Beispiel #1
0
/*
 * Objset eviction processing is split into into two pieces.
 * The first marks the objset as evicting, evicts any dbufs that
 * have a refcount of zero, and then queues up the objset for the
 * second phase of eviction.  Once os->os_dnodes has been cleared by
 * dnode_buf_pageout()->dnode_destroy(), the second phase is executed.
 * The second phase closes the special dnodes, dequeues the objset from
 * the list of those undergoing eviction, and finally frees the objset.
 *
 * NOTE: Due to asynchronous eviction processing (invocation of
 *       dnode_buf_pageout()), it is possible for the meta dnode for the
 *       objset to have no holds even though os->os_dnodes is not empty.
 */
void
dmu_objset_evict(objset_t *os)
{
	dsl_dataset_t *ds = os->os_dsl_dataset;

	for (int t = 0; t < TXG_SIZE; t++)
		ASSERT(!dmu_objset_is_dirty(os, t));

	if (ds)
		dsl_prop_unregister_all(ds, os);

	if (os->os_sa)
		sa_tear_down(os);

	os->os_evicting = B_TRUE;
	dmu_objset_evict_dbufs(os);

	mutex_enter(&os->os_lock);
	spa_evicting_os_register(os->os_spa, os);
	if (list_is_empty(&os->os_dnodes)) {
		mutex_exit(&os->os_lock);
		dmu_objset_evict_done(os);
	} else {
		mutex_exit(&os->os_lock);
	}
}
Beispiel #2
0
/*
 * dsl_crypto_key_unload
 *
 * Remove the key from the in memory keystore.
 *
 * First we have to remove the minor node for a ZVOL or unmount
 * the filesystem.  This is so that we flush all pending IO for it to disk
 * so we won't need to encrypt anything with this key.  Anything in flight
 * should already have a lock on the keys it needs.
 * We can't assume that userland has already successfully unmounted the
 * dataset though in many cases it will have.
 *
 * If the key can't be removed return the failure back to our caller.
 */
int
dsl_crypto_key_unload(const char *dsname)
{
    dsl_dataset_t *ds;
    objset_t *os;
    int error;
    spa_t *spa;
    dsl_pool_t *dp;
#ifdef _KERNEL
    dmu_objset_type_t os_type;
    //vfs_t *vfsp;
    struct vfsmount *vfsp;
#endif /* _KERNEL */

    error = dsl_pool_hold(dsname, FTAG, &dp);
    if (error != 0)
        return (error);

    /* XXX - should we use own_exclusive() here? */
    if ((error = dsl_dataset_hold(dp, dsname, FTAG, &ds)) != 0) {
        dsl_pool_rele(dp, FTAG);
        return (error);
    }

    if ((error = dmu_objset_from_ds(ds, &os)) != 0) {
        dsl_dataset_rele(ds, FTAG);
        dsl_pool_rele(dp, FTAG);
        return (error);
    }

#ifdef _KERNEL
    /*
     * Make sure that the device node has gone for ZVOLs
     * and that filesystems are umounted.
     */
#if 0 // FIXME
    os_type = dmu_objset_type(os);
    if (os_type == DMU_OST_ZVOL) {
        error = zvol_remove_minor(dsname);
        if (error == ENXIO)
            error = 0;
    } else if (os_type == DMU_OST_ZFS) {
        vfsp = zfs_get_vfs(dsname);
        if (vfsp != NULL) {
            error = vn_vfswlock(vfsp->vfs_vnodecovered);
            VFS_RELE(vfsp);
            if (error == 0)
                error = dounmount(vfsp, 0, CRED());
        }
    }
    if (error != 0) {
        dsl_dataset_rele(ds, FTAG);
        return (error);
    }
#endif

#endif /* _KERNEL */

    /*
     * Make sure all dbufs are synced.
     *
     * It is essential for encrypted datasets to ensure that
     * there is no further pending IO before removing the key.
     */
    if (dmu_objset_is_dirty(os, 0)) // FIXME, 0?
        txg_wait_synced(dmu_objset_pool(os), 0);
    dmu_objset_evict_dbufs(os);

    spa = dsl_dataset_get_spa(ds);
    error = zcrypt_keystore_remove(spa, ds->ds_object);

    dsl_dataset_rele(ds, FTAG);
    dsl_pool_rele(dp, FTAG);
    return (error);
}
void
dmu_objset_evict(objset_t *os)
{
	dsl_dataset_t *ds = os->os_dsl_dataset;
	int t;

	for (t = 0; t < TXG_SIZE; t++)
		ASSERT(!dmu_objset_is_dirty(os, t));

	if (ds) {
		if (!dsl_dataset_is_snapshot(ds)) {
			VERIFY(0 == dsl_prop_unregister(ds, "checksum",
			    checksum_changed_cb, os));
			VERIFY(0 == dsl_prop_unregister(ds, "compression",
			    compression_changed_cb, os));
			VERIFY(0 == dsl_prop_unregister(ds, "copies",
			    copies_changed_cb, os));
			VERIFY(0 == dsl_prop_unregister(ds, "dedup",
			    dedup_changed_cb, os));
			VERIFY(0 == dsl_prop_unregister(ds, "logbias",
			    logbias_changed_cb, os));
			VERIFY(0 == dsl_prop_unregister(ds, "sync",
			    sync_changed_cb, os));
		}
		VERIFY(0 == dsl_prop_unregister(ds, "primarycache",
		    primary_cache_changed_cb, os));
		VERIFY(0 == dsl_prop_unregister(ds, "secondarycache",
		    secondary_cache_changed_cb, os));
        VERIFY(0 == dsl_prop_unregister(ds, "encryption",
                                        crypt_changed_cb, os));
	}

	if (os->os_sa)
		sa_tear_down(os);

	/*
	 * We should need only a single pass over the dnode list, since
	 * nothing can be added to the list at this point.
	 */
	(void) dmu_objset_evict_dbufs(os);

	dnode_special_close(&os->os_meta_dnode);
	if (DMU_USERUSED_DNODE(os)) {
		dnode_special_close(&os->os_userused_dnode);
		dnode_special_close(&os->os_groupused_dnode);
	}
	zil_free(os->os_zil);

	ASSERT3P(list_head(&os->os_dnodes), ==, NULL);

	VERIFY(arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf) == 1);

	/*
	 * This is a barrier to prevent the objset from going away in
	 * dnode_move() until we can safely ensure that the objset is still in
	 * use. We consider the objset valid before the barrier and invalid
	 * after the barrier.
	 */
	rw_enter(&os_lock, RW_READER);
	rw_exit(&os_lock);

	mutex_destroy(&os->os_lock);
	mutex_destroy(&os->os_obj_lock);
	mutex_destroy(&os->os_user_ptr_lock);
	kmem_free(os, sizeof (objset_t));
}
Beispiel #4
0
void
dmu_objset_evict(objset_t *os)
{
	dsl_dataset_t *ds = os->os_dsl_dataset;

	for (int t = 0; t < TXG_SIZE; t++)
		ASSERT(!dmu_objset_is_dirty(os, t));

	if (ds) {
		if (!dsl_dataset_is_snapshot(ds)) {
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_CHECKSUM),
			    checksum_changed_cb, os));
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
			    compression_changed_cb, os));
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_COPIES),
			    copies_changed_cb, os));
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_DEDUP),
			    dedup_changed_cb, os));
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_LOGBIAS),
			    logbias_changed_cb, os));
			VERIFY0(dsl_prop_unregister(ds,
			    zfs_prop_to_name(ZFS_PROP_SYNC),
			    sync_changed_cb, os));
		}
		VERIFY0(dsl_prop_unregister(ds,
		    zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE),
		    primary_cache_changed_cb, os));
		VERIFY0(dsl_prop_unregister(ds,
		    zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE),
		    secondary_cache_changed_cb, os));
	}

	if (os->os_sa)
		sa_tear_down(os);

	dmu_objset_evict_dbufs(os);

	dnode_special_close(&os->os_meta_dnode);
	if (DMU_USERUSED_DNODE(os)) {
		dnode_special_close(&os->os_userused_dnode);
		dnode_special_close(&os->os_groupused_dnode);
	}
	zil_free(os->os_zil);

	ASSERT3P(list_head(&os->os_dnodes), ==, NULL);

	VERIFY(arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf));

	/*
	 * This is a barrier to prevent the objset from going away in
	 * dnode_move() until we can safely ensure that the objset is still in
	 * use. We consider the objset valid before the barrier and invalid
	 * after the barrier.
	 */
	rw_enter(&os_lock, RW_READER);
	rw_exit(&os_lock);

	mutex_destroy(&os->os_lock);
	mutex_destroy(&os->os_obj_lock);
	mutex_destroy(&os->os_user_ptr_lock);
	kmem_free(os, sizeof (objset_t));
}