doublereal drzt02_(integer *m, integer *n, doublereal *af, integer *lda, doublereal *tau, doublereal *work, integer *lwork) { /* System generated locals */ integer af_dim1, af_offset, i__1, i__2; doublereal ret_val; /* Local variables */ integer i__, info; doublereal rwork[1]; extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dormrz_(char *, char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DRZT02 returns */ /* || I - Q'*Q || / ( M * eps) */ /* where the matrix Q is defined by the Householder transformations */ /* generated by DTZRZF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix AF. */ /* N (input) INTEGER */ /* The number of columns of the matrix AF. */ /* AF (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The output of DTZRZF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array AF. */ /* TAU (input) DOUBLE PRECISION array, dimension (M) */ /* Details of the Householder transformations as returned by */ /* DTZRZF. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* length of WORK array. LWORK >= N*N+N*NB. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; /* Function Body */ ret_val = 0.; if (*lwork < *n * *n + *n) { xerbla_("DRZT02", &c__7); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } /* Q := I */ dlaset_("Full", n, n, &c_b5, &c_b6, &work[1], n); /* Q := P(1) * ... * P(m) * Q */ i__1 = *n - *m; i__2 = *lwork - *n * *n; dormrz_("Left", "No transpose", n, n, m, &i__1, &af[af_offset], lda, &tau[ 1], &work[1], n, &work[*n * *n + 1], &i__2, &info); /* Q := P(m) * ... * P(1) * Q */ i__1 = *n - *m; i__2 = *lwork - *n * *n; dormrz_("Left", "Transpose", n, n, m, &i__1, &af[af_offset], lda, &tau[1], &work[1], n, &work[*n * *n + 1], &i__2, &info); /* Q := Q - I */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[(i__ - 1) * *n + i__] += -1.; /* L10: */ } ret_val = dlange_("One-norm", n, n, &work[1], n, rwork) / ( dlamch_("Epsilon") * (doublereal) max(*m,*n)); return ret_val; /* End of DRZT02 */ } /* drzt02_ */
/* Subroutine */ int dgelsy_(integer *m, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, integer * jpvt, doublereal *rcond, integer *rank, doublereal *work, integer * lwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DGELSY computes the minimum-norm solution to a real linear least squares problem: minimize || A * X - B || using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting: A * P = Q * [ R11 R12 ] [ 0 R22 ] with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization: A * P = Q * [ T11 0 ] * Z [ 0 0 ] The minimum-norm solution is then X = P * Z' [ inv(T11)*Q1'*B ] [ 0 ] where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences: o The call to the subroutine xGEQPF has been substituted by the the call to the subroutine xGEQP3. This subroutine is a Blas-3 version of the QR factorization with column pivoting. o Matrix B (the right hand side) is updated with Blas-3. o The permutation of matrix B (the right hand side) is faster and more simple. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of matrices B and X. NRHS >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A has been overwritten by details of its complete orthogonal factorization. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the M-by-NRHS right hand side matrix B. On exit, the N-by-NRHS solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,M,N). JPVT (input/output) INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of AP, otherwise column i is a free column. On exit, if JPVT(i) = k, then the i-th column of AP was the k-th column of A. RCOND (input) DOUBLE PRECISION RCOND is used to determine the effective rank of A, which is defined as the order of the largest leading triangular submatrix R11 in the QR factorization with pivoting of A, whose estimated condition number < 1/RCOND. RANK (output) INTEGER The effective rank of A, i.e., the order of the submatrix R11. This is the same as the order of the submatrix T11 in the complete orthogonal factorization of A. WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. The unblocked strategy requires that: LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), where MN = min( M, N ). The block algorithm requires that: LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), where NB is an upper bound on the blocksize returned by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR, and DORMRZ. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: If INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__0 = 0; static doublereal c_b31 = 0.; static integer c__2 = 2; static doublereal c_b54 = 1.; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ static doublereal anrm, bnrm, smin, smax; static integer i__, j, iascl, ibscl; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer ismin, ismax; static doublereal c1, c2; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dlaic1_( integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); static doublereal wsize, s1, s2; extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, integer *), dlabad_(doublereal *, doublereal *); static integer nb; extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); static integer mn; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static doublereal bignum; static integer nb1, nb2, nb3, nb4; extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); static doublereal sminpr, smaxpr, smlnum; extern /* Subroutine */ int dormrz_(char *, char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); static integer lwkopt; static logical lquery; extern /* Subroutine */ int dtzrzf_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --jpvt; --work; /* Function Body */ mn = min(*m,*n); ismin = mn + 1; ismax = (mn << 1) + 1; /* Test the input arguments. */ *info = 0; nb1 = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "DORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen) 1); nb4 = ilaenv_(&c__1, "DORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen) 1); /* Computing MAX */ i__1 = max(nb1,nb2), i__1 = max(i__1,nb3); nb = max(i__1,nb4); /* Computing MAX */ i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), i__2 = (mn << 1) + nb * *nrhs; lwkopt = max(i__1,i__2); work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*ldb < max(i__1,*n)) { *info = -7; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = mn + *n * 3 + 1, i__1 = max(i__1,i__2), i__2 = ( mn << 1) + *nrhs; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -12; } } } if (*info != 0) { i__1 = -(*info); xerbla_("DGELSY", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible Computing MIN */ i__1 = min(*m,*n); if (min(i__1,*nrhs) == 0) { *rank = 0; return 0; } /* Get machine parameters */ smlnum = dlamch_("S") / dlamch_("P"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); /* Scale A, B if max entries outside range [SMLNUM,BIGNUM] */ anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]); iascl = 0; if (anrm > 0. && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb); *rank = 0; goto L70; } bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]); ibscl = 0; if (bnrm > 0. && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info); ibscl = 2; } /* Compute QR factorization with column pivoting of A: A * P = Q * R */ i__1 = *lwork - mn; dgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1, info); wsize = mn + work[mn + 1]; /* workspace: MN+2*N+NB*(N+1). Details of Householder rotations stored in WORK(1:MN). Determine RANK using incremental condition estimation */ work[ismin] = 1.; work[ismax] = 1.; smax = (d__1 = a_ref(1, 1), abs(d__1)); smin = smax; if ((d__1 = a_ref(1, 1), abs(d__1)) == 0.) { *rank = 0; i__1 = max(*m,*n); dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb); goto L70; } else { *rank = 1; } L10: if (*rank < mn) { i__ = *rank + 1; dlaic1_(&c__2, rank, &work[ismin], &smin, &a_ref(1, i__), &a_ref(i__, i__), &sminpr, &s1, &c1); dlaic1_(&c__1, rank, &work[ismax], &smax, &a_ref(1, i__), &a_ref(i__, i__), &smaxpr, &s2, &c2); if (smaxpr * *rcond <= sminpr) { i__1 = *rank; for (i__ = 1; i__ <= i__1; ++i__) { work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1]; work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1]; /* L20: */ } work[ismin + *rank] = c1; work[ismax + *rank] = c2; smin = sminpr; smax = smaxpr; ++(*rank); goto L10; } } /* workspace: 3*MN. Logically partition R = [ R11 R12 ] [ 0 R22 ] where R11 = R(1:RANK,1:RANK) [R11,R12] = [ T11, 0 ] * Y */ if (*rank < *n) { i__1 = *lwork - (mn << 1); dtzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 1], &i__1, info); } /* workspace: 2*MN. Details of Householder rotations stored in WORK(MN+1:2*MN) B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ i__1 = *lwork - (mn << 1); dormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], & b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info); /* Computing MAX */ d__1 = wsize, d__2 = (mn << 1) + work[(mn << 1) + 1]; wsize = max(d__1,d__2); /* workspace: 2*MN+NB*NRHS. B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */ dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, & a[a_offset], lda, &b[b_offset], ldb); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = *rank + 1; i__ <= i__2; ++i__) { b_ref(i__, j) = 0.; /* L30: */ } /* L40: */ } /* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */ if (*rank < *n) { i__1 = *n - *rank; i__2 = *lwork - (mn << 1); dormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2, info); } /* workspace: 2*MN+NRHS. B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[jpvt[i__]] = b_ref(i__, j); /* L50: */ } dcopy_(n, &work[1], &c__1, &b_ref(1, j), &c__1); /* L60: */ } /* workspace: N. Undo scaling */ if (iascl == 1) { dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info); dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], lda, info); } else if (iascl == 2) { dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info); dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], lda, info); } if (ibscl == 1) { dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } else if (ibscl == 2) { dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } L70: work[1] = (doublereal) lwkopt; return 0; /* End of DGELSY */ } /* dgelsy_ */