Beispiel #1
0
dReal ODE_Link::getVelocity(){
    if(jointType == ODE_Link::ROTATIONAL_JOINT)
        return dJointGetHingeAngleRate(odeJointId);
    else if(jointType == ODE_Link::SLIDE_JOINT)
        return dJointGetSliderPositionRate(odeJointId);
    else
        return 0;
}
Beispiel #2
0
static float get_phys_joint_rate(dJointID j, int n)
{
    switch (dJointGetType(j))
    {
    case dJointTypeHinge:  return (float) DEG(dJointGetHingeAngleRate    (j));
    case dJointTypeSlider: return (float)     dJointGetSliderPositionRate(j);
    case dJointTypeHinge2:
        if (n == 1)
            return (float) DEG(dJointGetHinge2Angle1Rate(j));
        else
            return (float) DEG(dJointGetHinge2Angle2Rate(j));
    default: return 0.0f;
    }
}
Beispiel #3
0
//! This function is called once per simulation step, allowing the
//! constraint to be "motorized" according to some response.  It runs
//! in the physics thread.
void OscHingeODE::simulationCallback()
{
    ODEConstraint& me = *static_cast<ODEConstraint*>(special());

    dReal angle = dJointGetHingeAngle(me.joint());
    dReal rate = dJointGetHingeAngleRate(me.joint());

    dReal addtorque =
        - m_response->m_stiffness.m_value*angle
        - m_response->m_damping.m_value*rate;

    // Limit the torque otherwise we get ODE assertions.
    if (addtorque >  1000) addtorque =  1000;
    if (addtorque < -1000) addtorque = -1000;

    m_torque.m_value = addtorque;

    dJointAddHingeTorque(me.joint(), addtorque);
}
Beispiel #4
0
dReal ServoMotor::getVelocity() {
	return dJointGetHingeAngleRate(joint_->getJoint());

}
Real32 PhysicsHingeJoint::getAngleRate(void)
{
	return dJointGetHingeAngleRate(_JointID);
}
dReal doStuffAndGetError (int n)
{
  switch (n) {

  // ********** fixed joint

  case 0: {			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    // check the orientations are the same
    const dReal *R1 = dBodyGetRotation (body[0]);
    const dReal *R2 = dBodyGetRotation (body[1]);
    dReal err1 = dMaxDifference (R1,R2,3,3);
    // check the body offset is correct
    dVector3 p,pp;
    const dReal *p1 = dBodyGetPosition (body[0]);
    const dReal *p2 = dBodyGetPosition (body[1]);
    for (int i=0; i<3; i++) p[i] = p2[i] - p1[i];
    dMULTIPLY1_331 (pp,R1,p);
    pp[0] += 0.5;
    pp[1] += 0.5;
    return (err1 + length (pp)) * 300;
  }

  case 1: {			// 1 body to static env
    addOscillatingTorque (0.1);

    // check the orientation is the identity
    dReal err1 = cmpIdentity (dBodyGetRotation (body[0]));

    // check the body offset is correct
    dVector3 p;
    const dReal *p1 = dBodyGetPosition (body[0]);
    for (int i=0; i<3; i++) p[i] = p1[i];
    p[0] -= 0.25;
    p[1] -= 0.25;
    p[2] -= 1;
    return (err1 + length (p)) * 1e6;
  }

  case 2: {			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    // check the body offset is correct
    // Should really check body rotation too.  Oh well.
    const dReal *R1 = dBodyGetRotation (body[0]);
    dVector3 p,pp;
    const dReal *p1 = dBodyGetPosition (body[0]);
    const dReal *p2 = dBodyGetPosition (body[1]);
    for (int i=0; i<3; i++) p[i] = p2[i] - p1[i];
    dMULTIPLY1_331 (pp,R1,p);
    pp[0] += 0.5;
    pp[1] += 0.5;
    return length(pp) * 300;
  }

  case 3: {			// 1 body to static env with relative rotation
    addOscillatingTorque (0.1);

    // check the body offset is correct
    dVector3 p;
    const dReal *p1 = dBodyGetPosition (body[0]);
    for (int i=0; i<3; i++) p[i] = p1[i];
    p[0] -= 0.25;
    p[1] -= 0.25;
    p[2] -= 1;
    return  length (p) * 1e6;
  }


  // ********** hinge joint

  case 200:			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    return dInfinity;

  case 220:			// hinge angle polarity test
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    if (iteration == 40) {
      dReal a = dJointGetHingeAngle (joint);
      if (a > 0.5 && a < 1) return 0; else return 10;
    }
    return 0;

  case 221: {			// hinge angle rate test
    static dReal last_angle = 0;
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    dReal a = dJointGetHingeAngle (joint);
    dReal r = dJointGetHingeAngleRate (joint);
    dReal er = (a-last_angle)/STEPSIZE;		// estimated rate
    last_angle = a;
    return fabs(r-er) * 4e4;
  }

  case 230:			// hinge motor rate (and polarity) test
  case 231: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetHingeAngleRate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHingeParam (joint,dParamVel,cos(a));
    if (n==231) return dInfinity;
    return err * 1e6;
  }

  // ********** slider joint

  case 300:			// 2 body
    addOscillatingTorque (0.05);
    dampRotationalMotion (0.1);
    addSpringForce (0.5);
    return dInfinity;

  case 320:			// slider angle polarity test
    dBodyAddForce (body[0],0,0,0.1);
    dBodyAddForce (body[1],0,0,-0.1);
    if (iteration == 40) {
      dReal a = dJointGetSliderPosition (joint);
      if (a > 0.2 && a < 0.5) return 0; else return 10;
      return a;
    }
    return 0;

  case 321: {			// slider angle rate test
    static dReal last_pos = 0;
    dBodyAddForce (body[0],0,0,0.1);
    dBodyAddForce (body[1],0,0,-0.1);
    dReal p = dJointGetSliderPosition (joint);
    dReal r = dJointGetSliderPositionRate (joint);
    dReal er = (p-last_pos)/STEPSIZE;	// estimated rate (almost exact)
    last_pos = p;
    return fabs(r-er) * 1e9;
  }

  case 330:			// slider motor rate (and polarity) test
  case 331: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetSliderPositionRate (joint);
    dReal err = fabs (0.7*cos(a) - r);
    if (a < 0.04) err = 0;
    a += 0.03;
    dJointSetSliderParam (joint,dParamVel,0.7*cos(a));
    if (n==331) return dInfinity;
    return err * 1e6;
  }

  // ********** hinge-2 joint

  case 420:			// hinge-2 steering angle polarity test
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    if (iteration == 40) {
      dReal a = dJointGetHinge2Angle1 (joint);
      if (a > 0.5 && a < 0.6) return 0; else return 10;
    }
    return 0;

  case 421: {			// hinge-2 steering angle rate test
    static dReal last_angle = 0;
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    dReal a = dJointGetHinge2Angle1 (joint);
    dReal r = dJointGetHinge2Angle1Rate (joint);
    dReal er = (a-last_angle)/STEPSIZE;		// estimated rate
    last_angle = a;
    return fabs(r-er)*2e4;
  }

  case 430:			// hinge 2 steering motor rate (+polarity) test
  case 431: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetHinge2Angle1Rate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHinge2Param (joint,dParamVel,cos(a));
    if (n==431) return dInfinity;
    return err * 1e6;
  }

  case 432: {			// hinge 2 wheel motor rate (+polarity) test
    static dReal a = 0;
    dReal r = dJointGetHinge2Angle2Rate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHinge2Param (joint,dParamVel2,cos(a));
    return err * 1e6;
  }

  // ********** angular motor joint

  case 600: {			// test euler angle calculations
    // desired euler angles from last iteration
    static dReal a1,a2,a3;

    // find actual euler angles
    dReal aa1 = dJointGetAMotorAngle (joint,0);
    dReal aa2 = dJointGetAMotorAngle (joint,1);
    dReal aa3 = dJointGetAMotorAngle (joint,2);
    // printf ("actual  = %.4f %.4f %.4f\n\n",aa1,aa2,aa3);

    dReal err = dInfinity;
    if (iteration > 0) {
      err = dFabs(aa1-a1) + dFabs(aa2-a2) + dFabs(aa3-a3);
      err *= 1e10;
    }

    // get random base rotation for both bodies
    dMatrix3 Rbase;
    dRFromAxisAndAngle (Rbase, 3*(dRandReal()-0.5), 3*(dRandReal()-0.5),
			3*(dRandReal()-0.5), 3*(dRandReal()-0.5));
    dBodySetRotation (body[0],Rbase);

    // rotate body 2 by random euler angles w.r.t. body 1
    a1 = 3.14 * 2 * (dRandReal()-0.5);
    a2 = 1.57 * 2 * (dRandReal()-0.5);
    a3 = 3.14 * 2 * (dRandReal()-0.5);
    dMatrix3 R1,R2,R3,Rtmp1,Rtmp2;
    dRFromAxisAndAngle (R1,0,0,1,-a1);
    dRFromAxisAndAngle (R2,0,1,0,a2);
    dRFromAxisAndAngle (R3,1,0,0,-a3);
    dMultiply0 (Rtmp1,R2,R3,3,3,3);
    dMultiply0 (Rtmp2,R1,Rtmp1,3,3,3);
    dMultiply0 (Rtmp1,Rbase,Rtmp2,3,3,3);
    dBodySetRotation (body[1],Rtmp1);
    // printf ("desired = %.4f %.4f %.4f\n",a1,a2,a3);

    return err;
  }

  // ********** universal joint

  case 700: {		// 2 body: joint constraint
    dVector3 ax1, ax2;

    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 701: {		// 2 body: angle 1 rate
    static dReal last_angle = 0;
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    // I'm not sure why the error is so large here.
    return fabs(r - er) * 1e1;
  }

  case 702: {		// 2 body: angle 2 rate
    static dReal last_angle = 0;
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    // I'm not sure why the error is so large here.
    return fabs(r - er) * 1e1;
  }

  case 720: {		// universal transmit torque test: constraint error
    dVector3 ax1, ax2;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 721: {		// universal transmit torque test: angle1 rate
    static dReal last_angle = 0;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 722: {		// universal transmit torque test: angle2 rate
    static dReal last_angle = 0;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 730:{
    dVector3 ax1, ax2;
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 731:{
    dVector3 ax1;
    static dReal last_angle = 0;
    dJointGetUniversalAxis1(joint, ax1);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 2e3;
  }

  case 732:{
    dVector3 ax1;
    static dReal last_angle = 0;
    dJointGetUniversalAxis1(joint, ax1);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 740:{
    dVector3 ax1, ax2;
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 741:{
    dVector3 ax2;
    static dReal last_angle = 0;
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 742:{
    dVector3 ax2;
    static dReal last_angle = 0;
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e4;
  }
  }

  return dInfinity;
}
double
Else::AcrobotArticulatedBody
::currentVel( void )
{
    return dJointGetHingeAngleRate( myJoints[0] );
}
int ToyControl::action() {
	if (!_sim) {
		return -1; 	
	}
	/*
	_target[0] = -1;
	_target[1] = s0.swh;
	_target[2] = -s0.swk;
	_target[3] = -s0.stk;
	_target[4] = s0.swa;
	_target[5] = s0.sta;
*/
	// collision detection
	dContactGeom contact[100];
	dGeomID leftfootId = _toy.box[5].id();
	dGeomID rightfootId = _toy.box[6].id();
	dGeomID groundId = _toy._env.ground.id();
	int left = dCollide(leftfootId, groundId, 100, &contact[0], sizeof(dContactGeom));
	int right = dCollide(rightfootId, groundId, 100, &contact[1], sizeof(dContactGeom));
	// end of collision detection

	//target->joint
	//0 left hip
	//1 right hip
	//2 left knee
	//3 right knee
	//4 left ankle
	//5 right ankle	

	if (now.num==0){
		if (diff >= now.deltaT){
			now = s1;
			before = clock();
			std::cout<<"0->1"<<std::endl;
		}else if (right > 0){
			now = s2;
			before = clock();
			diff = 0;
			std::cout<<"0->2"<<"\tright "<<right<<std::endl;
		}else{
			//left lift
			_target[0] = -s0.swh;
			_target[1] = s0.swh;
			_target[2] = -s0.swk;//-
			_target[3] = s0.stk;
			_target[4] = s0.swa;
			_target[5] = s0.sta;
		}
	}
	if(now.num==1){
		if (left>0){
			std::cout<<"1->2"<<"\tleft "<<left<<std::endl;
			now = s2;
			before = clock();
			diff = 0;
		}else{
			//left contact
			_target[0] = -s1.swh;
			_target[1] = s1.swh;
			_target[2] = -s1.swk;//-
			_target[3] = s1.stk;
			_target[4] = s1.swa;
			_target[5] = s1.sta;
		
		}
	}
	if(now.num==2){
		if (diff >= now.deltaT){
			now = s3;
			before = clock();
			std::cout<<"2->3"<<std::endl;
		}else if (left > 0){
			now = s0;
			before = clock();
			diff = 0;
			std::cout<<"2->0"<<"\tleft "<<left<<std::endl;
		}else{
			//right lift
			_target[1] = -s2.swh;
			_target[0] = s2.swh;
			_target[3] = -s2.swk;//-
			_target[2] = s2.stk;
			_target[5] = s2.swa;
			_target[4] = s2.sta;
		}
	}
	if(now.num==3){
		if (right>0){
			std::cout<<"3->0"<<"\tright "<<right<<std::endl;
			now = s0;
			before = clock();
			diff = 0;
		}else{
			_target[1] = -s3.swh;
			_target[0] = s3.swh;
			_target[3] = -s3.swk;//-
			_target[2] = s3.stk;
			_target[5] = s3.swa;
			_target[4] = s3.sta;
		}
	}
	if(now.num==4){
		std::cout<<"starting..."<<std::endl;
		before = clock();
		_target[0] = -s0.swh;
		_target[1] = s0.swh;
		_target[2] = -s0.swk;//-
		_target[3] = s0.stk;
		_target[4] = s0.swa;
		_target[5] = s0.sta;
		now.num=0;
	}

    // Add joint torques to each DOF, pulling the body towards the 
	// desired state defined by _target. 
	for (int i = 0; i < NUM_BODY-1; i++) {
		dJointID jt = _toy.joint[i].id(); 
		double limit = _ks[i]; 

		dReal theta = dJointGetHingeAngle(jt); 
		dReal thetav = dJointGetHingeAngleRate(jt); 
		dReal torque = 
			_ks[i]*(_target[i] - theta) - _kd[i]*thetav; // PD controler equation
		if (torque > limit) torque = limit; 
		if (torque < -limit) torque = -limit; // a limit on torque

		dJointAddHingeTorque(jt, torque); 
		//use this torque in the next step of simulation 
	}	

	after = clock();
	diff = ((float)(after-before))/CLOCKS_PER_SEC;
	return 0; 
}
Beispiel #9
0
double CODEHingeJoint::getAngleRate(int axisIndex) const
{
	return dJointGetHingeAngleRate(mID);
}