Beispiel #1
0
/**********************************************************//**
Validates the consistency of a tuple which must be complete, i.e,
all fields must have been set.
@return	TRUE if ok */
UNIV_INTERN
ibool
dtuple_validate(
/*============*/
	const dtuple_t*	tuple)	/*!< in: tuple */
{
	const dfield_t*	field;
	ulint		n_fields;
	ulint		len;
	ulint		i;

	ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);

	n_fields = dtuple_get_n_fields(tuple);

	/* We dereference all the data of each field to test
	for memory traps */

	for (i = 0; i < n_fields; i++) {

		field = dtuple_get_nth_field(tuple, i);
		len = dfield_get_len(field);

		if (!dfield_is_null(field)) {

			const byte*	data = dfield_get_data(field);
#ifndef UNIV_DEBUG_VALGRIND
			ulint		j;

			for (j = 0; j < len; j++) {

				data_dummy  += *data; /* fool the compiler not
						      to optimize out this
						      code */
				data++;
			}
#endif /* !UNIV_DEBUG_VALGRIND */

			UNIV_MEM_ASSERT_RW(data, len);
		}
	}

	ut_a(dtuple_check_typed(tuple));

	return(TRUE);
}
Beispiel #2
0
/*************************************************************//**
Print a dfield value using ut_print_buf. */
static
void
dfield_print_raw(
/*=============*/
	FILE*		f,		/*!< in: output stream */
	const dfield_t*	dfield)		/*!< in: dfield */
{
	ulint	len	= dfield_get_len(dfield);
	if (!dfield_is_null(dfield)) {
		ulint	print_len = ut_min(len, 1000);
		ut_print_buf(f, dfield_get_data(dfield), print_len);
		if (len != print_len) {
			fprintf(f, "(total %lu bytes%s)",
				(ulong) len,
				dfield_is_ext(dfield) ? ", external" : "");
		}
	} else {
		fputs(" SQL NULL", f);
	}
}
Beispiel #3
0
void
dfield_print(
/*=========*/
	dfield_t*	dfield)	 /* in: dfield */
{
	byte*	data;
	ulint	len;
	ulint	mtype;
	ulint	i;

	len = dfield_get_len(dfield);
	data = dfield_get_data(dfield);

	if (len == UNIV_SQL_NULL) {
		printf("NULL");

		return;
	}

	mtype = dtype_get_mtype(dfield_get_type(dfield));

	if ((mtype == DATA_CHAR) || (mtype == DATA_VARCHAR)) {
	
		for (i = 0; i < len; i++) {

			if (isprint((char)(*data))) {
				printf("%c", (char)*data);
			} else {
				printf(" ");
			}

			data++;
		}
	} else if (mtype == DATA_INT) {
		ut_a(len == 4); /* only works for 32-bit integers */
		printf("%i", (int)mach_read_from_4(data));
	} else {
		ut_error;
	}
}
Beispiel #4
0
/*************************************************************//**
Pretty prints a dfield value according to its data type. */
UNIV_INTERN
void
dfield_print(
/*=========*/
	const dfield_t*	dfield)	/*!< in: dfield */
{
	const byte*	data;
	ulint		len;
	ulint		i;

	len = dfield_get_len(dfield);
	data = dfield_get_data(dfield);

	if (dfield_is_null(dfield)) {
		fputs("NULL", stderr);

		return;
	}

	switch (dtype_get_mtype(dfield_get_type(dfield))) {
	case DATA_CHAR:
	case DATA_VARCHAR:
		for (i = 0; i < len; i++) {
			int	c = *data++;
			putc(isprint(c) ? c : ' ', stderr);
		}

		if (dfield_is_ext(dfield)) {
			fputs("(external)", stderr);
		}
		break;
	case DATA_INT:
		ut_a(len == 4); /* only works for 32-bit integers */
		fprintf(stderr, "%d", (int)mach_read_from_4(data));
		break;
	default:
		ut_error;
	}
}
Beispiel #5
0
void
row_upd_rec_in_place(
/*=================*/
	rec_t*	rec,	/* in/out: record where replaced */
	upd_t*	update)	/* in: update vector */
{
	upd_field_t*	upd_field;
	dfield_t*	new_val;
	ulint		n_fields;
	ulint		i;

	rec_set_info_bits(rec, update->info_bits);

	n_fields = upd_get_n_fields(update);

	for (i = 0; i < n_fields; i++) {
		upd_field = upd_get_nth_field(update, i);
		new_val = &(upd_field->new_val);
		
		rec_set_nth_field(rec, upd_field->field_no,
						dfield_get_data(new_val),
						dfield_get_len(new_val));
	}
}
Beispiel #6
0
/**********************************************************************//**
Reports in the undo log of an insert of a clustered index record.
@return	offset of the inserted entry on the page if succeed, 0 if fail */
static
ulint
trx_undo_page_report_insert(
/*========================*/
	page_t*		undo_page,	/*!< in: undo log page */
	trx_t*		trx,		/*!< in: transaction */
	dict_index_t*	index,		/*!< in: clustered index */
	const dtuple_t*	clust_entry,	/*!< in: index entry which will be
					inserted to the clustered index */
	mtr_t*		mtr)		/*!< in: mtr */
{
	ulint		first_free;
	byte*		ptr;
	ulint		i;

	ut_ad(dict_index_is_clust(index));
	ut_ad(mach_read_from_2(undo_page + TRX_UNDO_PAGE_HDR
			       + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT);

	first_free = mach_read_from_2(undo_page + TRX_UNDO_PAGE_HDR
				      + TRX_UNDO_PAGE_FREE);
	ptr = undo_page + first_free;

	ut_ad(first_free <= UNIV_PAGE_SIZE);

	if (trx_undo_left(undo_page, ptr) < 2 + 1 + 11 + 11) {

		/* Not enough space for writing the general parameters */

		return(0);
	}

	/* Reserve 2 bytes for the pointer to the next undo log record */
	ptr += 2;

	/* Store first some general parameters to the undo log */
	*ptr++ = TRX_UNDO_INSERT_REC;
	ptr += mach_dulint_write_much_compressed(ptr, trx->undo_no);
	ptr += mach_dulint_write_much_compressed(ptr, index->table->id);
	/*----------------------------------------*/
	/* Store then the fields required to uniquely determine the record
	to be inserted in the clustered index */

	for (i = 0; i < dict_index_get_n_unique(index); i++) {

		const dfield_t*	field	= dtuple_get_nth_field(clust_entry, i);
		ulint		flen	= dfield_get_len(field);

		if (trx_undo_left(undo_page, ptr) < 5) {

			return(0);
		}

		ptr += mach_write_compressed(ptr, flen);

		if (flen != UNIV_SQL_NULL) {
			if (trx_undo_left(undo_page, ptr) < flen) {

				return(0);
			}

			ut_memcpy(ptr, dfield_get_data(field), flen);
			ptr += flen;
		}
	}

	return(trx_undo_page_set_next_prev_and_add(undo_page, ptr, mtr));
}
Beispiel #7
0
void* 
dfield_get_data_noninline(
	dfield_t* field)	/* in: field */
{
	return(dfield_get_data(field));
}
Beispiel #8
0
/**************************************************************//**
Moves parts of long fields in entry to the big record vector so that
the size of tuple drops below the maximum record size allowed in the
database. Moves data only from those fields which are not necessary
to determine uniquely the insertion place of the tuple in the index.
@return own: created big record vector, NULL if we are not able to
shorten the entry enough, i.e., if there are too many fixed-length or
short fields in entry or the index is clustered */
UNIV_INTERN
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
	dict_index_t*	index,	/*!< in: index */
	dtuple_t*	entry,	/*!< in/out: index entry */
	ulint*		n_ext)	/*!< in/out: number of
				externally stored columns */
{
	mem_heap_t*	heap;
	big_rec_t*	vector;
	dfield_t*	dfield;
	dict_field_t*	ifield;
	ulint		size;
	ulint		n_fields;
	ulint		local_len;
	ulint		local_prefix_len;

	if (UNIV_UNLIKELY(!dict_index_is_clust(index))) {
		return(NULL);
	}

	if (dict_table_get_format(index->table) < DICT_TF_FORMAT_ZIP) {
		/* up to MySQL 5.1: store a 768-byte prefix locally */
		local_len = BTR_EXTERN_FIELD_REF_SIZE + DICT_MAX_INDEX_COL_LEN;
	} else {
		/* new-format table: do not store any BLOB prefix locally */
		local_len = BTR_EXTERN_FIELD_REF_SIZE;
	}

	ut_a(dtuple_check_typed_no_assert(entry));

	size = rec_get_converted_size(index, entry, *n_ext);

	if (UNIV_UNLIKELY(size > 1000000000)) {
		fprintf(stderr,
			"InnoDB: Warning: tuple size very big: %lu\n",
			(ulong) size);
		fputs("InnoDB: Tuple contents: ", stderr);
		dtuple_print(stderr, entry);
		putc('\n', stderr);
	}

	heap = mem_heap_create(size + dtuple_get_n_fields(entry)
			       * sizeof(big_rec_field_t) + 1000);

	vector = mem_heap_alloc(heap, sizeof(big_rec_t));

	vector->heap = heap;
	vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t));

	/* Decide which fields to shorten: the algorithm is to look for
	a variable-length field that yields the biggest savings when
	stored externally */

	n_fields = 0;

	while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry,
							     *n_ext),
				      dict_table_is_comp(index->table),
				      dict_index_get_n_fields(index),
				      dict_table_zip_size(index->table))) {
		ulint			i;
		ulint			longest		= 0;
		ulint			longest_i	= ULINT_MAX;
		byte*			data;
		big_rec_field_t*	b;

		for (i = dict_index_get_n_unique_in_tree(index);
		     i < dtuple_get_n_fields(entry); i++) {
			ulint	savings;

			dfield = dtuple_get_nth_field(entry, i);
			ifield = dict_index_get_nth_field(index, i);

			/* Skip fixed-length, NULL, externally stored,
			or short columns */

			if (ifield->fixed_len
			    || dfield_is_null(dfield)
			    || dfield_is_ext(dfield)
			    || dfield_get_len(dfield) <= local_len
			    || dfield_get_len(dfield)
			    <= BTR_EXTERN_FIELD_REF_SIZE * 2) {
				goto skip_field;
			}

			savings = dfield_get_len(dfield) - local_len;

			/* Check that there would be savings */
			if (longest >= savings) {
				goto skip_field;
			}

			longest_i = i;
			longest = savings;

skip_field:
			continue;
		}

		if (!longest) {
			/* Cannot shorten more */

			mem_heap_free(heap);

			return(NULL);
		}

		/* Move data from field longest_i to big rec vector.

		We store the first bytes locally to the record. Then
		we can calculate all ordering fields in all indexes
		from locally stored data. */

		dfield = dtuple_get_nth_field(entry, longest_i);
		ifield = dict_index_get_nth_field(index, longest_i);
		local_prefix_len = local_len - BTR_EXTERN_FIELD_REF_SIZE;

		b = &vector->fields[n_fields];
		b->field_no = longest_i;
		b->len = dfield_get_len(dfield) - local_prefix_len;
		b->data = (char*) dfield_get_data(dfield) + local_prefix_len;

		/* Allocate the locally stored part of the column. */
		data = mem_heap_alloc(heap, local_len);

		/* Copy the local prefix. */
		memcpy(data, dfield_get_data(dfield), local_prefix_len);
		/* Clear the extern field reference (BLOB pointer). */
		memset(data + local_prefix_len, 0, BTR_EXTERN_FIELD_REF_SIZE);
#if 0
		/* The following would fail the Valgrind checks in
		page_cur_insert_rec_low() and page_cur_insert_rec_zip().
		The BLOB pointers in the record will be initialized after
		the record and the BLOBs have been written. */
		UNIV_MEM_ALLOC(data + local_prefix_len,
			       BTR_EXTERN_FIELD_REF_SIZE);
#endif

		dfield_set_data(dfield, data, local_len);
		dfield_set_ext(dfield);

		n_fields++;
		(*n_ext)++;
		ut_ad(n_fields < dtuple_get_n_fields(entry));
	}

	vector->n_fields = n_fields;
	return(vector);
}
Beispiel #9
0
/*************************************************************//**
Pretty prints a dfield value according to its data type. Also the hex string
is printed if a string contains non-printable characters. */
UNIV_INTERN
void
dfield_print_also_hex(
/*==================*/
	const dfield_t*	dfield)	/*!< in: dfield */
{
	const byte*	data;
	ulint		len;
	ulint		prtype;
	ulint		i;
	ibool		print_also_hex;

	len = dfield_get_len(dfield);
	data = dfield_get_data(dfield);

	if (dfield_is_null(dfield)) {
		fputs("NULL", stderr);

		return;
	}

	prtype = dtype_get_prtype(dfield_get_type(dfield));

	switch (dtype_get_mtype(dfield_get_type(dfield))) {
		dulint	id;
	case DATA_INT:
		switch (len) {
			ulint	val;
		case 1:
			val = mach_read_from_1(data);

			if (!(prtype & DATA_UNSIGNED)) {
				val &= ~0x80;
				fprintf(stderr, "%ld", (long) val);
			} else {
				fprintf(stderr, "%lu", (ulong) val);
			}
			break;

		case 2:
			val = mach_read_from_2(data);

			if (!(prtype & DATA_UNSIGNED)) {
				val &= ~0x8000;
				fprintf(stderr, "%ld", (long) val);
			} else {
				fprintf(stderr, "%lu", (ulong) val);
			}
			break;

		case 3:
			val = mach_read_from_3(data);

			if (!(prtype & DATA_UNSIGNED)) {
				val &= ~0x800000;
				fprintf(stderr, "%ld", (long) val);
			} else {
				fprintf(stderr, "%lu", (ulong) val);
			}
			break;

		case 4:
			val = mach_read_from_4(data);

			if (!(prtype & DATA_UNSIGNED)) {
				val &= ~0x80000000;
				fprintf(stderr, "%ld", (long) val);
			} else {
				fprintf(stderr, "%lu", (ulong) val);
			}
			break;

		case 6:
			id = mach_read_from_6(data);
			fprintf(stderr, "{%lu %lu}",
				ut_dulint_get_high(id),
				ut_dulint_get_low(id));
			break;

		case 7:
			id = mach_read_from_7(data);
			fprintf(stderr, "{%lu %lu}",
				ut_dulint_get_high(id),
				ut_dulint_get_low(id));
			break;
		case 8:
			id = mach_read_from_8(data);
			fprintf(stderr, "{%lu %lu}",
				ut_dulint_get_high(id),
				ut_dulint_get_low(id));
			break;
		default:
			goto print_hex;
		}
		break;

	case DATA_SYS:
		switch (prtype & DATA_SYS_PRTYPE_MASK) {
		case DATA_TRX_ID:
			id = mach_read_from_6(data);

			fprintf(stderr, "trx_id " TRX_ID_FMT,
				TRX_ID_PREP_PRINTF(id));
			break;

		case DATA_ROLL_PTR:
			id = mach_read_from_7(data);

			fprintf(stderr, "roll_ptr {%lu %lu}",
				ut_dulint_get_high(id), ut_dulint_get_low(id));
			break;

		case DATA_ROW_ID:
			id = mach_read_from_6(data);

			fprintf(stderr, "row_id {%lu %lu}",
				ut_dulint_get_high(id), ut_dulint_get_low(id));
			break;

		default:
			id = mach_dulint_read_compressed(data);

			fprintf(stderr, "mix_id {%lu %lu}",
				ut_dulint_get_high(id), ut_dulint_get_low(id));
		}
		break;

	case DATA_CHAR:
	case DATA_VARCHAR:
		print_also_hex = FALSE;

		for (i = 0; i < len; i++) {
			int c = *data++;

			if (!isprint(c)) {
				print_also_hex = TRUE;

				fprintf(stderr, "\\x%02x", (unsigned char) c);
			} else {
				putc(c, stderr);
			}
		}

		if (dfield_is_ext(dfield)) {
			fputs("(external)", stderr);
		}

		if (!print_also_hex) {
			break;
		}

		data = dfield_get_data(dfield);
		/* fall through */

	case DATA_BINARY:
	default:
print_hex:
		fputs(" Hex: ",stderr);

		for (i = 0; i < len; i++) {
			fprintf(stderr, "%02lx", (ulint) *data++);
		}

		if (dfield_is_ext(dfield)) {
			fputs("(external)", stderr);
		}
	}
}
Beispiel #10
0
/*****************************************************************//**
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table.
@return index entry which should be inserted or purged, or NULL if the
externally stored columns in the clustered index record are
unavailable and ext != NULL */
UNIV_INTERN
dtuple_t*
row_build_index_entry(
/*==================*/
	const dtuple_t*	row,	/*!< in: row which should be
				inserted or purged */
	row_ext_t*	ext,	/*!< in: externally stored column prefixes,
				or NULL */
	dict_index_t*	index,	/*!< in: index on the table */
	mem_heap_t*	heap)	/*!< in: memory heap from which the memory for
				the index entry is allocated */
{
	dtuple_t*	entry;
	ulint		entry_len;
	ulint		i;

	ut_ad(row && index && heap);
	ut_ad(dtuple_check_typed(row));

	entry_len = dict_index_get_n_fields(index);
	entry = dtuple_create(heap, entry_len);

	if (UNIV_UNLIKELY(index->type & DICT_UNIVERSAL)) {
		dtuple_set_n_fields_cmp(entry, entry_len);
		/* There may only be externally stored columns
		in a clustered index B-tree of a user table. */
		ut_a(!ext);
	} else {
		dtuple_set_n_fields_cmp(
			entry, dict_index_get_n_unique_in_tree(index));
	}

	for (i = 0; i < entry_len; i++) {
		const dict_field_t*	ind_field
			= dict_index_get_nth_field(index, i);
		const dict_col_t*	col
			= ind_field->col;
		ulint			col_no
			= dict_col_get_no(col);
		dfield_t*		dfield
			= dtuple_get_nth_field(entry, i);
		const dfield_t*		dfield2
			= dtuple_get_nth_field(row, col_no);
		ulint			len
			= dfield_get_len(dfield2);

		dfield_copy(dfield, dfield2);

		if (dfield_is_null(dfield)) {
			continue;
		}

		if (ind_field->prefix_len == 0
		    && (!dfield_is_ext(dfield)
			|| dict_index_is_clust(index))) {
			/* The dfield_copy() above suffices for
			columns that are stored in-page, or for
			clustered index record columns that are not
			part of a column prefix in the PRIMARY KEY. */
			continue;
		}

		/* If the column is stored externally (off-page) in
		the clustered index, it must be an ordering field in
		the secondary index.  In the Antelope format, only
		prefix-indexed columns may be stored off-page in the
		clustered index record. In the Barracuda format, also
		fully indexed long CHAR or VARCHAR columns may be
		stored off-page. */
		ut_ad(col->ord_part);

		if (UNIV_LIKELY_NULL(ext)) {
			/* See if the column is stored externally. */
			const byte*	buf = row_ext_lookup(ext, col_no,
							     &len);
			if (UNIV_LIKELY_NULL(buf)) {
				if (UNIV_UNLIKELY(buf == field_ref_zero)) {
					return(NULL);
				}
				dfield_set_data(dfield, buf, len);
			}

			if (ind_field->prefix_len == 0) {
				/* In the Barracuda format
				(ROW_FORMAT=DYNAMIC or
				ROW_FORMAT=COMPRESSED), we can have a
				secondary index on an entire column
				that is stored off-page in the
				clustered index. As this is not a
				prefix index (prefix_len == 0),
				include the entire off-page column in
				the secondary index record. */
				continue;
			}
		} else if (dfield_is_ext(dfield)) {
			/* This table is either in Antelope format
			(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
			or a purge record where the ordered part of
			the field is not external.
			In Antelope, the maximum column prefix
			index length is 767 bytes, and the clustered
			index record contains a 768-byte prefix of
			each off-page column. */
			ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
			len -= BTR_EXTERN_FIELD_REF_SIZE;
			dfield_set_len(dfield, len);
		}

		/* If a column prefix index, take only the prefix. */
		if (ind_field->prefix_len) {
			len = dtype_get_at_most_n_mbchars(
				col->prtype, col->mbminlen, col->mbmaxlen,
				ind_field->prefix_len, len,
				dfield_get_data(dfield));
			dfield_set_len(dfield, len);
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}
Beispiel #11
0
/*************************************************************//**
This function is used to compare a data tuple to a physical record.
Only dtuple->n_fields_cmp first fields are taken into account for
the data tuple! If we denote by n = n_fields_cmp, then rec must
have either m >= n fields, or it must differ from dtuple in some of
the m fields rec has. If rec has an externally stored field we do not
compare it but return with value 0 if such a comparison should be
made.
@return 1, 0, -1, if dtuple is greater, equal, less than rec,
respectively, when only the common first fields are compared, or until
the first externally stored field in rec */
UNIV_INTERN
int
cmp_dtuple_rec_with_match(
/*======================*/
	const dtuple_t*	dtuple,	/*!< in: data tuple */
	const rec_t*	rec,	/*!< in: physical record which differs from
				dtuple in some of the common fields, or which
				has an equal number or more fields than
				dtuple */
	const ulint*	offsets,/*!< in: array returned by rec_get_offsets() */
	ulint*		matched_fields, /*!< in/out: number of already completely
				matched fields; when function returns,
				contains the value for current comparison */
	ulint*		matched_bytes) /*!< in/out: number of already matched
				bytes within the first field not completely
				matched; when function returns, contains the
				value for current comparison */
{
	const dfield_t*	dtuple_field;	/* current field in logical record */
	ulint		dtuple_f_len;	/* the length of the current field
					in the logical record */
	const byte*	dtuple_b_ptr;	/* pointer to the current byte in
					logical field data */
	ulint		dtuple_byte;	/* value of current byte to be compared
					in dtuple*/
	ulint		rec_f_len;	/* length of current field in rec */
	const byte*	rec_b_ptr;	/* pointer to the current byte in
					rec field */
	ulint		rec_byte;	/* value of current byte to be
					compared in rec */
	ulint		cur_field;	/* current field number */
	ulint		cur_bytes;	/* number of already matched bytes
					in current field */
	int		ret = 3333;	/* return value */

	ut_ad(dtuple && rec && matched_fields && matched_bytes);
	ut_ad(dtuple_check_typed(dtuple));
	ut_ad(rec_offs_validate(rec, NULL, offsets));

	cur_field = *matched_fields;
	cur_bytes = *matched_bytes;

	ut_ad(cur_field <= dtuple_get_n_fields_cmp(dtuple));
	ut_ad(cur_field <= rec_offs_n_fields(offsets));

	if (cur_bytes == 0 && cur_field == 0) {
		ulint	rec_info = rec_get_info_bits(rec,
						     rec_offs_comp(offsets));
		ulint	tup_info = dtuple_get_info_bits(dtuple);

		if (UNIV_UNLIKELY(rec_info & REC_INFO_MIN_REC_FLAG)) {
			ret = !(tup_info & REC_INFO_MIN_REC_FLAG);
			goto order_resolved;
		} else if (UNIV_UNLIKELY(tup_info & REC_INFO_MIN_REC_FLAG)) {
			ret = -1;
			goto order_resolved;
		}
	}

	/* Match fields in a loop; stop if we run out of fields in dtuple
	or find an externally stored field */

	while (cur_field < dtuple_get_n_fields_cmp(dtuple)) {

		ulint	mtype;
		ulint	prtype;

		dtuple_field = dtuple_get_nth_field(dtuple, cur_field);
		{
			const dtype_t*	type
				= dfield_get_type(dtuple_field);

			mtype = type->mtype;
			prtype = type->prtype;
		}

		dtuple_f_len = dfield_get_len(dtuple_field);

		rec_b_ptr = rec_get_nth_field(rec, offsets,
					      cur_field, &rec_f_len);

		/* If we have matched yet 0 bytes, it may be that one or
		both the fields are SQL null, or the record or dtuple may be
		the predefined minimum record, or the field is externally
		stored */

		if (UNIV_LIKELY(cur_bytes == 0)) {
			if (rec_offs_nth_extern(offsets, cur_field)) {
				/* We do not compare to an externally
				stored field */

				ret = 0;

				goto order_resolved;
			}

			if (dtuple_f_len == UNIV_SQL_NULL) {
				if (rec_f_len == UNIV_SQL_NULL) {

					goto next_field;
				}

				ret = -1;
				goto order_resolved;
			} else if (rec_f_len == UNIV_SQL_NULL) {
				/* We define the SQL null to be the
				smallest possible value of a field
				in the alphabetical order */

				ret = 1;
				goto order_resolved;
			}
		}

		if (mtype >= DATA_FLOAT
		    || (mtype == DATA_BLOB
			&& 0 == (prtype & DATA_BINARY_TYPE)
			&& dtype_get_charset_coll(prtype)
			!= DATA_MYSQL_LATIN1_SWEDISH_CHARSET_COLL)) {

			ret = cmp_whole_field(mtype, prtype,
					      dfield_get_data(dtuple_field),
					      (unsigned) dtuple_f_len,
					      rec_b_ptr, (unsigned) rec_f_len);

			if (ret != 0) {
				cur_bytes = 0;

				goto order_resolved;
			} else {
				goto next_field;
			}
		}

		/* Set the pointers at the current byte */

		rec_b_ptr = rec_b_ptr + cur_bytes;
		dtuple_b_ptr = (byte*)dfield_get_data(dtuple_field)
			+ cur_bytes;
		/* Compare then the fields */

		for (;;) {
			if (UNIV_UNLIKELY(rec_f_len <= cur_bytes)) {
				if (dtuple_f_len <= cur_bytes) {

					goto next_field;
				}

				rec_byte = dtype_get_pad_char(mtype, prtype);

				if (rec_byte == ULINT_UNDEFINED) {
					ret = 1;

					goto order_resolved;
				}
			} else {
				rec_byte = *rec_b_ptr;
			}

			if (UNIV_UNLIKELY(dtuple_f_len <= cur_bytes)) {
				dtuple_byte = dtype_get_pad_char(mtype,
								 prtype);

				if (dtuple_byte == ULINT_UNDEFINED) {
					ret = -1;

					goto order_resolved;
				}
			} else {
				dtuple_byte = *dtuple_b_ptr;
			}

			if (dtuple_byte == rec_byte) {
				/* If the bytes are equal, they will
				remain such even after the collation
				transformation below */

				goto next_byte;
			}

			if (mtype <= DATA_CHAR
			    || (mtype == DATA_BLOB
				&& !(prtype & DATA_BINARY_TYPE))) {

				rec_byte = cmp_collate(rec_byte);
				dtuple_byte = cmp_collate(dtuple_byte);
			}

			ret = (int) (dtuple_byte - rec_byte);
			if (UNIV_LIKELY(ret)) {
				if (ret < 0) {
					ret = -1;
					goto order_resolved;
				} else {
					ret = 1;
					goto order_resolved;
				}
			}
next_byte:
			/* Next byte */
			cur_bytes++;
			rec_b_ptr++;
			dtuple_b_ptr++;
		}

next_field:
		cur_field++;
		cur_bytes = 0;
	}

	ut_ad(cur_bytes == 0);

	ret = 0;	/* If we ran out of fields, dtuple was equal to rec
			up to the common fields */
order_resolved:
	ut_ad((ret >= - 1) && (ret <= 1));
	ut_ad(ret == cmp_debug_dtuple_rec_with_match(dtuple, rec, offsets,
						     matched_fields));
	ut_ad(*matched_fields == cur_field); /* In the debug version, the
					     above cmp_debug_... sets
					     *matched_fields to a value */
	*matched_fields = cur_field;
	*matched_bytes = cur_bytes;

	return(ret);
}
Beispiel #12
0
/*************************************************************//**
Used in debug checking of cmp_dtuple_... .
This function is used to compare a data tuple to a physical record. If
dtuple has n fields then rec must have either m >= n fields, or it must
differ from dtuple in some of the m fields rec has. If encounters an
externally stored field, returns 0.
@return 1, 0, -1, if dtuple is greater, equal, less than rec,
respectively, when only the common first fields are compared */
static
int
cmp_debug_dtuple_rec_with_match(
/*============================*/
	const dtuple_t*	dtuple,	/*!< in: data tuple */
	const rec_t*	rec,	/*!< in: physical record which differs from
				dtuple in some of the common fields, or which
				has an equal number or more fields than
				dtuple */
	const ulint*	offsets,/*!< in: array returned by rec_get_offsets() */
	ulint*		matched_fields) /*!< in/out: number of already
				completely matched fields; when function
				returns, contains the value for current
				comparison */
{
	const dfield_t*	dtuple_field;	/* current field in logical record */
	ulint		dtuple_f_len;	/* the length of the current field
					in the logical record */
	const byte*	dtuple_f_data;	/* pointer to the current logical
					field data */
	ulint		rec_f_len;	/* length of current field in rec */
	const byte*	rec_f_data;	/* pointer to the current rec field */
	int		ret = 3333;	/* return value */
	ulint		cur_field;	/* current field number */

	ut_ad(dtuple && rec && matched_fields);
	ut_ad(dtuple_check_typed(dtuple));
	ut_ad(rec_offs_validate(rec, NULL, offsets));

	ut_ad(*matched_fields <= dtuple_get_n_fields_cmp(dtuple));
	ut_ad(*matched_fields <= rec_offs_n_fields(offsets));

	cur_field = *matched_fields;

	if (cur_field == 0) {
		if (UNIV_UNLIKELY
		    (rec_get_info_bits(rec, rec_offs_comp(offsets))
		     & REC_INFO_MIN_REC_FLAG)) {

			ret = !(dtuple_get_info_bits(dtuple)
				& REC_INFO_MIN_REC_FLAG);

			goto order_resolved;
		}

		if (UNIV_UNLIKELY
		    (dtuple_get_info_bits(dtuple) & REC_INFO_MIN_REC_FLAG)) {
			ret = -1;

			goto order_resolved;
		}
	}

	/* Match fields in a loop; stop if we run out of fields in dtuple */

	while (cur_field < dtuple_get_n_fields_cmp(dtuple)) {

		ulint	mtype;
		ulint	prtype;

		dtuple_field = dtuple_get_nth_field(dtuple, cur_field);
		{
			const dtype_t*	type
				= dfield_get_type(dtuple_field);

			mtype = type->mtype;
			prtype = type->prtype;
		}

		dtuple_f_data = dfield_get_data(dtuple_field);
		dtuple_f_len = dfield_get_len(dtuple_field);

		rec_f_data = rec_get_nth_field(rec, offsets,
					       cur_field, &rec_f_len);

		if (rec_offs_nth_extern(offsets, cur_field)) {
			/* We do not compare to an externally stored field */

			ret = 0;

			goto order_resolved;
		}

		ret = cmp_data_data(mtype, prtype, dtuple_f_data, dtuple_f_len,
				    rec_f_data, rec_f_len);
		if (ret != 0) {
			goto order_resolved;
		}

		cur_field++;
	}

	ret = 0;	/* If we ran out of fields, dtuple was equal to rec
			up to the common fields */
order_resolved:
	ut_ad((ret >= - 1) && (ret <= 1));

	*matched_fields = cur_field;

	return(ret);
}
Beispiel #13
0
/**************************************************************************
Reports in the undo log of an insert of a clustered index record. */
static
ulint
trx_undo_page_report_insert(
/*========================*/
					/* out: offset of the inserted entry
					on the page if succeed, 0 if fail */
	page_t*		undo_page,	/* in: undo log page */
	trx_t*		trx,		/* in: transaction */
	dict_index_t*	index,		/* in: clustered index */
	dtuple_t*	clust_entry,	/* in: index entry which will be
					inserted to the clustered index */
	mtr_t*		mtr)		/* in: mtr */
{
	ulint		first_free;
	byte*		ptr;
	ulint		len;
	dfield_t*	field;
	ulint		flen;
	ulint		i;

	ut_ad(mach_read_from_2(undo_page + TRX_UNDO_PAGE_HDR
			       + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT);

	first_free = mach_read_from_2(undo_page + TRX_UNDO_PAGE_HDR
				      + TRX_UNDO_PAGE_FREE);
	ptr = undo_page + first_free;

	ut_ad(first_free <= UNIV_PAGE_SIZE);

	if (trx_undo_left(undo_page, ptr) < 30) {

		/* NOTE: the value 30 must be big enough such that the general
		fields written below fit on the undo log page */

		return(0);
	}

	/* Reserve 2 bytes for the pointer to the next undo log record */
	ptr += 2;

	/* Store first some general parameters to the undo log */
	mach_write_to_1(ptr, TRX_UNDO_INSERT_REC);
	ptr++;

	len = mach_dulint_write_much_compressed(ptr, trx->undo_no);
	ptr += len;

	len = mach_dulint_write_much_compressed(ptr, (index->table)->id);
	ptr += len;
	/*----------------------------------------*/
	/* Store then the fields required to uniquely determine the record
	to be inserted in the clustered index */

	for (i = 0; i < dict_index_get_n_unique(index); i++) {

		field = dtuple_get_nth_field(clust_entry, i);

		flen = dfield_get_len(field);

		if (trx_undo_left(undo_page, ptr) < 5) {

			return(0);
		}

		len = mach_write_compressed(ptr, flen);
		ptr += len;

		if (flen != UNIV_SQL_NULL) {
			if (trx_undo_left(undo_page, ptr) < flen) {

				return(0);
			}

			ut_memcpy(ptr, dfield_get_data(field), flen);
			ptr += flen;
		}
	}

	if (trx_undo_left(undo_page, ptr) < 2) {

		return(0);
	}

	/*----------------------------------------*/
	/* Write pointers to the previous and the next undo log records */

	if (trx_undo_left(undo_page, ptr) < 2) {

		return(0);
	}

	mach_write_to_2(ptr, first_free);
	ptr += 2;

	mach_write_to_2(undo_page + first_free, ptr - undo_page);

	mach_write_to_2(undo_page + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE,
			ptr - undo_page);

	/* Write the log entry to the REDO log of this change in the UNDO
	log */
	trx_undof_page_add_undo_rec_log(undo_page, first_free,
					ptr - undo_page, mtr);
	return(first_free);
}
Beispiel #14
0
/***********************************************************//**
Purges an update of an existing record. Also purges an update of a delete
marked record if that record contained an externally stored field. */
static
void
row_purge_upd_exist_or_extern_func(
    /*===============================*/
#ifdef UNIV_DEBUG
    const que_thr_t*thr,	/*!< in: query thread */
#endif /* UNIV_DEBUG */
    purge_node_t*	node)	/*!< in: row purge node */
{
    mem_heap_t*	heap;
    dtuple_t*	entry;
    dict_index_t*	index;
    ibool		is_insert;
    ulint		rseg_id;
    ulint		page_no;
    ulint		offset;
    ulint		i;
    mtr_t		mtr;

    ut_ad(node);

    if (node->rec_type == TRX_UNDO_UPD_DEL_REC
            || (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE)) {

        goto skip_secondaries;
    }

    heap = mem_heap_create(1024);

    while (node->index != NULL) {
        dict_table_skip_corrupt_index(node->index);

        if (!node->index) {
            break;
        }

        index = node->index;

        if (row_upd_changes_ord_field_binary(node->index, node->update,
                                             thr, NULL, NULL)) {
            /* Build the older version of the index entry */
            entry = row_build_index_entry(node->row, NULL,
                                          index, heap);
            ut_a(entry);
            row_purge_remove_sec_if_poss(node, index, entry);
        }

        node->index = dict_table_get_next_index(node->index);
    }

    mem_heap_free(heap);

skip_secondaries:
    /* Free possible externally stored fields */
    for (i = 0; i < upd_get_n_fields(node->update); i++) {

        const upd_field_t*	ufield
            = upd_get_nth_field(node->update, i);

        if (dfield_is_ext(&ufield->new_val)) {
            buf_block_t*	block;
            ulint		internal_offset;
            byte*		data_field;

            /* We use the fact that new_val points to
            node->undo_rec and get thus the offset of
            dfield data inside the undo record. Then we
            can calculate from node->roll_ptr the file
            address of the new_val data */

            internal_offset
                = ((const byte*)
                   dfield_get_data(&ufield->new_val))
                  - node->undo_rec;

            ut_a(internal_offset < UNIV_PAGE_SIZE);

            trx_undo_decode_roll_ptr(node->roll_ptr,
                                     &is_insert, &rseg_id,
                                     &page_no, &offset);
            mtr_start(&mtr);

            /* We have to acquire an X-latch to the clustered
            index tree */

            index = dict_table_get_first_index(node->table);

            mtr_x_lock(dict_index_get_lock(index), &mtr);

            /* NOTE: we must also acquire an X-latch to the
            root page of the tree. We will need it when we
            free pages from the tree. If the tree is of height 1,
            the tree X-latch does NOT protect the root page,
            because it is also a leaf page. Since we will have a
            latch on an undo log page, we would break the
            latching order if we would only later latch the
            root page of such a tree! */

            btr_root_get(index, &mtr);

            /* We assume in purge of externally stored fields
            that the space id of the undo log record is 0! */

            block = buf_page_get(0, 0, page_no, RW_X_LATCH, &mtr);
            buf_block_dbg_add_level(block, SYNC_TRX_UNDO_PAGE);

            data_field = buf_block_get_frame(block)
                         + offset + internal_offset;

            ut_a(dfield_get_len(&ufield->new_val)
                 >= BTR_EXTERN_FIELD_REF_SIZE);
            btr_free_externally_stored_field(
                index,
                data_field + dfield_get_len(&ufield->new_val)
                - BTR_EXTERN_FIELD_REF_SIZE,
                NULL, NULL, NULL, 0, RB_NONE, &mtr);
            mtr_commit(&mtr);
        }
    }
}
Beispiel #15
0
rec_t* 	
rec_convert_dtuple_to_rec_low(
/*==========================*/			
				/* out: pointer to the origin of physical
				record */
	byte*	destination,	/* in: start address of the physical record */
	dtuple_t* dtuple,	/* in: data tuple */
	ulint	data_size)	/* in: data size of dtuple */
{
	dfield_t* 	field;
	ulint		n_fields;
	rec_t* 		rec;
	ulint		end_offset;
	ulint		ored_offset;
	byte*		data;
	ulint		len;
	ulint		i;
	
	ut_ad(destination && dtuple);
	ut_ad(dtuple_validate(dtuple));
	ut_ad(dtuple_check_typed(dtuple));
	ut_ad(dtuple_get_data_size(dtuple) == data_size);

	n_fields = dtuple_get_n_fields(dtuple);

	ut_ad(n_fields > 0);

	/* Calculate the offset of the origin in the physical record */	

	rec = destination + rec_get_converted_extra_size(data_size, n_fields);
	
	/* Store the number of fields */
	rec_set_n_fields(rec, n_fields);

	/* Set the info bits of the record */
	rec_set_info_bits(rec, dtuple_get_info_bits(dtuple));

	/* Store the data and the offsets */

	end_offset = 0;

	if (data_size <= REC_1BYTE_OFFS_LIMIT) {

	    rec_set_1byte_offs_flag(rec, TRUE);

	    for (i = 0; i < n_fields; i++) {

		field = dtuple_get_nth_field(dtuple, i);

		data = dfield_get_data(field);
		len = dfield_get_len(field);
		
		if (len == UNIV_SQL_NULL) {
			len = dtype_get_sql_null_size(dfield_get_type(field));
			data_write_sql_null(rec + end_offset, len);
		
			end_offset += len;
			ored_offset = end_offset | REC_1BYTE_SQL_NULL_MASK;
		} else {
			/* If the data is not SQL null, store it */
			ut_memcpy(rec + end_offset, data, len);

			end_offset += len;
			ored_offset = end_offset;
		}

		rec_1_set_field_end_info(rec, i, ored_offset);
	    }
	} else {
	    rec_set_1byte_offs_flag(rec, FALSE);

	    for (i = 0; i < n_fields; i++) {

		field = dtuple_get_nth_field(dtuple, i);

		data = dfield_get_data(field);
		len = dfield_get_len(field);
		
		if (len == UNIV_SQL_NULL) {
			len = dtype_get_sql_null_size(dfield_get_type(field));
			data_write_sql_null(rec + end_offset, len);
		
			end_offset += len;
			ored_offset = end_offset | REC_2BYTE_SQL_NULL_MASK;
		} else {
			/* If the data is not SQL null, store it */
			ut_memcpy(rec + end_offset, data, len);

			end_offset += len;
			ored_offset = end_offset;
		}

		rec_2_set_field_end_info(rec, i, ored_offset);
	    }
	}

	ut_ad(rec_validate(rec));

	return(rec);
}