Beispiel #1
0
/* Subroutine */ int dposvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 
	char *equed, doublereal *s, doublereal *b, integer *ldb, doublereal *
	x, integer *ldx, doublereal *rcond, doublereal *ferr, doublereal *
	berr, doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
	    x_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j;
    doublereal amax, smin, smax;
    doublereal scond, anorm;
    logical equil, rcequ;
    logical nofact;
    doublereal bignum;
    integer infequ;
    doublereal smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
/*  compute the solution to a real system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N symmetric positive definite matrix and X and B */
/*  are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U**T* U,  if UPLO = 'U', or */
/*        A = L * L**T,  if UPLO = 'L', */
/*     where U is an upper triangular matrix and L is a lower triangular */
/*     matrix. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AF contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  A and AF will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AF and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AF and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A, except if FACT = 'F' and */
/*          EQUED = 'Y', then A must contain the equilibrated matrix */
/*          diag(S)*A*diag(S).  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced.  A is not modified if */
/*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
/*          If FACT = 'F', then AF is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T, in the same storage */
/*          format as A.  If EQUED .ne. 'N', then AF is the factored form */
/*          of the equilibrated matrix diag(S)*A*diag(S). */

/*          If FACT = 'N', then AF is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the original */
/*          matrix A. */

/*          If FACT = 'E', then AF is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the equilibrated */
/*          matrix A (see the description of A for the form of the */
/*          equilibrated matrix). */

/*  LDAF    (input) INTEGER */
/*          The leading dimension of the array AF.  LDAF >= max(1,N). */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) DOUBLE PRECISION array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) DOUBLE PRECISION */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  ===================================================================== */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    af_dim1 = *ldaf;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldaf < max(1,*n)) {
	*info = -8;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -9;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		d__1 = smin, d__2 = s[j];
		smin = min(d__1,d__2);
/* Computing MAX */
		d__1 = smax, d__2 = s[j];
		smax = max(d__1,d__2);
	    }
	    if (smin <= 0.) {
		*info = -10;
	    } else if (*n > 0) {
		scond = max(smin,smlnum) / min(smax,bignum);
	    } else {
		scond = 1.;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -12;
	    } else if (*ldx < max(1,*n)) {
		*info = -14;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPOSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	dpoequ_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    dlaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
	    }
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
	dpotrf_(uplo, n, &af[af_offset], ldaf, info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &work[1]);

/*     Compute the reciprocal of the condition number of A. */

    dpocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 
	     info);

/*     Compute the solution matrix X. */

    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    dpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    dporfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &b[
	    b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &
	    iwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
	    }
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of DPOSVX */

} /* dposvx_ */
Beispiel #2
0
/* Subroutine */ int ddrvpo_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, 
	doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, 
	doublereal *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,"
	    "\002, test(\002,i1,\002) =\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode;
    doublereal amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    doublereal rcond, roldc, scond;
    integer nimat;
    extern /* Subroutine */ int dpot01_(char *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *), dpot02_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *), dpot05_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *);
    doublereal anorm;
    logical equil;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int dposv_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *), alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    logical prefac;
    doublereal rcondc;
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dlaset_(char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *), alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    doublereal ainvnm;
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int dlaqsy_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, char *), dpoequ_(integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), dpotrf_(
	    char *, integer *, doublereal *, integer *, integer *), 
	    dpotri_(char *, integer *, doublereal *, integer *, integer *), xlaenv_(integer *, integer *), derrvx_(char *, integer *);
    doublereal result[6];
    extern /* Subroutine */ int dposvx_(char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, char *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     integer *);

    /* Fortran I/O blocks */
    static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DDRVPO tests the driver routines DPOSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  S       (workspace) DOUBLE PRECISION array, dimension (NMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L120;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L120;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with DLATB4 and generate a test matrix */
/*              with DLATMS. */

		dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
		dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    a[ioff + i__] = 0.;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    a[ioff] = 0.;
			    ioff += lda;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    a[ioff] = 0.;
			    ioff += lda;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    a[ioff + i__] = 0.;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Save a copy of the matrix A in ASAV. */

		dlacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda);

		for (iequed = 1; iequed <= 2; ++iequed) {
		    *(unsigned char *)equed = *(unsigned char *)&equeds[
			    iequed - 1];
		    if (iequed == 1) {
			nfact = 3;
		    } else {
			nfact = 1;
		    }

		    i__3 = nfact;
		    for (ifact = 1; ifact <= i__3; ++ifact) {
			*(unsigned char *)fact = *(unsigned char *)&facts[
				ifact - 1];
			prefac = lsame_(fact, "F");
			nofact = lsame_(fact, "N");
			equil = lsame_(fact, "E");

			if (zerot) {
			    if (prefac) {
				goto L90;
			    }
			    rcondc = 0.;

			} else if (! lsame_(fact, "N")) 
				{

/*                       Compute the condition number for comparison with */
/*                       the value returned by DPOSVX (FACT = 'N' reuses */
/*                       the condition number from the previous iteration */
/*                       with FACT = 'F'). */

			    dlacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], &
				    lda);
			    if (equil || iequed > 1) {

/*                          Compute row and column scale factors to */
/*                          equilibrate the matrix A. */

				dpoequ_(&n, &afac[1], &lda, &s[1], &scond, &
					amax, &info);
				if (info == 0 && n > 0) {
				    if (iequed > 1) {
					scond = 0.;
				    }

/*                             Equilibrate the matrix. */

				    dlaqsy_(uplo, &n, &afac[1], &lda, &s[1], &
					    scond, &amax, equed);
				}
			    }

/*                       Save the condition number of the */
/*                       non-equilibrated system for use in DGET04. */

			    if (equil) {
				roldc = rcondc;
			    }

/*                       Compute the 1-norm of A. */

			    anorm = dlansy_("1", uplo, &n, &afac[1], &lda, &
				    rwork[1]);

/*                       Factor the matrix A. */

			    dpotrf_(uplo, &n, &afac[1], &lda, &info);

/*                       Form the inverse of A. */

			    dlacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda);
			    dpotri_(uplo, &n, &a[1], &lda, &info);

/*                       Compute the 1-norm condition number of A. */

			    ainvnm = dlansy_("1", uplo, &n, &a[1], &lda, &
				    rwork[1]);
			    if (anorm <= 0. || ainvnm <= 0.) {
				rcondc = 1.;
			    } else {
				rcondc = 1. / anorm / ainvnm;
			    }
			}

/*                    Restore the matrix A. */

			dlacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen)
				6);
			dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact) {

/*                       --- Test DPOSV  --- */

/*                       Compute the L*L' or U'*U factorization of the */
/*                       matrix and solve the system. */

			    dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			    dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DPOSV ", (ftnlen)32, (
				    ftnlen)6);
			    dposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], &
				    lda, &info);

/*                       Check error code from DPOSV . */

			    if (info != izero) {
				alaerh_(path, "DPOSV ", &info, &izero, uplo, &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L70;
			    } else if (info != 0) {
				goto L70;
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    rwork[1], result);

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    dpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, 
				    &work[1], &lda, &rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___48.ciunit = *nout;
				    s_wsfe(&io___48);
				    do_fio(&c__1, "DPOSV ", (ftnlen)6);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L60: */
			    }
			    nrun += nt;
L70:
			    ;
			}

/*                    --- Test DPOSVX --- */

			if (! prefac) {
			    dlaset_(uplo, &n, &n, &c_b50, &c_b50, &afac[1], &
				    lda);
			}
			dlaset_("Full", &n, nrhs, &c_b50, &c_b50, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT='F' and */
/*                       EQUED='Y'. */

			    dlaqsy_(uplo, &n, &a[1], &lda, &s[1], &scond, &
				    amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using DPOSVX. */

			s_copy(srnamc_1.srnamt, "DPOSVX", (ftnlen)32, (ftnlen)
				6);
			dposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &
				lda, equed, &s[1], &b[1], &lda, &x[1], &lda, &
				rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], 
				 &iwork[1], &info);

/*                    Check the error code from DPOSVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = uplo;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DPOSVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L90;
			}

			if (info == 0) {
			    if (! prefac) {

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, 
					 &rwork[(*nrhs << 1) + 1], result);
				k1 = 1;
			    } else {
				k1 = 2;
			    }

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    dpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], &
				    lda, &work[1], &lda, &rwork[(*nrhs << 1) 
				    + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    dpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    k1 = 6;
			}

/*                    Compare RCOND from DPOSVX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = k1; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___51.ciunit = *nout;
				    s_wsfe(&io___51);
				    do_fio(&c__1, "DPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___52.ciunit = *nout;
				    s_wsfe(&io___52);
				    do_fio(&c__1, "DPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + 7 - k1;
L90:
			;
		    }
/* L100: */
		}
L110:
		;
	    }
L120:
	    ;
	}
/* L130: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DDRVPO */

} /* ddrvpo_ */
Beispiel #3
0
/* Subroutine */ int derrpo_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublereal a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal w[12], x[4];
    char c2[2];
    doublereal r1[4], r2[4], af[16]	/* was [4][4] */;
    integer iw[4], info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int dpbtf2_(char *, integer *, integer *, 
	    doublereal *, integer *, integer *), dpotf2_(char *, 
	    integer *, doublereal *, integer *, integer *), alaesm_(
	    char *, logical *, integer *), dpbcon_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int dpbequ_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *), dpbrfs_(char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *), 
	    dpbtrf_(char *, integer *, integer *, doublereal *, integer *, 
	    integer *), dpocon_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    integer *), chkxer_(char *, integer *, integer *, logical 
	    *, logical *), dppcon_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *), dpoequ_(integer *, doublereal *, integer *, doublereal *, 
	     doublereal *, doublereal *, integer *), dpbtrs_(char *, integer *
, integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *), dporfs_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), dpotrf_(char *, 
	    integer *, doublereal *, integer *, integer *), dpotri_(
	    char *, integer *, doublereal *, integer *, integer *), 
	    dppequ_(char *, integer *, doublereal *, doublereal *, doublereal 
	    *, doublereal *, integer *), dpprfs_(char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *), dpptrf_(char *, integer *, 
	    doublereal *, integer *), dpptri_(char *, integer *, 
	    doublereal *, integer *), dpotrs_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dpptrs_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DERRPO tests the error exits for the DOUBLE PRECISION routines */
/*  for symmetric positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a[i__ + (j << 2) - 5] = 1. / (doublereal) (i__ + j);
	    af[i__ + (j << 2) - 5] = 1. / (doublereal) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	w[j - 1] = 0.;
	x[j - 1] = 0.;
	iw[j - 1] = j;
/* L20: */
    }
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "PO")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite matrix. */

/*        DPOTRF */

	s_copy(srnamc_1.srnamt, "DPOTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("DPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPOTF2 */

	s_copy(srnamc_1.srnamt, "DPOTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("DPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPOTRI */

	s_copy(srnamc_1.srnamt, "DPOTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("DPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPOTRS */

	s_copy(srnamc_1.srnamt, "DPOTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("DPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPORFS */

	s_copy(srnamc_1.srnamt, "DPORFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	dporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("DPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPOCON */

	s_copy(srnamc_1.srnamt, "DPOCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPOEQU */

	s_copy(srnamc_1.srnamt, "DPOEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite packed matrix. */

/*        DPPTRF */

	s_copy(srnamc_1.srnamt, "DPPTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpptrf_("/", &c__0, a, &info);
	chkxer_("DPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpptrf_("U", &c_n1, a, &info);
	chkxer_("DPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPPTRI */

	s_copy(srnamc_1.srnamt, "DPPTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpptri_("/", &c__0, a, &info);
	chkxer_("DPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpptri_("U", &c_n1, a, &info);
	chkxer_("DPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPPTRS */

	s_copy(srnamc_1.srnamt, "DPPTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("DPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPPRFS */

	s_copy(srnamc_1.srnamt, "DPPRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, iw, &
		info);
	chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	dpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("DPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPPCON */

	s_copy(srnamc_1.srnamt, "DPPCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dppcon_("/", &c__0, a, &anrm, &rcond, w, iw, &info);
	chkxer_("DPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dppcon_("U", &c_n1, a, &anrm, &rcond, w, iw, &info);
	chkxer_("DPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPPEQU */

	s_copy(srnamc_1.srnamt, "DPPEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("DPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("DPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite band matrix. */

/*        DPBTRF */

	s_copy(srnamc_1.srnamt, "DPBTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("DPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPBTF2 */

	s_copy(srnamc_1.srnamt, "DPBTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("DPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPBTRS */

	s_copy(srnamc_1.srnamt, "DPBTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("DPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPBRFS */

	s_copy(srnamc_1.srnamt, "DPBRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	dpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	dpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPBCON */

	s_copy(srnamc_1.srnamt, "DPBCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("DPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DPBEQU */

	s_copy(srnamc_1.srnamt, "DPBEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("DPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of DERRPO */

} /* derrpo_ */
Beispiel #4
0
/* Subroutine */ int dchkeq_(doublereal *thresh, integer *nout)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,\002All tests for \002,a3,\002 routines pa"
	    "ssed the threshold\002)";
    static char fmt_9998[] = "(\002 DGEEQU failed test with value \002,d10"
	    ".3,\002 exceeding\002,\002 threshold \002,d10.3)";
    static char fmt_9997[] = "(\002 DGBEQU failed test with value \002,d10"
	    ".3,\002 exceeding\002,\002 threshold \002,d10.3)";
    static char fmt_9996[] = "(\002 DPOEQU failed test with value \002,d10"
	    ".3,\002 exceeding\002,\002 threshold \002,d10.3)";
    static char fmt_9995[] = "(\002 DPPEQU failed test with value \002,d10"
	    ".3,\002 exceeding\002,\002 threshold \002,d10.3)";
    static char fmt_9994[] = "(\002 DPBEQU failed test with value \002,d10"
	    ".3,\002 exceeding\002,\002 threshold \002,d10.3)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_di(doublereal *, integer *);
    integer pow_ii(integer *, integer *), s_wsle(cilist *), e_wsle(void), 
	    s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    doublereal a[25]	/* was [5][5] */, c__[5];
    integer i__, j, m, n;
    doublereal r__[5], ab[65]	/* was [13][5] */, ap[15];
    integer kl;
    logical ok;
    integer ku;
    doublereal eps, pow[11];
    integer info;
    char path[3];
    doublereal norm, rpow[11], ccond, rcond, rcmin, rcmax, ratio;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dgbequ_(integer *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *), dgeequ_(
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)
	    , dpbequ_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dpoequ_(integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), dppequ_(char *, integer *, 
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
);
    doublereal reslts[5];

    /* Fortran I/O blocks */
    static cilist io___25 = { 0, 0, 0, 0, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___28 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9994, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKEQ tests DGEEQU, DGBEQU, DPOEQU, DPPEQU and DPBEQU */

/*  Arguments */
/*  ========= */

/*  THRESH  (input) DOUBLE PRECISION */
/*          Threshold for testing routines. Should be between 2 and 10. */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "EQ", (ftnlen)2, (ftnlen)2);

    eps = dlamch_("P");
    for (i__ = 1; i__ <= 5; ++i__) {
	reslts[i__ - 1] = 0.;
/* L10: */
    }
    for (i__ = 1; i__ <= 11; ++i__) {
	i__1 = i__ - 1;
	pow[i__ - 1] = pow_di(&c_b7, &i__1);
	rpow[i__ - 1] = 1. / pow[i__ - 1];
/* L20: */
    }

/*     Test DGEEQU */

    for (n = 0; n <= 5; ++n) {
	for (m = 0; m <= 5; ++m) {

	    for (j = 1; j <= 5; ++j) {
		for (i__ = 1; i__ <= 5; ++i__) {
		    if (i__ <= m && j <= n) {
			i__1 = i__ + j;
			a[i__ + j * 5 - 6] = pow[i__ + j] * pow_ii(&c_n1, &
				i__1);
		    } else {
			a[i__ + j * 5 - 6] = 0.;
		    }
/* L30: */
		}
/* L40: */
	    }

	    dgeequ_(&m, &n, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info);

	    if (info != 0) {
		reslts[0] = 1.;
	    } else {
		if (n != 0 && m != 0) {
/* Computing MAX */
		    d__2 = reslts[0], d__3 = (d__1 = (rcond - rpow[m - 1]) / 
			    rpow[m - 1], abs(d__1));
		    reslts[0] = max(d__2,d__3);
/* Computing MAX */
		    d__2 = reslts[0], d__3 = (d__1 = (ccond - rpow[n - 1]) / 
			    rpow[n - 1], abs(d__1));
		    reslts[0] = max(d__2,d__3);
/* Computing MAX */
		    d__2 = reslts[0], d__3 = (d__1 = (norm - pow[n + m]) / 
			    pow[n + m], abs(d__1));
		    reslts[0] = max(d__2,d__3);
		    i__1 = m;
		    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
			d__2 = reslts[0], d__3 = (d__1 = (r__[i__ - 1] - rpow[
				i__ + n]) / rpow[i__ + n], abs(d__1));
			reslts[0] = max(d__2,d__3);
/* L50: */
		    }
		    i__1 = n;
		    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
			d__2 = reslts[0], d__3 = (d__1 = (c__[j - 1] - pow[n 
				- j]) / pow[n - j], abs(d__1));
			reslts[0] = max(d__2,d__3);
/* L60: */
		    }
		}
	    }

/* L70: */
	}
/* L80: */
    }

/*     Test with zero rows and columns */

    for (j = 1; j <= 5; ++j) {
	a[j * 5 - 2] = 0.;
/* L90: */
    }
    dgeequ_(&c__5, &c__5, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info);
    if (info != 4) {
	reslts[0] = 1.;
    }

    for (j = 1; j <= 5; ++j) {
	a[j * 5 - 2] = 1.;
/* L100: */
    }
    for (i__ = 1; i__ <= 5; ++i__) {
	a[i__ + 14] = 0.;
/* L110: */
    }
    dgeequ_(&c__5, &c__5, a, &c__5, r__, c__, &rcond, &ccond, &norm, &info);
    if (info != 9) {
	reslts[0] = 1.;
    }
    reslts[0] /= eps;

/*     Test DGBEQU */

    for (n = 0; n <= 5; ++n) {
	for (m = 0; m <= 5; ++m) {
/* Computing MAX */
	    i__2 = m - 1;
	    i__1 = max(i__2,0);
	    for (kl = 0; kl <= i__1; ++kl) {
/* Computing MAX */
		i__3 = n - 1;
		i__2 = max(i__3,0);
		for (ku = 0; ku <= i__2; ++ku) {

		    for (j = 1; j <= 5; ++j) {
			for (i__ = 1; i__ <= 13; ++i__) {
			    ab[i__ + j * 13 - 14] = 0.;
/* L120: */
			}
/* L130: */
		    }
		    i__3 = n;
		    for (j = 1; j <= i__3; ++j) {
			i__4 = m;
			for (i__ = 1; i__ <= i__4; ++i__) {
/* Computing MIN */
			    i__5 = m, i__6 = j + kl;
/* Computing MAX */
			    i__7 = 1, i__8 = j - ku;
			    if (i__ <= min(i__5,i__6) && i__ >= max(i__7,i__8)
				     && j <= n) {
				i__5 = i__ + j;
				ab[ku + 1 + i__ - j + j * 13 - 14] = pow[i__ 
					+ j] * pow_ii(&c_n1, &i__5);
			    }
/* L140: */
			}
/* L150: */
		    }

		    dgbequ_(&m, &n, &kl, &ku, ab, &c__13, r__, c__, &rcond, &
			    ccond, &norm, &info);

		    if (info != 0) {
			if (! (n + kl < m && info == n + kl + 1 || m + ku < n 
				&& info == (m << 1) + ku + 1)) {
			    reslts[1] = 1.;
			}
		    } else {
			if (n != 0 && m != 0) {

			    rcmin = r__[0];
			    rcmax = r__[0];
			    i__3 = m;
			    for (i__ = 1; i__ <= i__3; ++i__) {
/* Computing MIN */
				d__1 = rcmin, d__2 = r__[i__ - 1];
				rcmin = min(d__1,d__2);
/* Computing MAX */
				d__1 = rcmax, d__2 = r__[i__ - 1];
				rcmax = max(d__1,d__2);
/* L160: */
			    }
			    ratio = rcmin / rcmax;
/* Computing MAX */
			    d__2 = reslts[1], d__3 = (d__1 = (rcond - ratio) /
				     ratio, abs(d__1));
			    reslts[1] = max(d__2,d__3);

			    rcmin = c__[0];
			    rcmax = c__[0];
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				d__1 = rcmin, d__2 = c__[j - 1];
				rcmin = min(d__1,d__2);
/* Computing MAX */
				d__1 = rcmax, d__2 = c__[j - 1];
				rcmax = max(d__1,d__2);
/* L170: */
			    }
			    ratio = rcmin / rcmax;
/* Computing MAX */
			    d__2 = reslts[1], d__3 = (d__1 = (ccond - ratio) /
				     ratio, abs(d__1));
			    reslts[1] = max(d__2,d__3);

/* Computing MAX */
			    d__2 = reslts[1], d__3 = (d__1 = (norm - pow[n + 
				    m]) / pow[n + m], abs(d__1));
			    reslts[1] = max(d__2,d__3);
			    i__3 = m;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				rcmax = 0.;
				i__4 = n;
				for (j = 1; j <= i__4; ++j) {
				    if (i__ <= j + kl && i__ >= j - ku) {
					ratio = (d__1 = r__[i__ - 1] * pow[
						i__ + j] * c__[j - 1], abs(
						d__1));
					rcmax = max(rcmax,ratio);
				    }
/* L180: */
				}
/* Computing MAX */
				d__2 = reslts[1], d__3 = (d__1 = 1. - rcmax, 
					abs(d__1));
				reslts[1] = max(d__2,d__3);
/* L190: */
			    }

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				rcmax = 0.;
				i__4 = m;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    if (i__ <= j + kl && i__ >= j - ku) {
					ratio = (d__1 = r__[i__ - 1] * pow[
						i__ + j] * c__[j - 1], abs(
						d__1));
					rcmax = max(rcmax,ratio);
				    }
/* L200: */
				}
/* Computing MAX */
				d__2 = reslts[1], d__3 = (d__1 = 1. - rcmax, 
					abs(d__1));
				reslts[1] = max(d__2,d__3);
/* L210: */
			    }
			}
		    }

/* L220: */
		}
/* L230: */
	    }
/* L240: */
	}
/* L250: */
    }
    reslts[1] /= eps;

/*     Test DPOEQU */

    for (n = 0; n <= 5; ++n) {

	for (i__ = 1; i__ <= 5; ++i__) {
	    for (j = 1; j <= 5; ++j) {
		if (i__ <= n && j == i__) {
		    i__1 = i__ + j;
		    a[i__ + j * 5 - 6] = pow[i__ + j] * pow_ii(&c_n1, &i__1);
		} else {
		    a[i__ + j * 5 - 6] = 0.;
		}
/* L260: */
	    }
/* L270: */
	}

	dpoequ_(&n, a, &c__5, r__, &rcond, &norm, &info);

	if (info != 0) {
	    reslts[2] = 1.;
	} else {
	    if (n != 0) {
/* Computing MAX */
		d__2 = reslts[2], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[
			n - 1], abs(d__1));
		reslts[2] = max(d__2,d__3);
/* Computing MAX */
		d__2 = reslts[2], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n *
			 2], abs(d__1));
		reslts[2] = max(d__2,d__3);
		i__1 = n;
		for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    d__2 = reslts[2], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__]
			    ) / rpow[i__], abs(d__1));
		    reslts[2] = max(d__2,d__3);
/* L280: */
		}
	    }
	}
/* L290: */
    }
    a[18] = -1.;
    dpoequ_(&c__5, a, &c__5, r__, &rcond, &norm, &info);
    if (info != 4) {
	reslts[2] = 1.;
    }
    reslts[2] /= eps;

/*     Test DPPEQU */

    for (n = 0; n <= 5; ++n) {

/*        Upper triangular packed storage */

	i__1 = n * (n + 1) / 2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    ap[i__ - 1] = 0.;
/* L300: */
	}
	i__1 = n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    ap[i__ * (i__ + 1) / 2 - 1] = pow[i__ * 2];
/* L310: */
	}

	dppequ_("U", &n, ap, r__, &rcond, &norm, &info);

	if (info != 0) {
	    reslts[3] = 1.;
	} else {
	    if (n != 0) {
/* Computing MAX */
		d__2 = reslts[3], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[
			n - 1], abs(d__1));
		reslts[3] = max(d__2,d__3);
/* Computing MAX */
		d__2 = reslts[3], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n *
			 2], abs(d__1));
		reslts[3] = max(d__2,d__3);
		i__1 = n;
		for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    d__2 = reslts[3], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__]
			    ) / rpow[i__], abs(d__1));
		    reslts[3] = max(d__2,d__3);
/* L320: */
		}
	    }
	}

/*        Lower triangular packed storage */

	i__1 = n * (n + 1) / 2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    ap[i__ - 1] = 0.;
/* L330: */
	}
	j = 1;
	i__1 = n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    ap[j - 1] = pow[i__ * 2];
	    j += n - i__ + 1;
/* L340: */
	}

	dppequ_("L", &n, ap, r__, &rcond, &norm, &info);

	if (info != 0) {
	    reslts[3] = 1.;
	} else {
	    if (n != 0) {
/* Computing MAX */
		d__2 = reslts[3], d__3 = (d__1 = (rcond - rpow[n - 1]) / rpow[
			n - 1], abs(d__1));
		reslts[3] = max(d__2,d__3);
/* Computing MAX */
		d__2 = reslts[3], d__3 = (d__1 = (norm - pow[n * 2]) / pow[n *
			 2], abs(d__1));
		reslts[3] = max(d__2,d__3);
		i__1 = n;
		for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		    d__2 = reslts[3], d__3 = (d__1 = (r__[i__ - 1] - rpow[i__]
			    ) / rpow[i__], abs(d__1));
		    reslts[3] = max(d__2,d__3);
/* L350: */
		}
	    }
	}

/* L360: */
    }
    i__ = 13;
    ap[i__ - 1] = -1.;
    dppequ_("L", &c__5, ap, r__, &rcond, &norm, &info);
    if (info != 4) {
	reslts[3] = 1.;
    }
    reslts[3] /= eps;

/*     Test DPBEQU */

    for (n = 0; n <= 5; ++n) {
/* Computing MAX */
	i__2 = n - 1;
	i__1 = max(i__2,0);
	for (kl = 0; kl <= i__1; ++kl) {

/*           Test upper triangular storage */

	    for (j = 1; j <= 5; ++j) {
		for (i__ = 1; i__ <= 13; ++i__) {
		    ab[i__ + j * 13 - 14] = 0.;
/* L370: */
		}
/* L380: */
	    }
	    i__2 = n;
	    for (j = 1; j <= i__2; ++j) {
		ab[kl + 1 + j * 13 - 14] = pow[j * 2];
/* L390: */
	    }

	    dpbequ_("U", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info);

	    if (info != 0) {
		reslts[4] = 1.;
	    } else {
		if (n != 0) {
/* Computing MAX */
		    d__2 = reslts[4], d__3 = (d__1 = (rcond - rpow[n - 1]) / 
			    rpow[n - 1], abs(d__1));
		    reslts[4] = max(d__2,d__3);
/* Computing MAX */
		    d__2 = reslts[4], d__3 = (d__1 = (norm - pow[n * 2]) / 
			    pow[n * 2], abs(d__1));
		    reslts[4] = max(d__2,d__3);
		    i__2 = n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__2 = reslts[4], d__3 = (d__1 = (r__[i__ - 1] - rpow[
				i__]) / rpow[i__], abs(d__1));
			reslts[4] = max(d__2,d__3);
/* L400: */
		    }
		}
	    }
	    if (n != 0) {
/* Computing MAX */
		i__2 = n - 1;
		ab[kl + 1 + max(i__2,1) * 13 - 14] = -1.;
		dpbequ_("U", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info);
/* Computing MAX */
		i__2 = n - 1;
		if (info != max(i__2,1)) {
		    reslts[4] = 1.;
		}
	    }

/*           Test lower triangular storage */

	    for (j = 1; j <= 5; ++j) {
		for (i__ = 1; i__ <= 13; ++i__) {
		    ab[i__ + j * 13 - 14] = 0.;
/* L410: */
		}
/* L420: */
	    }
	    i__2 = n;
	    for (j = 1; j <= i__2; ++j) {
		ab[j * 13 - 13] = pow[j * 2];
/* L430: */
	    }

	    dpbequ_("L", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info);

	    if (info != 0) {
		reslts[4] = 1.;
	    } else {
		if (n != 0) {
/* Computing MAX */
		    d__2 = reslts[4], d__3 = (d__1 = (rcond - rpow[n - 1]) / 
			    rpow[n - 1], abs(d__1));
		    reslts[4] = max(d__2,d__3);
/* Computing MAX */
		    d__2 = reslts[4], d__3 = (d__1 = (norm - pow[n * 2]) / 
			    pow[n * 2], abs(d__1));
		    reslts[4] = max(d__2,d__3);
		    i__2 = n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__2 = reslts[4], d__3 = (d__1 = (r__[i__ - 1] - rpow[
				i__]) / rpow[i__], abs(d__1));
			reslts[4] = max(d__2,d__3);
/* L440: */
		    }
		}
	    }
	    if (n != 0) {
/* Computing MAX */
		i__2 = n - 1;
		ab[max(i__2,1) * 13 - 13] = -1.;
		dpbequ_("L", &n, &kl, ab, &c__13, r__, &rcond, &norm, &info);
/* Computing MAX */
		i__2 = n - 1;
		if (info != max(i__2,1)) {
		    reslts[4] = 1.;
		}
	    }
/* L450: */
	}
/* L460: */
    }
    reslts[4] /= eps;
    ok = reslts[0] <= *thresh && reslts[1] <= *thresh && reslts[2] <= *thresh 
	    && reslts[3] <= *thresh && reslts[4] <= *thresh;
    io___25.ciunit = *nout;
    s_wsle(&io___25);
    e_wsle();
    if (ok) {
	io___26.ciunit = *nout;
	s_wsfe(&io___26);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    } else {
	if (reslts[0] > *thresh) {
	    io___27.ciunit = *nout;
	    s_wsfe(&io___27);
	    do_fio(&c__1, (char *)&reslts[0], (ftnlen)sizeof(doublereal));
	    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
	if (reslts[1] > *thresh) {
	    io___28.ciunit = *nout;
	    s_wsfe(&io___28);
	    do_fio(&c__1, (char *)&reslts[1], (ftnlen)sizeof(doublereal));
	    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
	if (reslts[2] > *thresh) {
	    io___29.ciunit = *nout;
	    s_wsfe(&io___29);
	    do_fio(&c__1, (char *)&reslts[2], (ftnlen)sizeof(doublereal));
	    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
	if (reslts[3] > *thresh) {
	    io___30.ciunit = *nout;
	    s_wsfe(&io___30);
	    do_fio(&c__1, (char *)&reslts[3], (ftnlen)sizeof(doublereal));
	    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
	if (reslts[4] > *thresh) {
	    io___31.ciunit = *nout;
	    s_wsfe(&io___31);
	    do_fio(&c__1, (char *)&reslts[4], (ftnlen)sizeof(doublereal));
	    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
    }
    return 0;

/*     End of DCHKEQ */

} /* dchkeq_ */