Beispiel #1
0
/* Subroutine */ int dchkgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, 
	doublereal *a, doublereal *af, doublereal *b, doublereal *x, 
	doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork, 
	 integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(12x,\002N =\002,i5,\002,\002,10x,\002 type"
	    " \002,i2,\002, test(\002,i2,\002) = \002,g12.5)";
    static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) = \002,g12."
	    "5)";
    static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N"
	    "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) = \002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j, k, m, n;
    doublereal z__[3];
    integer in, kl, ku, ix, lda;
    doublereal cond;
    integer mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer itran;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    doublereal rcondc;
    doublereal rcondi;
    doublereal rcondo;
    doublereal ainvnm;
    logical trfcon;
    doublereal result[7];

    /* Fortran I/O blocks */
    static cilist io___29 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKGT tests DGTTRF, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*4) */

/*  AF      (workspace) DOUBLE PRECISION array, dimension (NMAX*4) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrge_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

/*           Set up parameters with DLATB4. */

	    dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
		dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    dcopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    dcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		dcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    dlarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.) {
			i__3 = n + (m << 1);
			dscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.;
		    a[(n << 1) - 1] = 0.;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.;
			a[n - 1 + i__] = 0.;
			a[i__] = 0.;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.;
		    a[(n << 1) - 1] = 0.;
		}
	    }

/* +    TEST 1 */
/*           Factor A as L*U and compute the ratio */
/*              norm(L*U - A) / (n * norm(A) * EPS ) */

	    i__3 = n + (m << 1);
	    dcopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
	    s_copy(srnamc_1.srnamt, "DGTTRF", (ftnlen)32, (ftnlen)6);
	    dgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) 
		    + 1], &iwork[1], &info);

/*           Check error code from DGTTRF. */

	    if (info != izero) {
		alaerh_(path, "DGTTRF", &info, &izero, " ", &n, &n, &c__1, &
			c__1, &c_n1, &imat, &nfail, &nerrs, nout);
	    }
	    trfcon = info != 0;

	    dgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &
		    af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], 
		     &lda, &rwork[1], result);

/*           Print the test ratio if it is .GE. THRESH. */

	    if (result[0] >= *thresh) {
		if (nfail == 0 && nerrs == 0) {
		    alahd_(nout, path);
		}
		io___29.ciunit = *nout;
		s_wsfe(&io___29);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(doublereal));
		e_wsfe();
		++nfail;
	    }
	    ++nrun;

	    for (itran = 1; itran <= 2; ++itran) {
		*(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]
			;
		if (itran == 1) {
		    *(unsigned char *)norm = 'O';
		} else {
		    *(unsigned char *)norm = 'I';
		}
		anorm = dlangt_(norm, &n, &a[1], &a[m + 1], &a[n + m + 1]);

		if (! trfcon) {

/*                 Use DGTTRS to solve for one column at a time of inv(A) */
/*                 or inv(A^T), computing the maximum column sum as we */
/*                 go. */

		    ainvnm = 0.;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.;
/* L30: */
			}
			x[i__] = 1.;
			dgttrs_(trans, &n, &c__1, &af[1], &af[m + 1], &af[n + 
				m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[
				1], &lda, &info);
/* Computing MAX */
			d__1 = ainvnm, d__2 = dasum_(&n, &x[1], &c__1);
			ainvnm = max(d__1,d__2);
/* L40: */
		    }

/*                 Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */

		    if (anorm <= 0. || ainvnm <= 0.) {
			rcondc = 1.;
		    } else {
			rcondc = 1. / anorm / ainvnm;
		    }
		    if (itran == 1) {
			rcondo = rcondc;
		    } else {
			rcondi = rcondc;
		    }
		} else {
		    rcondc = 0.;
		}

/* +    TEST 7 */
/*              Estimate the reciprocal of the condition number of the */
/*              matrix. */

		s_copy(srnamc_1.srnamt, "DGTCON", (ftnlen)32, (ftnlen)6);
		dgtcon_(norm, &n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			(m << 1) + 1], &iwork[1], &anorm, &rcond, &work[1], &
			iwork[n + 1], &info);

/*              Check error code from DGTCON. */

		if (info != 0) {
		    alaerh_(path, "DGTCON", &info, &c__0, norm, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[6] = dget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[6] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___39.ciunit = *nout;
		    s_wsfe(&io___39);
		    do_fio(&c__1, norm, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
/* L50: */
	    }

/*           Skip the remaining tests if the matrix is singular. */

	    if (trfcon) {
		goto L100;
	    }

	    i__3 = *nns;
	    for (irhs = 1; irhs <= i__3; ++irhs) {
		nrhs = nsval[irhs];

/*              Generate NRHS random solution vectors. */

		ix = 1;
		i__4 = nrhs;
		for (j = 1; j <= i__4; ++j) {
		    dlarnv_(&c__2, iseed, &n, &xact[ix]);
		    ix += lda;
/* L60: */
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Set the right hand side. */

		    dlagtm_(trans, &n, &nrhs, &c_b63, &a[1], &a[m + 1], &a[n 
			    + m + 1], &xact[1], &lda, &c_b64, &b[1], &lda);

/* +    TEST 2 */
/*                 Solve op(A) * X = B and compute the residual. */

		    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);
		    s_copy(srnamc_1.srnamt, "DGTTRS", (ftnlen)32, (ftnlen)6);
		    dgttrs_(trans, &n, &nrhs, &af[1], &af[m + 1], &af[n + m + 
			    1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, 
			     &info);

/*                 Check error code from DGTTRS. */

		    if (info != 0) {
			alaerh_(path, "DGTTRS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    dgtt02_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &x[1], &lda, &work[1], &lda, &rwork[1], &result[
			    1]);

/* +    TEST 3 */
/*                 Check solution from generated exact solution. */

		    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/* +    TESTS 4, 5, and 6 */
/*                 Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "DGTRFS", (ftnlen)32, (ftnlen)6);
		    dgtrfs_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m <<
			     1) + 1], &iwork[1], &b[1], &lda, &x[1], &lda, &
			    rwork[1], &rwork[nrhs + 1], &work[1], &iwork[n + 
			    1], &info);

/*                 Check error code from DGTRFS. */

		    if (info != 0) {
			alaerh_(path, "DGTRFS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);
		    dgtt05_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[
			    1], &rwork[nrhs + 1], &result[4]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 2; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___44.ciunit = *nout;
			    s_wsfe(&io___44);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += 5;
/* L80: */
		}
/* L90: */
	    }

L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKGT */

} /* dchkgt_ */
Beispiel #2
0
/* Subroutine */ int dgtt02_(char *trans, integer *n, integer *nrhs, 
	doublereal *dl, doublereal *d__, doublereal *du, doublereal *x, 
	integer *ldx, doublereal *b, integer *ldb, doublereal *rwork, 
	doublereal *resid)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer j;
    doublereal eps;
    doublereal anorm, bnorm, xnorm;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGTT02 computes the residual for the solution to a tridiagonal */
/*  system of equations: */
/*     RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS), */
/*  where EPS is the machine epsilon. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER */
/*          Specifies the form of the residual. */
/*          = 'N':  B - A * X  (No transpose) */
/*          = 'T':  B - A'* X  (Transpose) */
/*          = 'C':  B - A'* X  (Conjugate transpose = Transpose) */

/*  N       (input) INTEGTER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  DL      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) sub-diagonal elements of A. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The diagonal elements of A. */

/*  DU      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) super-diagonal elements of A. */

/*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          The computed solution vectors X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the right hand side vectors for the system of */
/*          linear equations. */
/*          On exit, B is overwritten with the difference B - op(A)*X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  RESID   (output) DOUBLE PRECISION */
/*          norm(B - op(A)*X) / (norm(A) * norm(X) * EPS) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0 or NRHS = 0 */

    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    *resid = 0.;
    if (*n <= 0 || *nrhs == 0) {
	return 0;
    }

/*     Compute the maximum over the number of right hand sides of */
/*        norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ). */

    if (lsame_(trans, "N")) {
	anorm = dlangt_("1", n, &dl[1], &d__[1], &du[1]);
    } else {
	anorm = dlangt_("I", n, &dl[1], &d__[1], &du[1]);
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = dlamch_("Epsilon");
    if (anorm <= 0.) {
	*resid = 1. / eps;
	return 0;
    }

/*     Compute B - op(A)*X. */

    dlagtm_(trans, n, nrhs, &c_b6, &dl[1], &d__[1], &du[1], &x[x_offset], ldx, 
	     &c_b7, &b[b_offset], ldb);

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1);
	xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1);
	if (xnorm <= 0.) {
	    *resid = 1. / eps;
	} else {
/* Computing MAX */
	    d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps;
	    *resid = max(d__1,d__2);
	}
/* L10: */
    }

    return 0;

/*     End of DGTT02 */

} /* dgtt02_ */
Beispiel #3
0
/* Subroutine */ int dgtt01_(integer *n, doublereal *dl, doublereal *d__, 
	doublereal *du, doublereal *dlf, doublereal *df, doublereal *duf, 
	doublereal *du2, integer *ipiv, doublereal *work, integer *ldwork, 
	doublereal *rwork, doublereal *resid)
{
    /* System generated locals */
    integer work_dim1, work_offset, i__1, i__2;

    /* Local variables */
    integer i__, j;
    doublereal li;
    integer ip;
    doublereal eps, anorm;
    integer lastj;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *), dlangt_(char *, integer *, 
	    doublereal *, doublereal *, doublereal *), dlanhs_(char *, 
	     integer *, doublereal *, integer *, doublereal *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGTT01 reconstructs a tridiagonal matrix A from its LU factorization */
/*  and computes the residual */
/*     norm(L*U - A) / ( norm(A) * EPS ), */
/*  where EPS is the machine epsilon. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGTER */
/*          The order of the matrix A.  N >= 0. */

/*  DL      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) sub-diagonal elements of A. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The diagonal elements of A. */

/*  DU      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) super-diagonal elements of A. */

/*  DLF     (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) multipliers that define the matrix L from the */
/*          LU factorization of A. */

/*  DF      (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the upper triangular matrix U from */
/*          the LU factorization of A. */

/*  DUF     (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) elements of the first super-diagonal of U. */

/*  DU2F    (input) DOUBLE PRECISION array, dimension (N-2) */
/*          The (n-2) elements of the second super-diagonal of U. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
/*          interchanged with row IPIV(i).  IPIV(i) will always be either */
/*          i or i+1; IPIV(i) = i indicates a row interchange was not */
/*          required. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N) */

/*  LDWORK  (input) INTEGER */
/*          The leading dimension of the array WORK.  LDWORK >= max(1,N). */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  RESID   (output) DOUBLE PRECISION */
/*          The scaled residual:  norm(L*U - A) / (norm(A) * EPS) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    --dlf;
    --df;
    --duf;
    --du2;
    --ipiv;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1;
    work -= work_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0) {
	*resid = 0.;
	return 0;
    }

    eps = dlamch_("Epsilon");

/*     Copy the matrix U to WORK. */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[i__ + j * work_dim1] = 0.;
/* L10: */
	}
/* L20: */
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (i__ == 1) {
	    work[i__ + i__ * work_dim1] = df[i__];
	    if (*n >= 2) {
		work[i__ + (i__ + 1) * work_dim1] = duf[i__];
	    }
	    if (*n >= 3) {
		work[i__ + (i__ + 2) * work_dim1] = du2[i__];
	    }
	} else if (i__ == *n) {
	    work[i__ + i__ * work_dim1] = df[i__];
	} else {
	    work[i__ + i__ * work_dim1] = df[i__];
	    work[i__ + (i__ + 1) * work_dim1] = duf[i__];
	    if (i__ < *n - 1) {
		work[i__ + (i__ + 2) * work_dim1] = du2[i__];
	    }
	}
/* L30: */
    }

/*     Multiply on the left by L. */

    lastj = *n;
    for (i__ = *n - 1; i__ >= 1; --i__) {
	li = dlf[i__];
	i__1 = lastj - i__ + 1;
	daxpy_(&i__1, &li, &work[i__ + i__ * work_dim1], ldwork, &work[i__ + 
		1 + i__ * work_dim1], ldwork);
	ip = ipiv[i__];
	if (ip == i__) {
/* Computing MIN */
	    i__1 = i__ + 2;
	    lastj = min(i__1,*n);
	} else {
	    i__1 = lastj - i__ + 1;
	    dswap_(&i__1, &work[i__ + i__ * work_dim1], ldwork, &work[i__ + 1 
		    + i__ * work_dim1], ldwork);
	}
/* L40: */
    }

/*     Subtract the matrix A. */

    work[work_dim1 + 1] -= d__[1];
    if (*n > 1) {
	work[(work_dim1 << 1) + 1] -= du[1];
	work[*n + (*n - 1) * work_dim1] -= dl[*n - 1];
	work[*n + *n * work_dim1] -= d__[*n];
	i__1 = *n - 1;
	for (i__ = 2; i__ <= i__1; ++i__) {
	    work[i__ + (i__ - 1) * work_dim1] -= dl[i__ - 1];
	    work[i__ + i__ * work_dim1] -= d__[i__];
	    work[i__ + (i__ + 1) * work_dim1] -= du[i__];
/* L50: */
	}
    }

/*     Compute the 1-norm of the tridiagonal matrix A. */

    anorm = dlangt_("1", n, &dl[1], &d__[1], &du[1]);

/*     Compute the 1-norm of WORK, which is only guaranteed to be */
/*     upper Hessenberg. */

    *resid = dlanhs_("1", n, &work[work_offset], ldwork, &rwork[1])
	    ;

/*     Compute norm(L*U - A) / (norm(A) * EPS) */

    if (anorm <= 0.) {
	if (*resid != 0.) {
	    *resid = 1. / eps;
	}
    } else {
	*resid = *resid / anorm / eps;
    }

    return 0;

/*     End of DGTT01 */

} /* dgtt01_ */
Beispiel #4
0
/* Subroutine */ int dgtt01_(integer *n, doublereal *dl, doublereal *d__, 
	doublereal *du, doublereal *dlf, doublereal *df, doublereal *duf, 
	doublereal *du2, integer *ipiv, doublereal *work, integer *ldwork, 
	doublereal *rwork, doublereal *resid)
{
    /* System generated locals */
    integer work_dim1, work_offset, i__1, i__2;

    /* Local variables */
    static integer i__, j;
    static doublereal anorm;
    static integer lastj;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    static doublereal li;
    extern doublereal dlamch_(char *);
    static integer ip;
    extern doublereal dlangt_(char *, integer *, doublereal *, doublereal *, 
	    doublereal *), dlanhs_(char *, integer *, doublereal *, 
	    integer *, doublereal *);
    static doublereal eps;


#define work_ref(a_1,a_2) work[(a_2)*work_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DGTT01 reconstructs a tridiagonal matrix A from its LU factorization   
    and computes the residual   
       norm(L*U - A) / ( norm(A) * EPS ),   
    where EPS is the machine epsilon.   

    Arguments   
    =========   

    N       (input) INTEGTER   
            The order of the matrix A.  N >= 0.   

    DL      (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) sub-diagonal elements of A.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of A.   

    DU      (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) super-diagonal elements of A.   

    DLF     (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) multipliers that define the matrix L from the   
            LU factorization of A.   

    DF      (input) DOUBLE PRECISION array, dimension (N)   
            The n diagonal elements of the upper triangular matrix U from   
            the LU factorization of A.   

    DUF     (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) elements of the first super-diagonal of U.   

    DU2F    (input) DOUBLE PRECISION array, dimension (N-2)   
            The (n-2) elements of the second super-diagonal of U.   

    IPIV    (input) INTEGER array, dimension (N)   
            The pivot indices; for 1 <= i <= n, row i of the matrix was   
            interchanged with row IPIV(i).  IPIV(i) will always be either   
            i or i+1; IPIV(i) = i indicates a row interchange was not   
            required.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N)   

    LDWORK  (input) INTEGER   
            The leading dimension of the array WORK.  LDWORK >= max(1,N).   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    RESID   (output) DOUBLE PRECISION   
            The scaled residual:  norm(L*U - A) / (norm(A) * EPS)   

    =====================================================================   


       Quick return if possible   

       Parameter adjustments */
    --dl;
    --d__;
    --du;
    --dlf;
    --df;
    --duf;
    --du2;
    --ipiv;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1 * 1;
    work -= work_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0) {
	*resid = 0.;
	return 0;
    }

    eps = dlamch_("Epsilon");

/*     Copy the matrix U to WORK. */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work_ref(i__, j) = 0.;
/* L10: */
	}
/* L20: */
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (i__ == 1) {
	    work_ref(i__, i__) = df[i__];
	    if (*n >= 2) {
		work_ref(i__, i__ + 1) = duf[i__];
	    }
	    if (*n >= 3) {
		work_ref(i__, i__ + 2) = du2[i__];
	    }
	} else if (i__ == *n) {
	    work_ref(i__, i__) = df[i__];
	} else {
	    work_ref(i__, i__) = df[i__];
	    work_ref(i__, i__ + 1) = duf[i__];
	    if (i__ < *n - 1) {
		work_ref(i__, i__ + 2) = du2[i__];
	    }
	}
/* L30: */
    }

/*     Multiply on the left by L. */

    lastj = *n;
    for (i__ = *n - 1; i__ >= 1; --i__) {
	li = dlf[i__];
	i__1 = lastj - i__ + 1;
	daxpy_(&i__1, &li, &work_ref(i__, i__), ldwork, &work_ref(i__ + 1, 
		i__), ldwork);
	ip = ipiv[i__];
	if (ip == i__) {
/* Computing MIN */
	    i__1 = i__ + 2;
	    lastj = min(i__1,*n);
	} else {
	    i__1 = lastj - i__ + 1;
	    dswap_(&i__1, &work_ref(i__, i__), ldwork, &work_ref(i__ + 1, i__)
		    , ldwork);
	}
/* L40: */
    }

/*     Subtract the matrix A. */

    work_ref(1, 1) = work_ref(1, 1) - d__[1];
    if (*n > 1) {
	work_ref(1, 2) = work_ref(1, 2) - du[1];
	work_ref(*n, *n - 1) = work_ref(*n, *n - 1) - dl[*n - 1];
	work_ref(*n, *n) = work_ref(*n, *n) - d__[*n];
	i__1 = *n - 1;
	for (i__ = 2; i__ <= i__1; ++i__) {
	    work_ref(i__, i__ - 1) = work_ref(i__, i__ - 1) - dl[i__ - 1];
	    work_ref(i__, i__) = work_ref(i__, i__) - d__[i__];
	    work_ref(i__, i__ + 1) = work_ref(i__, i__ + 1) - du[i__];
/* L50: */
	}
    }

/*     Compute the 1-norm of the tridiagonal matrix A. */

    anorm = dlangt_("1", n, &dl[1], &d__[1], &du[1]);

/*     Compute the 1-norm of WORK, which is only guaranteed to be   
       upper Hessenberg. */

    *resid = dlanhs_("1", n, &work[work_offset], ldwork, &rwork[1])
	    ;

/*     Compute norm(L*U - A) / (norm(A) * EPS) */

    if (anorm <= 0.) {
	if (*resid != 0.) {
	    *resid = 1. / eps;
	}
    } else {
	*resid = *resid / anorm / eps;
    }

    return 0;

/*     End of DGTT01 */

} /* dgtt01_ */
/* Subroutine */ int dgtsvx_(char *fact, char *trans, integer *n, integer *
	nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *
	dlf, doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv, 
	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
	iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGTSVX uses the LU factorization to compute the solution to a real   
    system of linear equations A * X = B or A**T * X = B,   
    where A is a tridiagonal matrix of order N and X and B are N-by-NRHS   
    matrices.   

    Error bounds on the solution and a condition estimate are also   
    provided.   

    Description   
    ===========   

    The following steps are performed:   

    1. If FACT = 'N', the LU decomposition is used to factor the matrix A   
       as A = L * U, where L is a product of permutation and unit lower   
       bidiagonal matrices and U is upper triangular with nonzeros in   
       only the main diagonal and first two superdiagonals.   

    2. If some U(i,i)=0, so that U is exactly singular, then the routine   
       returns with INFO = i. Otherwise, the factored form of A is used   
       to estimate the condition number of the matrix A.  If the   
       reciprocal of the condition number is less than machine precision,   
       INFO = N+1 is returned as a warning, but the routine still goes on   
       to solve for X and compute error bounds as described below.   

    3. The system of equations is solved for X using the factored form   
       of A.   

    4. Iterative refinement is applied to improve the computed solution   
       matrix and calculate error bounds and backward error estimates   
       for it.   

    Arguments   
    =========   

    FACT    (input) CHARACTER*1   
            Specifies whether or not the factored form of A has been   
            supplied on entry.   
            = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored   
                    form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV   
                    will not be modified.   
            = 'N':  The matrix will be copied to DLF, DF, and DUF   
                    and factored.   

    TRANS   (input) CHARACTER*1   
            Specifies the form of the system of equations:   
            = 'N':  A * X = B     (No transpose)   
            = 'T':  A**T * X = B  (Transpose)   
            = 'C':  A**H * X = B  (Conjugate transpose = Transpose)   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    DL      (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) subdiagonal elements of A.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The n diagonal elements of A.   

    DU      (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) superdiagonal elements of A.   

    DLF     (input or output) DOUBLE PRECISION array, dimension (N-1)   
            If FACT = 'F', then DLF is an input argument and on entry   
            contains the (n-1) multipliers that define the matrix L from   
            the LU factorization of A as computed by DGTTRF.   

            If FACT = 'N', then DLF is an output argument and on exit   
            contains the (n-1) multipliers that define the matrix L from   
            the LU factorization of A.   

    DF      (input or output) DOUBLE PRECISION array, dimension (N)   
            If FACT = 'F', then DF is an input argument and on entry   
            contains the n diagonal elements of the upper triangular   
            matrix U from the LU factorization of A.   

            If FACT = 'N', then DF is an output argument and on exit   
            contains the n diagonal elements of the upper triangular   
            matrix U from the LU factorization of A.   

    DUF     (input or output) DOUBLE PRECISION array, dimension (N-1)   
            If FACT = 'F', then DUF is an input argument and on entry   
            contains the (n-1) elements of the first superdiagonal of U.   

            If FACT = 'N', then DUF is an output argument and on exit   
            contains the (n-1) elements of the first superdiagonal of U.   

    DU2     (input or output) DOUBLE PRECISION array, dimension (N-2)   
            If FACT = 'F', then DU2 is an input argument and on entry   
            contains the (n-2) elements of the second superdiagonal of   
            U.   

            If FACT = 'N', then DU2 is an output argument and on exit   
            contains the (n-2) elements of the second superdiagonal of   
            U.   

    IPIV    (input or output) INTEGER array, dimension (N)   
            If FACT = 'F', then IPIV is an input argument and on entry   
            contains the pivot indices from the LU factorization of A as   
            computed by DGTTRF.   

            If FACT = 'N', then IPIV is an output argument and on exit   
            contains the pivot indices from the LU factorization of A;   
            row i of the matrix was interchanged with row IPIV(i).   
            IPIV(i) will always be either i or i+1; IPIV(i) = i indicates   
            a row interchange was not required.   

    B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            The N-by-NRHS right hand side matrix B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)   
            If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    RCOND   (output) DOUBLE PRECISION   
            The estimate of the reciprocal condition number of the matrix   
            A.  If RCOND is less than the machine precision (in   
            particular, if RCOND = 0), the matrix is singular to working   
            precision.  This condition is indicated by a return code of   
            INFO > 0.   

    FERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The estimated forward error bound for each solution vector   
            X(j) (the j-th column of the solution matrix X).   
            If XTRUE is the true solution corresponding to X(j), FERR(j)   
            is an estimated upper bound for the magnitude of the largest   
            element in (X(j) - XTRUE) divided by the magnitude of the   
            largest element in X(j).  The estimate is as reliable as   
            the estimate for RCOND, and is almost always a slight   
            overestimate of the true error.   

    BERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector X(j) (i.e., the smallest relative change in   
            any element of A or B that makes X(j) an exact solution).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, and i is   
                  <= N:  U(i,i) is exactly zero.  The factorization   
                         has not been completed unless i = N, but the   
                         factor U is exactly singular, so the solution   
                         and error bounds could not be computed.   
                         RCOND = 0 is returned.   
                  = N+1: U is nonsingular, but RCOND is less than machine   
                         precision, meaning that the matrix is singular   
                         to working precision.  Nevertheless, the   
                         solution and error bounds are computed because   
                         there are a number of situations where the   
                         computed solution can be more accurate than the   
                         value of RCOND would suggest.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    /* Local variables */
    static char norm[1];
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *), dlangt_(char *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical nofact;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dgtcon_(char *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, doublereal *, doublereal *, integer *, integer *), dgtrfs_(char *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *), dgttrf_(integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *);
    static logical notran;
    extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, integer *, integer *);


    --dl;
    --d__;
    --du;
    --dlf;
    --df;
    --duf;
    --du2;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    notran = lsame_(trans, "N");
    if (! nofact && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! notran && ! lsame_(trans, "T") && ! 
	    lsame_(trans, "C")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -14;
    } else if (*ldx < max(1,*n)) {
	*info = -16;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGTSVX", &i__1);
	return 0;
    }

    if (nofact) {

/*        Compute the LU factorization of A. */

	dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
	if (*n > 1) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
	}
	dgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);

/*        Return if INFO is non-zero. */

	if (*info != 0) {
	    if (*info > 0) {
		*rcond = 0.;
	    }
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    if (notran) {
	*(unsigned char *)norm = '1';
    } else {
	*(unsigned char *)norm = 'I';
    }
    anorm = dlangt_(norm, n, &dl[1], &d__[1], &du[1]);

/*     Compute the reciprocal of the condition number of A. */

    dgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm, 
	    rcond, &work[1], &iwork[1], info);

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
    }

/*     Compute the solution vectors X. */

    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    dgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
	    x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solutions and   
       compute error bounds and backward error estimates for them. */

    dgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
	     &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
	    , &berr[1], &work[1], &iwork[1], info);

    return 0;

/*     End of DGTSVX */

} /* dgtsvx_ */