int[ncol];
    memset(slu->opts->colcnt_h, 0, ncol*sizeof(int));
    memset(slu->opts->part_super_h, 0, ncol*sizeof(int));
    memset(slu->opts->etree, 0, ncol*sizeof(int));
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);

    // Get column permutation vector perm_c[], according to permc_spec:
    //   permc_spec = 0: natural ordering
    //   permc_spec = 1: minimum degree ordering on structure of A'*A
    //   permc_spec = 2: minimum degree ordering on structure of A'+A
    //   permc_spec = 3: approximate minimum degree for unsymmetric matrices
    int permc_spec = 1;
    get_perm_c(permc_spec, &slu->A, slu->perm_c);
  }
  else if (factored)
    slu->opts->fact = FACTORED; // Re-use previous factorization
  else
    slu->opts->refact = YES; // Re-use previous ordering

  // Create right-hand-side and solution vector(s)
  Vector      X(B.size());
  SuperMatrix Bmat, Xmat;
  const size_t nrhs = B.size() / nrow;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);
  dCreate_Dense_Matrix(&Xmat, nrow, nrhs, X.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  Real ferr[nrhs], berr[nrhs];
  superlu_memusage_t mem_usage;

  // Invoke the expert driver
  pdgssvx(numThreads, slu->opts, &slu->A, slu->perm_c, slu->perm_r,
          &slu->equed, slu->R, slu->C, &slu->L, &slu->U, &Bmat, &Xmat,
          &slu->rpg, &slu->rcond, ferr, berr, &mem_usage, &ierr);

  B.swap(X);

  if (ierr > 0)
    std::cerr <<"SuperLU_MT Failure "<< ierr << std::endl;
  else if (!factored)
  {
    factored = true;
    if (rcond)
      *rcond = slu->rcond;
  }

  Destroy_SuperMatrix_Store(&Bmat);
  Destroy_SuperMatrix_Store(&Xmat);

#elif defined(HAS_SUPERLU)
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata(1);
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    slu->etree = new int[ncol];
    slu->C = new Real[ncol];
    slu->R = new Real[nrow];
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }
  else if (factored)
    slu->opts->Fact = FACTORED; // Re-use previous factorization
  else {
    Destroy_SuperMatrix_Store(&slu->A);
    Destroy_SuperNode_Matrix(&slu->L);
    Destroy_CompCol_Matrix(&slu->U);
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }

  // Create right-hand-side vector and solution vector
  Vector      X(B.size());
  SuperMatrix Bmat, Xmat;
  const  size_t nrhs = B.size() / nrow;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);
  dCreate_Dense_Matrix(&Xmat, nrow, nrhs, X.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  slu->opts->ConditionNumber = printSLUstat || rcond ? YES : NO;
  slu->opts->PivotGrowth = printSLUstat ? YES : NO;

  void* work = 0;
  int  lwork = 0;
  Real ferr[nrhs], berr[nrhs];
  mem_usage_t mem_usage;

  SuperLUStat_t stat;
  StatInit(&stat);

  // Invoke the expert driver
#if SUPERLU_VERSION == 5
  GlobalLU_t Glu;
  dgssvx(slu->opts, &slu->A, slu->perm_c, slu->perm_r, slu->etree, slu->equed,
         slu->R, slu->C, &slu->L, &slu->U, work, lwork, &Bmat, &Xmat,
         &slu->rpg, &slu->rcond, ferr, berr, &Glu, &mem_usage, &stat, &ierr);
#else
  dgssvx(slu->opts, &slu->A, slu->perm_c, slu->perm_r, slu->etree, slu->equed,
         slu->R, slu->C, &slu->L, &slu->U, work, lwork, &Bmat, &Xmat,
         &slu->rpg, &slu->rcond, ferr, berr, &mem_usage, &stat, &ierr);
#endif

  B.swap(X);

  if (ierr > 0)
    std::cerr <<"SuperLU Failure "<< ierr << std::endl;
  else if (!factored)
  {
    factored = true;
    if (rcond)
      *rcond = slu->rcond;
  }

  if (printSLUstat)
  {
    StatPrint(&stat);
    IFEM::cout <<"Reciprocal condition number = "<< slu->rcond
               <<"\nReciprocal pivot growth = "<< slu->rpg << std::endl;
  }
  StatFree(&stat);

  Destroy_SuperMatrix_Store(&Bmat);
  Destroy_SuperMatrix_Store(&Xmat);
#else
  std::cerr <<"SparseMatrix::solve: SuperLU solver not available"<< std::endl;
#endif
  return ierr == 0;
}
Beispiel #17
0
 void SuperLUSolver<double>::create_csc_matrix(SuperMatrix *A, int m, int n, int nnz, SuperLuType<double>::Scalar *nzval,
   int *rowind, int *colptr, Stype_t stype, Dtype_t dtype, Mtype_t mtype)
 {
   dCreate_CompCol_Matrix(A, m, n, nnz, nzval, rowind, colptr, stype, dtype, mtype);
 }
Beispiel #18
0
int main ( )

/******************************************************************************/
/*
  Purpose:

    D_SAMPLE_ST tests the SUPERLU solver with a 5x5 double precision real matrix.

  Discussion:

    The general (GE) representation of the matrix is:

      [ 19  0 21 21  0
        12 21  0  0  0
         0 12 16  0  0 
         0  0  0  5 21
        12 12  0  0 18 ]

    The (0-based) compressed column (CC) representation of this matrix is:

      I  CC   A
     --  --  --
      0   0  19
      1      12
      4      12

      1   3  21
      2      12
      4      12

      0   6  21
      2      16

      0   8  21
      3       5

      3  10  21
      4      18

      *  12   *

    The right hand side B and solution X are

      #   B     X
     --  --  ----------
      0   1  -0.03125
      1   1   0.0654762
      2   1   0.0133929
      3   1   0.0625
      4   1   0.0327381 

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    18 July 2014

  Author:

    John Burkardt

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide.
*/
{
  SuperMatrix A;
  double *acc;
  double *b;
  double *b2;
  SuperMatrix B;
  int *ccc;
  int i;
  int *icc;
  int info;
  int j;
  SuperMatrix L;
  int m;
  int n;
  int nrhs = 1;
  int ncc;
  superlu_options_t options;
  int *perm_c;
  int permc_spec;
  int *perm_r;
  SuperLUStat_t stat;
  SuperMatrix U;

  timestamp ( );
  printf ( "\n" );
  printf ( "D_SAMPLE_ST:\n" );
  printf ( "  C version\n" );
  printf ( "  SUPERLU solves a double precision real linear system.\n" );
  printf ( "  The matrix is read from a Sparse Triplet (ST) file.\n" );
/*
  Read the matrix from a file associated with standard input,
  in sparse triplet (ST) format, into compressed column (CC) format.
*/
  dreadtriple ( &m, &n, &ncc, &acc, &icc, &ccc );
/*
  Print the matrix.
*/
  cc_print ( m, n, ncc, icc, ccc, acc, "  CC Matrix:" );
/*
  Convert the compressed column (CC) matrix into a SuperMatrix A. 
*/
  dCreate_CompCol_Matrix ( &A, m, n, ncc, acc, icc, ccc, SLU_NC, SLU_D, SLU_GE );    
/*
  Create the right-hand side matrix.
*/
  b = ( double * ) malloc ( m * sizeof ( double ) );
  for ( i = 0; i < m; i++ )
  {
    b[i] = 1.0;
  }
  printf ( "\n" );
  printf ( "  Right hand side:\n" );
  printf ( "\n" );
  for ( i = 0; i < m; i++ )
  {
    printf ( "%g\n", b[i] );
  }
/*
  Create Super Right Hand Side.
*/
  dCreate_Dense_Matrix ( &B, m, nrhs, b, m, SLU_DN, SLU_D, SLU_GE );
/*
  Set space for the permutations.
*/
  perm_r = ( int * ) malloc ( m * sizeof ( int ) );
  perm_c = ( int * ) malloc ( n * sizeof ( int ) );
/*
  Set the input options. 
*/
  set_default_options ( &options );
  options.ColPerm = NATURAL;
/*
  Initialize the statistics variables. 
*/
  StatInit ( &stat );
/*
  Solve the linear system. 
*/
  dgssv ( &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info );
    
  dPrint_CompCol_Matrix ( ( char * ) "A", &A );
  dPrint_CompCol_Matrix ( ( char * ) "U", &U );
  dPrint_SuperNode_Matrix ( ( char * ) "L", &L );
  print_int_vec ( ( char * ) "\nperm_r", m, perm_r );
/*
  By some miracle involving addresses, 
  the solution has been put into the B vector.
*/
  printf ( "\n" );
  printf ( "  Computed solution:\n" );
  printf ( "\n" );
  for ( i = 0; i < m; i++ )
  {
    printf ( "%g\n", b[i] );
  }
/*
  Demonstrate that RHS is really the solution now.
  Multiply it by the matrix.
*/
  b2 = cc_mv ( m, n, ncc, icc, ccc, acc, b );
  printf ( "\n" );
  printf ( "  Product A*X:\n" );
  printf ( "\n" );
  for ( i = 0; i < m; i++ )
  {
    printf ( "%g\n", b2[i] );
  }
/*
  Free memory.
*/
  free ( b );
  free ( b2 );
  free ( perm_c );
  free ( perm_r );

  Destroy_SuperMatrix_Store ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperNode_Matrix ( &L );
  Destroy_CompCol_Matrix ( &U );
  StatFree ( &stat );
/*
  Terminate.
*/
  printf ( "\n" );
  printf ( "D_SAMPLE_ST:\n" );
  printf ( "  Normal end of execution.\n" );
  printf ( "\n" );
  timestamp ( );

  return 0;
}
int HYPRE_ParCSR_SuperLUSetup(HYPRE_Solver solver, HYPRE_ParCSRMatrix A_csr,
                              HYPRE_ParVector b, HYPRE_ParVector x )
{
#ifdef HAVE_SUPERLU
   int    startRow, endRow, nrows, *partition, *AdiagI, *AdiagJ, nnz;
   int    irow, colNum, index, *cscI, *cscJ, jcol, *colLengs;
   int    *etree, permcSpec, lwork, panelSize, relax, info;
   double *AdiagA, *cscA, diagPivotThresh, dropTol;
   char              refact[1];
   hypre_CSRMatrix   *Adiag;
   HYPRE_SuperLU     *sluPtr;
   SuperMatrix       sluAmat, auxAmat;
   superlu_options_t slu_options;
   SuperLUStat_t     slu_stat;

   /* ---------------------------------------------------------------- */
   /* get matrix information                                           */
   /* ---------------------------------------------------------------- */

   sluPtr = (HYPRE_SuperLU *) solver;
   assert ( sluPtr != NULL );
   HYPRE_ParCSRMatrixGetRowPartitioning( A_csr, &partition );
   startRow = partition[0];
   endRow   = partition[1] - 1;
   nrows    = endRow - startRow + 1;
   free( partition );
   if ( startRow != 0 )
   {
      printf("HYPRE_ParCSR_SuperLUSetup ERROR - start row != 0.\n");
      return -1;
   }

   /* ---------------------------------------------------------------- */
   /* get hypre matrix                                                 */
   /* ---------------------------------------------------------------- */

   Adiag  = hypre_ParCSRMatrixDiag((hypre_ParCSRMatrix *) A_csr);
   AdiagI = hypre_CSRMatrixI(Adiag);
   AdiagJ = hypre_CSRMatrixJ(Adiag);
   AdiagA = hypre_CSRMatrixData(Adiag);
   nnz    = AdiagI[nrows];

   /* ---------------------------------------------------------------- */
   /* convert the csr matrix into csc matrix                           */
   /* ---------------------------------------------------------------- */

   colLengs = (int *) malloc(nrows * sizeof(int));
   for ( irow = 0; irow < nrows; irow++ ) colLengs[irow] = 0;
   for ( irow = 0; irow < nrows; irow++ )
      for ( jcol = AdiagI[irow]; jcol < AdiagI[irow+1]; jcol++ )
         colLengs[AdiagJ[jcol]]++;
   cscJ = (int *)    malloc( (nrows+1) * sizeof(int) );
   cscI = (int *)    malloc( nnz * sizeof(int) );
   cscA = (double *) malloc( nnz * sizeof(double) );
   cscJ[0] = 0;
   nnz = 0;
   for ( jcol = 1; jcol <= nrows; jcol++ )
   {
      nnz += colLengs[jcol-1];
      cscJ[jcol] = nnz;
   }
   for ( irow = 0; irow < nrows; irow++ )
   {
      for ( jcol = AdiagI[irow]; jcol < AdiagI[irow+1]; jcol++ )
      {
         colNum = AdiagJ[jcol];
         index  = cscJ[colNum]++;
         cscI[index] = irow;
         cscA[index] = AdiagA[jcol];
      }
   }
   cscJ[0] = 0;
   nnz = 0;
   for ( jcol = 1; jcol <= nrows; jcol++ )
   {
      nnz += colLengs[jcol-1];
      cscJ[jcol] = nnz;
   }
   free(colLengs);

   /* ---------------------------------------------------------------- */
   /* create SuperMatrix                                                */
   /* ---------------------------------------------------------------- */
                                                                                
   dCreate_CompCol_Matrix(&sluAmat,nrows,nrows,cscJ[nrows],cscA,cscI,
                          cscJ, SLU_NC, SLU_D, SLU_GE);
   etree   = (int *) malloc(nrows * sizeof(int));
   sluPtr->permC_  = (int *) malloc(nrows * sizeof(int));
   sluPtr->permR_  = (int *) malloc(nrows * sizeof(int));
   permcSpec = 0;
   get_perm_c(permcSpec, &sluAmat, sluPtr->permC_);
   slu_options.Fact = DOFACT;
   slu_options.SymmetricMode = NO;
   sp_preorder(&slu_options, &sluAmat, sluPtr->permC_, etree, &auxAmat);
   diagPivotThresh = 1.0;
   dropTol = 0.0;
   panelSize = sp_ienv(1);
   relax = sp_ienv(2);
   StatInit(&slu_stat);
   lwork = 0;
   slu_options.ColPerm = MY_PERMC;
   slu_options.DiagPivotThresh = diagPivotThresh;

   dgstrf(&slu_options, &auxAmat, dropTol, relax, panelSize,
          etree, NULL, lwork, sluPtr->permC_, sluPtr->permR_,
          &(sluPtr->SLU_Lmat), &(sluPtr->SLU_Umat), &slu_stat, &info);
   Destroy_CompCol_Permuted(&auxAmat);
   Destroy_CompCol_Matrix(&sluAmat);
   free(etree);
   sluPtr->factorized_ = 1;
   StatFree(&slu_stat);
   return 0;
#else
   printf("HYPRE_ParCSR_SuperLUSetup ERROR - SuperLU not enabled.\n");
   *solver = (HYPRE_Solver) NULL;
   return -1;
#endif
}
	/* Supernodal LU factor related */
	static void
	Create_CompCol_Matrix (SuperMatrix *p1, int p2, int p3, int p4, double *p5,
	                       int *p6, int *p7, Stype_t p8, Dtype_t p9, Mtype_t p10) {
		dCreate_CompCol_Matrix(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10);
	}
Beispiel #21
0
void
pdgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A, 
	int *perm_c, int *perm_r, equed_t *equed, double *R, double *C,
	SuperMatrix *L, SuperMatrix *U,
	SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
	double *rcond, double *ferr, double *berr, 
	superlu_memusage_t *superlu_memusage, int *info)
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley, 
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * pdgssvx() solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from dgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 * 1. If A is stored column-wise (A->Stype = NC):
 *  
 *    1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS:  (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:   (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A is
 *         overwritten by diag(R)*A*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
 *         that usually preserves sparsity.
 *         For more details of this step, see dsp_colorder.c.
 *
 *    1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *    1.4. Compute the reciprocal pivot growth factor.
 *
 *    1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of A is used to
 *         estimate the condition number of the matrix A. If the reciprocal of
 *         the condition number is less than machine precision, 
 *         info = A->ncol+1 is returned as a warning, but the routine still
 *         goes on to solve for X and computes error bounds as described below.
 *
 *    1.6. The system of equations is solved for X using the factored form
 *         of A.
 *
 *    1.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    1.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *    to the tranpose of A:
 *
 *    2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:  (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A' is
 *         overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    2.2. Permute columns of transpose(A) (rows of A), 
 *         forming transpose(A)*Pc, where Pc is a permutation matrix that
 *         usually preserves sparsity.
 *         For more details of this step, see dsp_colorder.c.
 *
 *    2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
 *         partial pivoting.
 *
 *    2.4. Compute the reciprocal pivot growth factor.
 *
 *    2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of transpose(A)
 *         is used to estimate the condition number of the matrix A.
 *         If the reciprocal of the condition number is less than machine
 *         precision, info = A->nrow+1 is returned as a warning, but the
 *         routine still goes on to solve for X and computes error bounds
 *         as described below.
 *
 *    2.6. The system of equations is solved for X using the factored form
 *         of transpose(A).
 *
 *    2.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    2.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *         Number of processes (or threads) to be spawned and used to perform
 *         the LU factorization by pdgstrf(). There is a single thread of
 *         control to call pdgstrf(), and all threads spawned by pdgstrf() 
 *         are terminated before returning from pdgstrf().
 *
 * superlumt_options (input) superlumt_options_t*
 *         The structure defines the input parameters and data structure
 *         to control how the LU factorization will be performed.
 *         The following fields should be defined for this structure:
 *
 *         o fact (fact_t)
 *           Specifies whether or not the factored form of the matrix
 *           A is supplied on entry, and if not, whether the matrix A should
 *           be equilibrated before it is factored.
 *           = FACTORED: On entry, L, U, perm_r and perm_c contain the 
 *             factored form of A. If equed is not NOEQUIL, the matrix A has
 *             been equilibrated with scaling factors R and C.
 *             A, L, U, perm_r are not modified.
 *           = DOFACT: The matrix A will be factored, and the factors will be
 *             stored in L and U.
 *           = EQUILIBRATE: The matrix A will be equilibrated if necessary,
 *             then factored into L and U.
 *
 *         o trans (trans_t)
 *           Specifies the form of the system of equations:
 *           = NOTRANS: A * X = B        (No transpose)
 *           = TRANS:   A**T * X = B     (Transpose)
 *           = CONJ:    A**H * X = B     (Transpose)
 *
 *         o refact (yes_no_t)
 *           Specifies whether this is first time or subsequent factorization.
 *           = NO:  this factorization is treated as the first one;
 *           = YES: it means that a factorization was performed prior to this
 *               one. Therefore, this factorization will re-use some
 *               existing data structures, such as L and U storage, column
 *               elimination tree, and the symbolic information of the
 *               Householder matrix.
 *
 *         o panel_size (int)
 *           A panel consists of at most panel_size consecutive columns.
 *
 *         o relax (int)
 *           To control degree of relaxing supernodes. If the number
 *           of nodes (columns) in a subtree of the elimination tree is less
 *           than relax, this subtree is considered as one supernode,
 *           regardless of the row structures of those columns.
 *
 *         o diag_pivot_thresh (double)
 *           Diagonal pivoting threshold. At step j of the Gaussian 
 *           elimination, if 
 *               abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *           use A_jj as pivot, else use A_ij with maximum magnitude. 
 *           0 <= diag_pivot_thresh <= 1. The default value is 1, 
 *           corresponding to partial pivoting.
 *
 *         o usepr (yes_no_t)
 *           Whether the pivoting will use perm_r specified by the user.
 *           = YES: use perm_r; perm_r is input, unchanged on exit.
 *           = NO:  perm_r is determined by partial pivoting, and is output.
 *
 *         o drop_tol (double) (NOT IMPLEMENTED)
 *	     Drop tolerance parameter. At step j of the Gaussian elimination,
 *           if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *           0 <= drop_tol <= 1. The default value of drop_tol is 0,
 *           corresponding to not dropping any entry.
 *
 *         o work (void*) of size lwork
 *           User-supplied work space and space for the output data structures.
 *           Not referenced if lwork = 0;
 *
 *         o lwork (int)
 *           Specifies the length of work array.
 *           = 0:  allocate space internally by system malloc;
 *           > 0:  use user-supplied work array of length lwork in bytes,
 *                 returns error if space runs out.
 *           = -1: the routine guesses the amount of space needed without
 *                 performing the factorization, and returns it in
 *                 superlu_memusage->total_needed; no other side effects.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *         A->nrow = A->ncol. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
 *         more general A will be handled.
 *
 *         On entry, If superlumt_options->fact = FACTORED and equed is not 
 *         NOEQUIL, then A must have been equilibrated by the scaling factors
 *         in R and/or C.  On exit, A is not modified 
 *         if superlumt_options->fact = FACTORED or DOFACT, or 
 *         if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL.
 *
 *         On exit, if superlumt_options->fact = EQUILIBRATE and equed is not
 *         NOEQUIL, A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = ROW:  A := diag(R) * A
 *           equed = COL:  A := A * diag(C)
 *           equed = BOTH: A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = ROW:  transpose(A) := diag(R) * transpose(A)
 *           equed = COL:  transpose(A) := transpose(A) * diag(C)
 *           equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of tranpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If superlumt_options->usepr = NO, perm_r is output argument;
 *         If superlumt_options->usepr = YES, the pivoting routine will try 
 *            to use the input perm_r, unless a certain threshold criterion
 *            is violated. In that case, perm_r is overwritten by a new
 *            permutation determined by partial pivoting or diagonal 
 *            threshold pivoting.
 * 
 * equed   (input/output) equed_t*
 *         Specifies the form of equilibration that was done.
 *         = NOEQUIL: No equilibration.
 *         = ROW:  Row equilibration, i.e., A was premultiplied by diag(R).
 *         = COL:  Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = BOTH: Both row and column equilibration, i.e., A was replaced 
 *                 by diag(R)*A*diag(C).
 *         If superlumt_options->fact = FACTORED, equed is an input argument, 
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)
 *            (if A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = NOEQUIL or COL, R is not accessed.
 *         If fact = FACTORED, R is an input argument; otherwise, R is output.
 *         If fact = FACTORED and equed = ROW or BOTH, each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A)
 *            (if A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = NOEQUIL or ROW, C is not accessed.
 *         If fact = FACTORED, C is an input argument; otherwise, C is output.
 *         If fact = FACTORED and equed = COL or BOTH, each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = NOEQUIL, B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
 *                  by diag(R)*B;
 *               if trans = TRANS or CONJ and equed = COL of BOTH, B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = NOTRANS and equed = COL or BOTH, B is overwritten
 *                  by diag(C)*B;
 *               if trans = TRANS or CONJ and equed = ROW of BOTH, B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = _D, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not NOEQUIL, and the solution to the 
 *         equilibrated system is inv(diag(C))*X if trans = NOTRANS and
 *         equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
 *         and equed = ROW or BOTH.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor computed as
 *             max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ).
 *         If recip_pivot_growth is much less than 1, the stability of the
 *         LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * ferr    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * berr    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * superlu_memusage (output) superlu_memusage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    NCformat  *Astore;
    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, dofact, notran, rowequ;
    char      norm[1];
    trans_t   trant;
    int       i, j, info1;
    double amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       n, relax, panel_size;
    Gstat_t   Gstat;
    double    t0;      /* temporary time */
    double    *utime;
    flops_t   *ops, flopcnt;
   
    /* External functions */
    extern double dlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Astore = A->Store;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    n      = A->ncol;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    superlumt_options->perm_c = perm_c;
    superlumt_options->perm_r = perm_r;

    *info = 0;
    dofact = (superlumt_options->fact == DOFACT);
    equil = (superlumt_options->fact == EQUILIBRATE);
    notran = (superlumt_options->trans == NOTRANS);
    if (dofact || equil) {
	*equed = NOEQUIL;
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = (*equed == ROW) || (*equed == BOTH);
	colequ = (*equed == COL) || (*equed == BOTH);
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    if ( nprocs <= 0 ) *info = -1;
    else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED))
	      || (!notran && (superlumt_options->trans != TRANS) && 
		 (superlumt_options->trans != CONJ))
	      || (superlumt_options->refact != YES && 
		  superlumt_options->refact != NO)
	      || (superlumt_options->usepr != YES &&
		  superlumt_options->usepr != NO)
	      || superlumt_options->lwork < -1 )
        *info = -2;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -3;
    else if ((superlumt_options->fact == FACTORED) && 
	     !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -11;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -12;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("pdgssvx", &i);
	return;
    }
    
    
    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    panel_size = superlumt_options->panel_size;
    relax = superlumt_options->relax;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;
    
    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	trant = superlumt_options->trans;
	AA = A;
    }

    /* ------------------------------------------------------------
       Diagonal scaling to equilibrate the matrix.
       ------------------------------------------------------------*/
    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = (*equed == ROW) || (*equed == BOTH);
	    colequ = (*equed == COL) || (*equed == BOTH);
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* ------------------------------------------------------------
       Scale the right hand side.
       ------------------------------------------------------------*/
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                        Bmat[i + j*ldb] *= R[i];
		}
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
                    Bmat[i + j*ldb] *= C[i];
	    }
    }

    
    /* ------------------------------------------------------------
       Perform the LU factorization.
       ------------------------------------------------------------*/
    if ( dofact || equil ) {
	
        /* Obtain column etree, the column count (colcnt_h) and supernode
	   partition (part_super_h) for the Householder matrix. */
	t0 = SuperLU_timer_();
	sp_colorder(AA, perm_c, superlumt_options, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

#if ( PRNTlevel >= 2 )    
	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout);
#endif
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	pdgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	flopcnt = 0;
	for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
	ops[FACT] = flopcnt;

	if ( superlumt_options->lwork == -1 ) {
	    superlu_memusage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = dPivotGrowth(*info, AA, perm_c, L, U);
	}
    } else {

	/* ------------------------------------------------------------
	   Compute the reciprocal pivot growth factor *recip_pivot_growth.
	   ------------------------------------------------------------*/
	*recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);

	/* ------------------------------------------------------------
	   Estimate the reciprocal of the condition number of A.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = dlangs(norm, AA);
	dgscon(norm, L, U, anorm, rcond, info);
	utime[RCOND] = SuperLU_timer_() - t0;
    
	/* ------------------------------------------------------------
	   Compute the solution matrix X.
	   ------------------------------------------------------------*/
	for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
	t0 = SuperLU_timer_();
	dgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t0;
	ops[SOLVE] = ops[TRISOLVE];
    
	/* ------------------------------------------------------------
	   Use iterative refinement to improve the computed solution and
	   compute error bounds and backward error estimates for it.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	dgsrfs(trant, AA, L, U, perm_r, perm_c, *equed,
	       R, C, B, X, ferr, berr, &Gstat, info);
	utime[REFINE] = SuperLU_timer_() - t0;

	/* ------------------------------------------------------------
	   Transform the solution matrix X to a solution of the original
	   system.
	   ------------------------------------------------------------*/
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        Xmat[i + j*ldx] *= C[i];
		    }
	    }
	} else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                    Xmat[i + j*ldx] *= R[i];
		}
	}
	
	/* Set INFO = A->ncol+1 if the matrix is singular to 
	   working precision.*/
	if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;
	
    }

    superlu_dQuerySpace(nprocs, L, U, panel_size, superlu_memusage);

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    if ( superlumt_options->refact == NO ) {
        SUPERLU_FREE(superlumt_options->etree);
        SUPERLU_FREE(superlumt_options->colcnt_h);
	SUPERLU_FREE(superlumt_options->part_super_h);
    }
    if ( dofact || equil ) {
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    PrintStat(&Gstat);
    StatFree(&Gstat);
}
Beispiel #22
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program DLINSOLX2.
 *
 * This example illustrates how to use DGSSVX to solve systems repeatedly
 * with the same sparsity pattern of matrix A.
 * In this case, the column permutation vector perm_c is computed once.
 * The following data structures will be reused in the subsequent call to
 * DGSSVX: perm_c, etree
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, A1, L, U;
    SuperMatrix    B, B1, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    double         *a, *a1;
    int            *asub, *xa, *asub1, *xa1;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, j, m, n, nnz;
    double         *rhsb, *rhsb1, *rhsx, *xact;
    double         *R, *C;
    double         *ferr, *berr;
    double         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("DLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    dreadhb(&m, &n, &nnz, &a, &asub, &xa);
    if ( !(a1 = doubleMalloc(nnz)) ) ABORT("Malloc fails for a1[].");
    if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[].");
    if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[].");
    for (i = 0; i < nnz; ++i) {
        a1[i] = a[i];
	asub1[i] = asub[i];
    }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];
    
    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsb1 = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[].");
    if ( !(rhsx = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m];
    
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B
       ------------------------------------------------------------*/
    dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("First system: dgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        double *sol = (double*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_Dense_Matrix(&B);
    if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1
       ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    StatInit(&stat); /* Initialize the statistics variables. */

    dCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1,
                           SLU_NC, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_D, SLU_GE);

    dgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("\nSecond system: dgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        double *sol = (double*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A1);
    Destroy_Dense_Matrix(&B1);
    Destroy_Dense_Matrix(&X);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Beispiel #23
0
void RKWidget::step ( const size_t nStep )
{
    DNformat *Bstore;
    DNformat *Xstore;
    double temp;
    if(unstable) return;
    samset = false;
    if( dirty ) {
        if(aexist) {
            Destroy_CompCol_Matrix(&A);
            if ( lwork == 0 ) {
                Destroy_SuperNode_Matrix(&L);
                Destroy_CompCol_Matrix(&Up);
            } else if ( lwork > 0 ) {
                SUPERLU_FREE(work);
            }
            // these may be freed in dgssvx or Destroy_CompCol_Matrix I think
            aexist = false;
        }
        a = new double[nvar*N_];
        xa = new int[N_+1];
        asub = new int[nvar*N_];
        updateCoef(method);
        if(nblock == 1) {
            // load with coef[] ???
            fillA();
        } else if (nup+ndn == 0) {
            // solve seperate independent blocks???
        } else {
            // load block system
            blockFillA();
        }

        dCreate_CompCol_Matrix(&A, N_, N_, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
        aexist = true;
        /* Initialize the statistics variables. */
        StatInit(&stat);

        dPrint_CompCol_Matrix("A matrix", &A);
        options.Fact = DOFACT;
        //options.ColPerm=NATURAL;
        options.ColPerm=COLAMD;
        options.PivotGrowth = NO;
        options.ConditionNumber = NO;
        /* ONLY PERFORM THE LU DECOMPOSITION */
        B.ncol = 0;  /* Indicate not to solve the system */
        dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
               &L, &Up, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
               &mem_usage, &stat, &info);
        //dPrint_CompCol_Matrix("A matrix", &A);
        printf("LU factorization: dgssvx() returns info %d\n", info);
        if ( info == 0 || info == N_+1 ) {

            if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
            if ( options.ConditionNumber )
                printf("Recip. condition number = %e\n", rcond);

            printf("L\\U_ MB %.3f\ttotal MB needed %.3f\n",
                   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
            fflush(stdout);
            options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
            B.ncol = 1;
            dirty = false;
        } else if ( info > 0 && lwork == -1 ) {
            printf("** Estimated memory: %d bytes\n", info - n);
        }
        if ( options.PrintStat ) StatPrint(&stat);
        StatFree(&stat);
    }
    for ( size_t n = 0; n < nStep; n++ ) {
        for( int ns = 0; ns < nStage; ns++ ) {
            ///set B matrix
            Bstore= (DNformat *)B.Store;
            rhsb=(double*)Bstore->nzval;
            if (nup+ndn == 0) {
                // solve seperate independent blocks???
                std::cout << "Discontinuous Galerkin Not Implimented\n";
                return;
            } else {
                fillB(ns);
            }

            ///solve factored system
            StatInit(&stat);
            options.Fact = FACTORED;
            dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
                   &L, &Up, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
                   &mem_usage, &stat, &info);

            //if( n == 1 ) printf("Triangular solve: dgssvx() returns info %d\n", info);

            ///update U_
            if ( info == 0 || info == N_+1 ) {

                /* This is how you could access the solution matrix. */
                Xstore = (DNformat *)X.Store;
                rhsx = (double*)(Xstore->nzval);
                for ( size_t i = 0; i <  N_ ; i++ ) {
                    if(rhsx[i]> 1e16) unstable = true;
                    b_k[i+N_*ns]=rhsx[i];
                }
            } else {
                std::cout << "ERROR: Matrix Solution Failed   info = " << info << std::endl;
            }
            StatFree(&stat);
        }
        for(int j=0 ; j<nStage; j++) {
            temp=b_b[j];
            if( temp != 0 ) {
                for(size_t i = 0; i <  N_ ; i++ ) {
                    U_[i] += temp*b_k[i+j*N_];
                }
            }
        }
        cStep++;
        totCFL += CFL;
    }
}
Beispiel #24
0
NLboolean nlFactorize_SUPERLU() {

	/* OpenNL Context */
	NLSparseMatrix* M   = &(nlCurrentContext->M) ;
	NLuint          n   = nlCurrentContext->n ;
	NLuint          nnz = nlSparseMatrixNNZ(M) ; /* Number of Non-Zero coeffs */

	superlu_context* context = (superlu_context*)(nlCurrentContext->direct_solver_context) ;
	if(context == NULL) {
		nlCurrentContext->direct_solver_context = malloc(sizeof(superlu_context)) ;
		context = (superlu_context*)(nlCurrentContext->direct_solver_context) ;
	}

	/* SUPERLU variables */
	NLint info ;
	SuperMatrix A, AC ;

	/* Temporary variables */
	NLRowColumn* Ci = NULL ;
	NLuint       i,j,count ;

	/* Sanity checks */
	nl_assert(!(M->storage & NL_MATRIX_STORE_SYMMETRIC)) ;
	nl_assert(M->storage & NL_MATRIX_STORE_ROWS) ;
	nl_assert(M->m == M->n) ;

	set_default_options(&(context->options)) ;

	switch(nlCurrentContext->solver) {
	case NL_SUPERLU_EXT: {
		context->options.ColPerm = NATURAL ;
	} break ;
	case NL_PERM_SUPERLU_EXT: {
		context->options.ColPerm = COLAMD ;
	} break ;
	case NL_SYMMETRIC_SUPERLU_EXT: {
		context->options.ColPerm = MMD_AT_PLUS_A ;
		context->options.SymmetricMode = YES ;
	} break ;
	default: {
		nl_assert_not_reached ;
	} break ;
	}

	StatInit(&(context->stat)) ;

	/*
	 * Step 1: convert matrix M into SUPERLU compressed column representation
	 * ----------------------------------------------------------------------
	 */

	NLint*    xa   = NL_NEW_ARRAY(NLint, n+1) ;
	NLdouble* a    = NL_NEW_ARRAY(NLdouble, nnz) ;
	NLint*    asub = NL_NEW_ARRAY(NLint, nnz) ;

	count = 0 ;
	for(i = 0; i < n; i++) {
		Ci = &(M->row[i]) ;
		xa[i] = count ;
		for(j = 0; j < Ci->size; j++) {
			a[count]    = Ci->coeff[j].value ;
			asub[count] = Ci->coeff[j].index ;
			count++ ;
		}
	}
	xa[n] = nnz ;

	dCreate_CompCol_Matrix(
		&A, n, n, nnz, a, asub, xa,
		SLU_NR, /* Row wise     */
		SLU_D,  /* doubles         */
		SLU_GE  /* general storage */
	);

	/*
	 * Step 2: factorize matrix
	 * ------------------------
	 */

	context->perm_c = NL_NEW_ARRAY(NLint, n) ;
	context->perm_r = NL_NEW_ARRAY(NLint, n) ;
	NLint* etree    = NL_NEW_ARRAY(NLint, n) ;

	get_perm_c(context->options.ColPerm, &A, context->perm_c) ;
	sp_preorder(&(context->options), &A, context->perm_c, etree, &AC) ;

	int panel_size = sp_ienv(1) ;
	int relax = sp_ienv(2) ;

	dgstrf(&(context->options),
		   &AC,
		   relax,
		   panel_size,
		   etree,
		   NULL,
		   0,
		   context->perm_c,
		   context->perm_r,
		   &(context->L),
		   &(context->U),
		   &(context->stat),
		   &info) ;

	/*
	 * Step 3: cleanup
	 * ---------------
	 */

	NL_DELETE_ARRAY(xa) ;
	NL_DELETE_ARRAY(a) ;
	NL_DELETE_ARRAY(asub) ;
	NL_DELETE_ARRAY(etree) ;
	Destroy_SuperMatrix_Store(&A);
	Destroy_CompCol_Permuted(&AC);
	StatFree(&(context->stat));

	return NL_TRUE ;
}
Beispiel #25
0
void
dgsitrf(superlu_options_t *options, SuperMatrix *A, int relax, int panel_size,
	int *etree, void *work, int lwork, int *perm_c, int *perm_r,
	SuperMatrix *L, SuperMatrix *U, 
    	GlobalLU_t *Glu, /* persistent to facilitate multiple factorizations */
	SuperLUStat_t *stat, int *info)
{
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when
				  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *swap, *iswap; /* swap is used to store the row permutation
				during the factorization. Initially, it is set
				to iperm_c (row indeces of Pc*A*Pc').
				iswap is the inverse of swap. After the
				factorization, it is equal to perm_r. */
    int       *iwork;
    double   *dwork;
    int       *segrep, *repfnz, *parent, *xplore;
    int       *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int       *marker, *marker_relax;
    double    *dense, *tempv;
    int       *relax_end, *relax_fsupc;
    double    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    double    *amax; 
    double    drop_sum;
    double alpha, omega;  /* used in MILU, mimicing DRIC */
    double    *dwork2;	   /* used by the second dropping rule */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    double    drop_tol = options->ILU_DropTol; /* tau */
    double    fill_ini = options->ILU_FillTol; /* tau^hat */
    double    gamma = options->ILU_FillFactor;
    int       drop_rule = options->ILU_DropRule;
    milu_t    milu = options->ILU_MILU;
    double    fill_tol;
    int       pivrow;	/* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    int       last_drop;/* the last column which the dropping rules applied */
    int       quota;
    int       nnzAj;	/* number of nonzeros in A(:,1:j) */
    int       nnzLj, nnzUj;
    double    tol_L = drop_tol, tol_U = drop_tol;
    double zero = 0.0;
    double one = 1.0;

    /* Executable */	   
    iinfo    = 0;
    m	     = A->nrow;
    n	     = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a	     = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = dLUMemInit(fact, work, lwork, m, n, Astore->nnz, panel_size,
		       gamma, L, U, Glu, &iwork, &dwork);
    if ( *info ) return;

    xsup    = Glu->xsup;
    supno   = Glu->supno;
    xlsub   = Glu->xlsub;
    xlusup  = Glu->xlusup;
    xusub   = Glu->xusub;

    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &marker_relax, &marker);
    dSetRWork(m, panel_size, dwork, &dense, &tempv);

    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
	iperm_r_allocated = 1;
    }

    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
    swap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) swap[k] = iperm_c[k];
    iswap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) iswap[k] = perm_c[k];
    amax = (double *) doubleMalloc(panel_size);
    if (drop_rule & DROP_SECONDARY)
	dwork2 = (double *)doubleMalloc(n);
    else
	dwork2 = NULL;

    nnzAj = 0;
    nnzLj = 0;
    nnzUj = 0;
    last_drop = SUPERLU_MAX(min_mn - 2 * sp_ienv(7), (int)(min_mn * 0.95));
    alpha = pow((double)n, -1.0 / options->ILU_MILU_Dim);

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    relax_fsupc = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES )
	ilu_heap_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);
    else
	ilu_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);

    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* Mark the rows used by relaxed supernodes */
    ifill (marker_relax, m, EMPTY);
    i = mark_relax(m, relax_end, relax_fsupc, xa_begin, xa_end,
	         asub, marker_relax);
#if ( PRNTlevel >= 1)
    printf("%d relaxed supernodes.\n", i);
#endif

    /*
     * Work on one "panel" at a time. A panel is one of the following:
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* Drop small rows in the previous supernode. */
	    if (jcol > 0 && jcol < last_drop) {
		int first = xsup[supno[jcol - 1]];
		int last = jcol - 1;
		int quota;

		/* Compute the quota */
		if (drop_rule & DROP_PROWS)
		    quota = gamma * Astore->nnz / m * (m - first) / m
			    * (last - first + 1);
		else if (drop_rule & DROP_COLUMN) {
		    int i;
		    quota = 0;
		    for (i = first; i <= last; i++)
			quota += xa_end[i] - xa_begin[i];
		    quota = gamma * quota * (m - first) / m;
		} else if (drop_rule & DROP_AREA)
		    quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
			    - nnzLj;
		else
		    quota = m * n;
		fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) / min_mn);

		/* Drop small rows */
		i = ilu_ddrop_row(options, first, last, tol_L, quota, &nnzLj,
				  &fill_tol, Glu, tempv, dwork2, 0);
		/* Reset the parameters */
		if (drop_rule & DROP_DYNAMIC) {
		    if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
			     < nnzLj)
			tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
		    else
			tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
		}
		if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
		num_drop_L += i * (last - first + 1);
#endif
	    }

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol)
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = ilu_dsnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
					 marker, Glu)) != 0 )
		return;

	    nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu->nzlumax;
	    while ( new_next > nzlumax ) {
		if ((*info = dLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)))
		    return;
	    }

	    for (icol = jcol; icol <= kcol; icol++) {
		xusub[icol+1] = nextu;

		amax[0] = 0.0;
		/* Scatter into SPA dense[*] */
		for (k = xa_begin[icol]; k < xa_end[icol]; k++) {
		    register double tmp = fabs(a[k]);
		    if (tmp > amax[0]) amax[0] = tmp;
		    dense[asub[k]] = a[k];
		}
		nnzAj += xa_end[icol] - xa_begin[icol];
		if (amax[0] == 0.0) {
		    amax[0] = fill_ini;
#if ( PRNTlevel >= 1)
		    printf("Column %d is entirely zero!\n", icol);
		    fflush(stdout);
#endif
		}

		/* Numeric update within the snode */
		dsnode_bmod(icol, jsupno, fsupc, dense, tempv, Glu, stat);

		if (usepr) pivrow = iperm_r[icol];
		fill_tol = pow(fill_ini, 1.0 - (double)icol / (double)min_mn);
		if ( (*info = ilu_dpivotL(icol, diag_pivot_thresh, &usepr,
					  perm_r, iperm_c[icol], swap, iswap,
					  marker_relax, &pivrow,
                                          amax[0] * fill_tol, milu, zero,
                                          Glu, stat)) ) {
		    iinfo++;
		    marker[pivrow] = kcol;
		}

	    }

	    jcol = kcol + 1;

	} else { /* Work on one panel of panel_size columns */

	    /* Adjust panel_size so that a panel won't overlap with the next
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    ilu_dpanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
                          dense, amax, panel_lsub, segrep, repfnz,
                          marker, parent, xplore, Glu);

	    /* numeric sup-panel updates in topological order */
	    dpanel_bmod(m, panel_size, jcol, nseg1, dense,
			tempv, segrep, repfnz, Glu, stat);

	    /* Sparse LU within the panel, and below panel diagonal */
	    for (jj = jcol; jj < jcol + panel_size; jj++) {

		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

		nnzAj += xa_end[jj] - xa_begin[jj];

		if ((*info = ilu_dcolumn_dfs(m, jj, perm_r, &nseg,
					     &panel_lsub[k], segrep, &repfnz[k],
					     marker, parent, xplore, Glu)))
		    return;

		/* Numeric updates */
		if ((*info = dcolumn_bmod(jj, (nseg - nseg1), &dense[k],
					  tempv, &segrep[nseg1], &repfnz[k],
					  jcol, Glu, stat)) != 0) return;

		/* Make a fill-in position if the column is entirely zero */
		if (xlsub[jj + 1] == xlsub[jj]) {
		    register int i, row;
		    int nextl;
		    int nzlmax = Glu->nzlmax;
		    int *lsub = Glu->lsub;
		    int *marker2 = marker + 2 * m;

		    /* Allocate memory */
		    nextl = xlsub[jj] + 1;
		    if (nextl >= nzlmax) {
			int error = dLUMemXpand(jj, nextl, LSUB, &nzlmax, Glu);
			if (error) { *info = error; return; }
			lsub = Glu->lsub;
		    }
		    xlsub[jj + 1]++;
		    assert(xlusup[jj]==xlusup[jj+1]);
		    xlusup[jj + 1]++;
		    ((double *) Glu->lusup)[xlusup[jj]] = zero;

		    /* Choose a row index (pivrow) for fill-in */
		    for (i = jj; i < n; i++)
			if (marker_relax[swap[i]] <= jj) break;
		    row = swap[i];
		    marker2[row] = jj;
		    lsub[xlsub[jj]] = row;
#ifdef DEBUG
		    printf("Fill col %d.\n", jj);
		    fflush(stdout);
#endif
		}

		/* Computer the quota */
		if (drop_rule & DROP_PROWS)
		    quota = gamma * Astore->nnz / m * jj / m;
		else if (drop_rule & DROP_COLUMN)
		    quota = gamma * (xa_end[jj] - xa_begin[jj]) *
			    (jj + 1) / m;
		else if (drop_rule & DROP_AREA)
		    quota = gamma * 0.9 * nnzAj * 0.5 - nnzUj;
		else
		    quota = m;

		/* Copy the U-segments to ucol[*] and drop small entries */
		if ((*info = ilu_dcopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					       perm_r, &dense[k], drop_rule,
					       milu, amax[jj - jcol] * tol_U,
					       quota, &drop_sum, &nnzUj, Glu,
					       dwork2)) != 0)
		    return;

		/* Reset the dropping threshold if required */
		if (drop_rule & DROP_DYNAMIC) {
		    if (gamma * 0.9 * nnzAj * 0.5 < nnzLj)
			tol_U = SUPERLU_MIN(1.0, tol_U * 2.0);
		    else
			tol_U = SUPERLU_MAX(drop_tol, tol_U * 0.5);
		}

		if (drop_sum != zero)
		{
		    if (drop_sum > zero)
			omega = SUPERLU_MIN(2.0 * (1.0 - alpha)
				* amax[jj - jcol] / drop_sum, one);
		    else
			omega = SUPERLU_MAX(2.0 * (1.0 - alpha)
				* amax[jj - jcol] / drop_sum, -one);
		    drop_sum *= omega;
                }
		if (usepr) pivrow = iperm_r[jj];
		fill_tol = pow(fill_ini, 1.0 - (double)jj / (double)min_mn);
		if ( (*info = ilu_dpivotL(jj, diag_pivot_thresh, &usepr, perm_r,
					  iperm_c[jj], swap, iswap,
					  marker_relax, &pivrow,
					  amax[jj - jcol] * fill_tol, milu,
					  drop_sum, Glu, stat)) ) {
		    iinfo++;
		    marker[m + pivrow] = jj;
		    marker[2 * m + pivrow] = jj;
		}

		/* Reset repfnz[] for this column */
		resetrep_col (nseg, segrep, &repfnz[k]);

		/* Start a new supernode, drop the previous one */
		if (jj > 0 && supno[jj] > supno[jj - 1] && jj < last_drop) {
		    int first = xsup[supno[jj - 1]];
		    int last = jj - 1;
		    int quota;

		    /* Compute the quota */
		    if (drop_rule & DROP_PROWS)
			quota = gamma * Astore->nnz / m * (m - first) / m
				* (last - first + 1);
		    else if (drop_rule & DROP_COLUMN) {
			int i;
			quota = 0;
			for (i = first; i <= last; i++)
			    quota += xa_end[i] - xa_begin[i];
			quota = gamma * quota * (m - first) / m;
		    } else if (drop_rule & DROP_AREA)
			quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0)
				/ m) - nnzLj;
		    else
			quota = m * n;
		    fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) /
			    (double)min_mn);

		    /* Drop small rows */
		    i = ilu_ddrop_row(options, first, last, tol_L, quota,
				      &nnzLj, &fill_tol, Glu, tempv, dwork2,
				      1);

		    /* Reset the parameters */
		    if (drop_rule & DROP_DYNAMIC) {
			if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
				< nnzLj)
			    tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
			else
			    tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
		    }
		    if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
		    num_drop_L += i * (last - first + 1);
#endif
		} /* if start a new supernode */

	    } /* for */

	    jcol += panel_size; /* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;

    if ( m > n ) {
	k = 0;
	for (i = 0; i < m; ++i)
	    if ( perm_r[i] == EMPTY ) {
		perm_r[i] = n + k;
		++k;
	    }
    }

    ilu_countnz(min_mn, &nnzL, &nnzU, Glu);
    fixupL(min_mn, perm_r, Glu);

    dLUWorkFree(iwork, dwork, Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
	/* L and U structures may have changed due to possibly different
	   pivoting, even though the storage is available.
	   There could also be memory expansions, so the array locations
	   may have changed, */
	((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu->supno[n];
	((SCformat *)L->Store)->nzval = (double *) Glu->lusup;
	((SCformat *)L->Store)->nzval_colptr = Glu->xlusup;
	((SCformat *)L->Store)->rowind = Glu->lsub;
	((SCformat *)L->Store)->rowind_colptr = Glu->xlsub;
	((NCformat *)U->Store)->nnz = nnzU;
	((NCformat *)U->Store)->nzval = (double *) Glu->ucol;
	((NCformat *)U->Store)->rowind = Glu->usub;
	((NCformat *)U->Store)->colptr = Glu->xusub;
    } else {
	dCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL,
              (double *) Glu->lusup, Glu->xlusup,
              Glu->lsub, Glu->xlsub, Glu->supno, Glu->xsup,
	      SLU_SC, SLU_D, SLU_TRLU);
	dCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU,
	      (double *) Glu->ucol, Glu->usub, Glu->xusub,
	      SLU_NC, SLU_D, SLU_TRU);
    }

    ops[FACT] += ops[TRSV] + ops[GEMV];
    stat->expansions = --(Glu->num_expansions);

    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);
    SUPERLU_FREE (swap);
    SUPERLU_FREE (iswap);
    SUPERLU_FREE (relax_fsupc);
    SUPERLU_FREE (amax);
    if ( dwork2 ) SUPERLU_FREE (dwork2);

}
Beispiel #26
0
void
dgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       double *recip_pivot_growth, double *rcond,
       GlobalLU_t *Glu, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    double    *Bmat, *Xmat;
    int       ldb, ldx, nrhs, n;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL; /* permutation returned from MC64 */

    /* External functions */
    extern double dlangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    n      = B->nrow;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
	colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	smlnum = dmach("Safe minimum");  /* lamch_("Safe minimum"); */
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	options->Fact != FACTORED &&
	options->Trans != NOTRANS && options->Trans != TRANS && 
	options->Trans != CONJ &&
	options->Equil != NO && options->Equil != YES)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( options->Fact == FACTORED &&
	     !(rowequ || colequ || strncmp(equed, "N", 1)==0) )
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_D || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
		      X->Stype != SLU_DN ||
		      X->Dtype != SLU_D || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	input_error("dgsisx", &i);
	return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact ) {
	register int i, j;
	NCformat *Astore = AA->Store;
	int nnz = Astore->nnz;
	int *colptr = Astore->colptr;
	int *rowind = Astore->rowind;
	double *nzval = (double *)Astore->nzval;

	if ( mc64 ) {
	    t0 = SuperLU_timer_();
	    if ((perm = intMalloc(n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm[]");

	    info1 = dldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

	    if (info1 != 0) { /* MC64 fails, call dgsequ() later */
		mc64 = 0;
		SUPERLU_FREE(perm);
		perm = NULL;
	    } else {
	        if ( equil ) {
	            rowequ = colequ = 1;
		    for (i = 0; i < n; i++) {
		        R[i] = exp(R[i]);
		        C[i] = exp(C[i]);
		    }
		    /* scale the matrix */
		    for (j = 0; j < n; j++) {
		        for (i = colptr[j]; i < colptr[j + 1]; i++) {
			    nzval[i] *= R[rowind[i]] * C[j];
		        }
		    }
	            *equed = 'B';
                }

                /* permute the matrix */
		for (j = 0; j < n; j++) {
		    for (i = colptr[j]; i < colptr[j + 1]; i++) {
			/*nzval[i] *= R[rowind[i]] * C[j];*/
			rowind[i] = perm[rowind[i]];
		    }
		}
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}

	if ( !mc64 & equil ) { /* Only perform equilibration, no row perm */
	    t0 = SuperLU_timer_();
	    /* Compute row and column scalings to equilibrate the matrix A. */
	    dgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

	    if ( info1 == 0 ) {
		/* Equilibrate matrix A. */
		dlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
		rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
		colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
    }


    if ( nofact ) {
	
	t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
	    get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	dgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, Glu, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;

	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}

	if ( mc64 ) { /* Fold MC64's perm[] into perm_r[]. */
	    NCformat *Astore = AA->Store;
	    int nnz = Astore->nnz, *rowind = Astore->rowind;
	    int *perm_tmp, *iperm;
	    if ((perm_tmp = intMalloc(2*n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm_tmp[]");
	    iperm = perm_tmp + n;
	    for (i = 0; i < n; ++i) perm_tmp[i] = perm_r[perm[i]];
	    for (i = 0; i < n; ++i) {
		perm_r[i] = perm_tmp[i];
		iperm[perm[i]] = i;
	    }

	    /* Restore A's original row indices. */
	    for (i = 0; i < nnz; ++i) rowind[i] = iperm[rowind[i]];

	    SUPERLU_FREE(perm); /* MC64 permutation */
	    SUPERLU_FREE(perm_tmp);
	}
    }

    if ( options->PivotGrowth ) {
	if ( *info > 0 ) return;

	/* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
	*recip_pivot_growth = dPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
	/* Estimate the reciprocal of the condition number of A. */
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = dlangs(norm, AA);
	dgscon(norm, L, U, anorm, rcond, stat, &info1);
	utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) { /* Solve the system */
        double *rhs_work;

	/* Scale and permute the right-hand side if equilibration
           and permutation from MC64 were performed. */
	if ( notran ) {
	    if ( rowequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i)
		        Bmat[i + j*ldb] *= R[i];
	    }
	} else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < n; ++i) {
	            Bmat[i + j*ldb] *= C[i];
		}
	}

	/* Compute the solution matrix X. */
	for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];

	t0 = SuperLU_timer_();
	dgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
	utime[SOLVE] = SuperLU_timer_() - t0;

	/* Transform the solution matrix X to a solution of the original
	   system. */
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i) {
                        Xmat[i + j*ldx] *= C[i];
                    }
	    }
	} else { /* transposed system */
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
              	        Xmat[i + j*ldx] *= R[i];
                    }
	    }
	}

    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
	/* The matrix is singular to working precision. */
	/* if ( *rcond < dlamch_("E") && *info == 0) *info = A->ncol + 1; */
	if ( *rcond < dmach("E") && *info == 0) *info = A->ncol + 1;
    }

    if ( nofact ) {
	ilu_dQuerySpace(L, U, mem_usage);
	Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Beispiel #27
0
void
c_fortran_dgssv_(int *iopt, int *n, int *nnz, int *nrhs, 
                 double *values, int *rowind, int *colptr,
                 double *b, int *ldb,
		 fptr *f_factors, /* a handle containing the address
				     pointing to the factored matrices */
		 int *info)

{
/* 
 * This routine can be called from Fortran.
 *
 * iopt (input) int
 *      Specifies the operation:
 *      = 1, performs LU decomposition for the first time
 *      = 2, performs triangular solve
 *      = 3, free all the storage in the end
 *
 * f_factors (input/output) fptr* 
 *      If iopt == 1, it is an output and contains the pointer pointing to
 *                    the structure of the factored matrices.
 *      Otherwise, it it an input.
 *
 */
 
    SuperMatrix A, AC, B;
    SuperMatrix *L, *U;
    int *perm_r; /* row permutations from partial pivoting */
    int *perm_c; /* column permutation vector */
    int *etree;  /* column elimination tree */
    SCformat *Lstore;
    NCformat *Ustore;
    int      i, panel_size, permc_spec, relax;
    trans_t  trans;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    factors_t *LUfactors;

    trans = NOTRANS;

    if ( *iopt == 1 ) { /* LU decomposition */

        /* Set the default input options. */
        set_default_options(&options);

	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Adjust to 0-based indexing */
	for (i = 0; i < *nnz; ++i) --rowind[i];
	for (i = 0; i <= *n; ++i) --colptr[i];

	dCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,
			       SLU_NC, SLU_D, SLU_GE);
	L = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	U = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	if ( !(perm_r = intMalloc(*n)) ) ABORT("Malloc fails for perm_r[].");
	if ( !(perm_c = intMalloc(*n)) ) ABORT("Malloc fails for perm_c[].");
	if ( !(etree = intMalloc(*n)) ) ABORT("Malloc fails for etree[].");

	/*
	 * Get column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = 0: natural ordering 
	 *   permc_spec = 1: minimum degree on structure of A'*A
	 *   permc_spec = 2: minimum degree on structure of A'+A
	 *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
	 */    	
	permc_spec = options.ColPerm;
	get_perm_c(permc_spec, &A, perm_c);
	
	sp_preorder(&options, &A, perm_c, etree, &AC);

	panel_size = sp_ienv(1);
	relax = sp_ienv(2);

	dgstrf(&options, &AC, relax, panel_size, etree,
                NULL, 0, perm_c, perm_r, L, U, &stat, info);

	if ( *info == 0 ) {
	    Lstore = (SCformat *) L->Store;
	    Ustore = (NCformat *) U->Store;
	    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
	    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
	    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);
	    dQuerySpace(L, U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	} else {
	    printf("dgstrf() error returns INFO= %d\n", *info);
	    if ( *info <= *n ) { /* factorization completes */
		dQuerySpace(L, U, &mem_usage);
		printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	    }
	}
	
	/* Restore to 1-based indexing */
	for (i = 0; i < *nnz; ++i) ++rowind[i];
	for (i = 0; i <= *n; ++i) ++colptr[i];

	/* Save the LU factors in the factors handle */
	LUfactors = (factors_t*) SUPERLU_MALLOC(sizeof(factors_t));
	LUfactors->L = L;
	LUfactors->U = U;
	LUfactors->perm_c = perm_c;
	LUfactors->perm_r = perm_r;
	*f_factors = (fptr) LUfactors;

	/* Free un-wanted storage */
	SUPERLU_FREE(etree);
	Destroy_SuperMatrix_Store(&A);
	Destroy_CompCol_Permuted(&AC);
	StatFree(&stat);

    } else if ( *iopt == 2 ) { /* Triangular solve */
	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Extract the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	L = LUfactors->L;
	U = LUfactors->U;
	perm_c = LUfactors->perm_c;
	perm_r = LUfactors->perm_r;

	dCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, SLU_DN, SLU_D, SLU_GE);

        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_c, perm_r, &B, &stat, info);

	Destroy_SuperMatrix_Store(&B);
	StatFree(&stat);

    } else if ( *iopt == 3 ) { /* Free storage */
	/* Free the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	SUPERLU_FREE (LUfactors->perm_r);
	SUPERLU_FREE (LUfactors->perm_c);
	Destroy_SuperNode_Matrix(LUfactors->L);
	Destroy_CompCol_Matrix(LUfactors->U);
        SUPERLU_FREE (LUfactors->L);
        SUPERLU_FREE (LUfactors->U);
	SUPERLU_FREE (LUfactors);
    } else {
	fprintf(stderr,"Invalid iopt=%d passed to c_fortran_dgssv()\n",*iopt);
	exit(-1);
    }
}
Beispiel #28
0
void
dgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
      SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
      SuperLUStat_t *stat, int *info )
{

    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    double   drop_tol = 0.;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    int      permc_spec;
    trans_t  trans = NOTRANS;
    double   *utime;
    double   t;	/* Temporary time */

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( options->Fact != DOFACT ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -7;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("dgssv", &i);
	return;
    }

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else {
        if ( A->Stype == SLU_NC ) AA = A;
    }

    t = SuperLU_timer_();
    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = NATURAL:  natural ordering 
     *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
     *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
     *   permc_spec = COLAMD:   approximate minimum degree column ordering
     *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
     */
    permc_spec = options->ColPerm;
    if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
      get_perm_c(permc_spec, AA, perm_c);
    utime[COLPERM] = SuperLU_timer_() - t;

    etree = intMalloc(A->ncol);

    t = SuperLU_timer_();
    sp_preorder(options, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t;

    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    dgstrf(options, &AC, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_c, perm_r, L, U, stat, info);
    utime[FACT] = SuperLU_timer_() - t;

    t = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        dgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Beispiel #29
0
void
pdgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, 
       SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * PDGSSV solves the system of linear equations A*X=B, using the parallel
 * LU factorization routine PDGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc is a 
 *           permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the tranpose of A:
 *
 *      2.1. Permute columns of tranpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 * 
 *   See supermatrix.h for the definition of "SuperMatrix" structure.
 *
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *        Number of processes (or threads) to be spawned and used to perform
 *        the LU factorization by pdgstrf(). There is a single thread of
 *        control to call pdgstrf(), and all threads spawned by pdgstrf()
 *        are terminated before returning from pdgstrf().
 *
 * A      (input) SuperMatrix*
 *        Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *        A->nrow = A->ncol. Currently, the type of A can be:
 *        Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,
 *        more general A will be handled.
 *
 * perm_c (input/output) int*
 *        If A->Stype=NC, column permutation vector of size A->ncol,
 *        which defines the permutation matrix Pc; perm_c[i] = j means 
 *        column i of A is in position j in A*Pc.
 *        On exit, perm_c may be overwritten by the product of the input
 *        perm_c and a permutation that postorders the elimination tree
 *        of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *        is already in postorder.
 *
 *        If A->Stype=NR, column permutation vector of size A->nrow
 *        which describes permutation of columns of tranpose(A) 
 *        (rows of A) as described above.
 * 
 * perm_r (output) int*,
 *        If A->Stype=NR, row permutation vector of size A->nrow, 
 *        which defines the permutation matrix Pr, and is determined 
 *        by partial pivoting.  perm_r[i] = j means row i of A is in 
 *        position j in Pr*A.
 *
 *        If A->Stype=NR, permutation vector of size A->ncol, which
 *        determines permutation of rows of transpose(A)
 *        (columns of A) as described above.
 *
 * L      (output) SuperMatrix*
 *        The factor L from the factorization 
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Uses compressed row subscripts storage for supernodes, i.e.,
 *        L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U      (output) SuperMatrix*
 *	  The factor U from the factorization
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Use column-wise storage scheme, i.e., U has types:
 *        Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B      (input/output) SuperMatrix*
 *        B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *        On entry, the right hand side matrix.
 *        On exit, the solution matrix if info = 0;
 *
 * info   (output) int*
 *	  = 0: successful exit
 *        > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    trans_t  trans;
    NCformat *Astore;
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int i, n, panel_size, relax;
    fact_t   fact;
    yes_no_t refact, usepr;
    double diag_pivot_thresh, drop_tol;
    void *work;
    int lwork;
    superlumt_options_t superlumt_options;
    Gstat_t  Gstat;
    double   t; /* Temporary time */
    double   *utime;
    flops_t  *ops, flopcnt;

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    Astore = A->Store;
    Bstore = B->Store;
    *info = 0;
    if ( nprocs <= 0 ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 || 
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(1, A->nrow) )*info = -7;
    if ( *info != 0 ) {
        i = -(*info);
	xerbla_("pdgssv", &i);
	return;
    }

#if 0
    /* Use the best sequential code. 
       if this part is commented out, we will use the parallel code 
       run on one processor. */
    if ( nprocs == 1 ) {
        return;
    }
#endif

    fact               = EQUILIBRATE;
    refact             = NO;
    trans              = NOTRANS;
    panel_size         = sp_ienv(1);
    relax              = sp_ienv(2);
    diag_pivot_thresh  = 1.0;
    usepr              = NO;
    drop_tol           = 0.0;
    work               = NULL;
    lwork              = 0;

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    n = A->ncol;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;

    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	dCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else if ( A->Stype == SLU_NC ) AA = A;

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    pdgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 diag_pivot_thresh, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, AA, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pdgstrf(&superlumt_options, &AC, perm_r, L, U, &Gstat, info);

    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    ops[FACT] = flopcnt;

#if ( PRNTlevel==1 )
    printf("nprocs = %d, flops %e, Mflops %.2f\n",
	   nprocs, flopcnt, flopcnt/utime[FACT]*1e-6);
    printf("Parameters: w %d, relax %d, maxsuper %d, rowblk %d, colblk %d\n",
	   sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5));
    fflush(stdout);
#endif

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    if ( *info == 0 ) {
        t = SuperLU_timer_();
	dgstrs (trans, L, U, perm_r, perm_c, B, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t;
	ops[SOLVE] = ops[TRISOLVE];
    }

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    //PrintStat(&Gstat);	//FT Commented
    StatFree(&Gstat);
}
Beispiel #30
0
int main(int argc, char *argv[])
{
    void dmatvec_mult(double alpha, double x[], double beta, double y[]);
    void dpsolve(int n, double x[], double y[]);
    extern int dfgmr( int n,
	void (*matvec_mult)(double, double [], double, double []),
	void (*psolve)(int n, double [], double[]),
	double *rhs, double *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int dfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    double   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    double   *rhsb, *rhsx, *xact;
    double   *work = NULL;
    double   *R, *C;
    double   u, rpg, rcond;
    double zero = 0.0;
    double one = 1.0;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

    int restrt, iter, maxit, i;
    double resid;
    double *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;
    u	  = 0.1; /* u=1.0 for complete factorization */
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SILU;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		dreadhb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		dreadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		dreadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
    Astore = A.Store;
    dfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    if ( !(rhsb = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    dgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &mem_usage, &stat, &info);

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("dgsisx(): info %d\n", info);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {

	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);

    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(b = doubleMalloc(m))) ABORT("Malloc fails for b[].");
    if (!(x = doubleMalloc(n))) ABORT("Malloc fails for x[].");

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        double temp;
	extern double dnrm2_(int *, double [], int *);
	extern void daxpy_(int *, double *, double [], int *, double [], int *);

	/* Call GMRES. */
	for (i = 0; i < n; i++) b[i] = rhsb[i];
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	dfgmr(n, dmatvec_mult, dpsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = dnrm2_(&(Astore->nnz), (double *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = dnrm2_(&m, b, &i_1);
	sp_dgemv("N", -1.0, &A, x, 1, 1.0, b, 1);
	res = dnrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	/* Scale the solution back if equilibration was performed. */
	if (*equed == 'C' || *equed == 'B') 
	    for (i = 0; i < n; i++) x[i] *= C[i];

	for (i = 0; i < m; i++) {
	    maxferr = SUPERLU_MAX(maxferr, fabs(x[i] - xact[i]));
        }
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}