/* Subroutine */ int dspt21_(integer *itype, char *uplo, integer *n, integer * kband, doublereal *ap, doublereal *d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vp, doublereal *tau, doublereal *work, doublereal *result) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ integer j, jp, jr, jp1, lap; doublereal ulp; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal unfl, temp; extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *), dspr2_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *), dgemm_(char *, char *, integer * , integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); integer iinfo; doublereal anorm; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); char cuplo[1]; doublereal vsave; extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical lower; extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal wnorm; extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *); extern /* Subroutine */ int dopmtr_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSPT21 generally checks a decomposition of the form */ /* A = U S U' */ /* where ' means transpose, A is symmetric (stored in packed format), U */ /* is orthogonal, and S is diagonal (if KBAND=0) or symmetric */ /* tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as a */ /* dense matrix, otherwise the U is expressed as a product of */ /* Householder transformations, whose vectors are stored in the array */ /* "V" and whose scaling constants are in "TAU"; we shall use the */ /* letter "V" to refer to the product of Householder transformations */ /* (which should be equal to U). */ /* Specifically, if ITYPE=1, then: */ /* RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU' | / ( n ulp ) */ /* If ITYPE=2, then: */ /* RESULT(1) = | A - V S V' | / ( |A| n ulp ) */ /* If ITYPE=3, then: */ /* RESULT(1) = | I - VU' | / ( n ulp ) */ /* Packed storage means that, for example, if UPLO='U', then the columns */ /* of the upper triangle of A are stored one after another, so that */ /* A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if */ /* UPLO='L', then the columns of the lower triangle of A are stored one */ /* after another in AP, so that A(j+1,j+1) immediately follows A(n,j) */ /* in the array AP. This means that A(i,j) is stored in: */ /* AP( i + j*(j-1)/2 ) if UPLO='U' */ /* AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' */ /* The array VP bears the same relation to the matrix V that A does to */ /* AP. */ /* For ITYPE > 1, the transformation U is expressed as a product */ /* of Householder transformations: */ /* If UPLO='U', then V = H(n-1)...H(1), where */ /* H(j) = I - tau(j) v(j) v(j)' */ /* and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), */ /* (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), */ /* the j-th element is 1, and the last n-j elements are 0. */ /* If UPLO='L', then V = H(1)...H(n-1), where */ /* H(j) = I - tau(j) v(j) v(j)' */ /* and the first j elements of v(j) are 0, the (j+1)-st is 1, and the */ /* (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e., */ /* in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .) */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the type of tests to be performed. */ /* 1: U expressed as a dense orthogonal matrix: */ /* RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU' | / ( n ulp ) */ /* 2: U expressed as a product V of Housholder transformations: */ /* RESULT(1) = | A - V S V' | / ( |A| n ulp ) */ /* 3: U expressed both as a dense orthogonal matrix and */ /* as a product of Housholder transformations: */ /* RESULT(1) = | I - VU' | / ( n ulp ) */ /* UPLO (input) CHARACTER */ /* If UPLO='U', AP and VP are considered to contain the upper */ /* triangle of A and V. */ /* If UPLO='L', AP and VP are considered to contain the lower */ /* triangle of A and V. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, DSPT21 does nothing. */ /* It must be at least zero. */ /* KBAND (input) INTEGER */ /* The bandwidth of the matrix. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The original (unfactored) matrix. It is assumed to be */ /* symmetric, and contains the columns of just the upper */ /* triangle (UPLO='U') or only the lower triangle (UPLO='L'), */ /* packed one after another. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KBAND=0. */ /* U (input) DOUBLE PRECISION array, dimension (LDU, N) */ /* If ITYPE=1 or 3, this contains the orthogonal matrix in */ /* the decomposition, expressed as a dense matrix. If ITYPE=2, */ /* then it is not referenced. */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* VP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* If ITYPE=2 or 3, the columns of this array contain the */ /* Householder vectors used to describe the orthogonal matrix */ /* in the decomposition, as described in purpose. */ /* *NOTE* If ITYPE=2 or 3, V is modified and restored. The */ /* subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') */ /* is set to one, and later reset to its original value, during */ /* the course of the calculation. */ /* If ITYPE=1, then it is neither referenced nor modified. */ /* TAU (input) DOUBLE PRECISION array, dimension (N) */ /* If ITYPE >= 2, then TAU(j) is the scalar factor of */ /* v(j) v(j)' in the Householder transformation H(j) of */ /* the product U = H(1)...H(n-2) */ /* If ITYPE < 2, then TAU is not referenced. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N**2+N) */ /* Workspace. */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* RESULT(1) is always modified. RESULT(2) is modified only */ /* if ITYPE=1. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* 1) Constants */ /* Parameter adjustments */ --ap; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --vp; --tau; --work; --result; /* Function Body */ result[1] = 0.; if (*itype == 1) { result[2] = 0.; } if (*n <= 0) { return 0; } lap = *n * (*n + 1) / 2; if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Epsilon") * dlamch_("Base"); /* Some Error Checks */ if (*itype < 1 || *itype > 3) { result[1] = 10. / ulp; return 0; } /* Do Test 1 */ /* Norm of A: */ if (*itype == 3) { anorm = 1.; } else { /* Computing MAX */ d__1 = dlansp_("1", cuplo, n, &ap[1], &work[1]); anorm = max(d__1,unfl); } /* Compute error matrix: */ if (*itype == 1) { /* ITYPE=1: error = A - U S U' */ dlaset_("Full", n, n, &c_b10, &c_b10, &work[1], n); dcopy_(&lap, &ap[1], &c__1, &work[1], &c__1); i__1 = *n; for (j = 1; j <= i__1; ++j) { d__1 = -d__[j]; dspr_(cuplo, n, &d__1, &u[j * u_dim1 + 1], &c__1, &work[1]); /* L10: */ } if (*n > 1 && *kband == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { d__1 = -e[j]; dspr2_(cuplo, n, &d__1, &u[j * u_dim1 + 1], &c__1, &u[(j + 1) * u_dim1 + 1], &c__1, &work[1]); /* L20: */ } } /* Computing 2nd power */ i__1 = *n; wnorm = dlansp_("1", cuplo, n, &work[1], &work[i__1 * i__1 + 1]); } else if (*itype == 2) { /* ITYPE=2: error = V S V' - A */ dlaset_("Full", n, n, &c_b10, &c_b10, &work[1], n); if (lower) { work[lap] = d__[*n]; for (j = *n - 1; j >= 1; --j) { jp = ((*n << 1) - j) * (j - 1) / 2; jp1 = jp + *n - j; if (*kband == 1) { work[jp + j + 1] = (1. - tau[j]) * e[j]; i__1 = *n; for (jr = j + 2; jr <= i__1; ++jr) { work[jp + jr] = -tau[j] * e[j] * vp[jp + jr]; /* L30: */ } } if (tau[j] != 0.) { vsave = vp[jp + j + 1]; vp[jp + j + 1] = 1.; i__1 = *n - j; dspmv_("L", &i__1, &c_b26, &work[jp1 + j + 1], &vp[jp + j + 1], &c__1, &c_b10, &work[lap + 1], &c__1); i__1 = *n - j; temp = tau[j] * -.5 * ddot_(&i__1, &work[lap + 1], &c__1, &vp[jp + j + 1], &c__1); i__1 = *n - j; daxpy_(&i__1, &temp, &vp[jp + j + 1], &c__1, &work[lap + 1], &c__1); i__1 = *n - j; d__1 = -tau[j]; dspr2_("L", &i__1, &d__1, &vp[jp + j + 1], &c__1, &work[ lap + 1], &c__1, &work[jp1 + j + 1]); vp[jp + j + 1] = vsave; } work[jp + j] = d__[j]; /* L40: */ } } else { work[1] = d__[1]; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { jp = j * (j - 1) / 2; jp1 = jp + j; if (*kband == 1) { work[jp1 + j] = (1. - tau[j]) * e[j]; i__2 = j - 1; for (jr = 1; jr <= i__2; ++jr) { work[jp1 + jr] = -tau[j] * e[j] * vp[jp1 + jr]; /* L50: */ } } if (tau[j] != 0.) { vsave = vp[jp1 + j]; vp[jp1 + j] = 1.; dspmv_("U", &j, &c_b26, &work[1], &vp[jp1 + 1], &c__1, & c_b10, &work[lap + 1], &c__1); temp = tau[j] * -.5 * ddot_(&j, &work[lap + 1], &c__1, & vp[jp1 + 1], &c__1); daxpy_(&j, &temp, &vp[jp1 + 1], &c__1, &work[lap + 1], & c__1); d__1 = -tau[j]; dspr2_("U", &j, &d__1, &vp[jp1 + 1], &c__1, &work[lap + 1] , &c__1, &work[1]); vp[jp1 + j] = vsave; } work[jp1 + j + 1] = d__[j + 1]; /* L60: */ } } i__1 = lap; for (j = 1; j <= i__1; ++j) { work[j] -= ap[j]; /* L70: */ } wnorm = dlansp_("1", cuplo, n, &work[1], &work[lap + 1]); } else if (*itype == 3) { /* ITYPE=3: error = U V' - I */ if (*n < 2) { return 0; } dlacpy_(" ", n, n, &u[u_offset], ldu, &work[1], n); /* Computing 2nd power */ i__1 = *n; dopmtr_("R", cuplo, "T", n, n, &vp[1], &tau[1], &work[1], n, &work[ i__1 * i__1 + 1], &iinfo); if (iinfo != 0) { result[1] = 10. / ulp; return 0; } i__1 = *n; for (j = 1; j <= i__1; ++j) { work[(*n + 1) * (j - 1) + 1] += -1.; /* L80: */ } /* Computing 2nd power */ i__1 = *n; wnorm = dlange_("1", n, n, &work[1], n, &work[i__1 * i__1 + 1]); } if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.) { /* Computing MIN */ d__1 = wnorm, d__2 = *n * anorm; result[1] = min(d__1,d__2) / anorm / (*n * ulp); } else { /* Computing MIN */ d__1 = wnorm / anorm, d__2 = (doublereal) (*n); result[1] = min(d__1,d__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU' - I */ if (*itype == 1) { dgemm_("N", "C", n, n, n, &c_b26, &u[u_offset], ldu, &u[u_offset], ldu, &c_b10, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { work[(*n + 1) * (j - 1) + 1] += -1.; /* L90: */ } /* Computing MIN */ /* Computing 2nd power */ i__1 = *n; d__1 = dlange_("1", n, n, &work[1], n, &work[i__1 * i__1 + 1]), d__2 = (doublereal) (*n); result[2] = min(d__1,d__2) / (*n * ulp); } return 0; /* End of DSPT21 */ } /* dspt21_ */
/* Subroutine */ int dsbt21_(char *uplo, integer *n, integer *ka, integer *ks, doublereal *a, integer *lda, doublereal *d__, doublereal *e, doublereal *u, integer *ldu, doublereal *work, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; /* Local variables */ integer j, jc, jr, lw, ika; doublereal ulp, unfl; extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *), dspr2_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *), dgemm_(char *, char *, integer * , integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal anorm; char cuplo[1]; logical lower; doublereal wnorm; extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *), dlansb_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *), dlansp_(char *, char *, integer *, doublereal *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSBT21 generally checks a decomposition of the form */ /* A = U S U' */ /* where ' means transpose, A is symmetric banded, U is */ /* orthogonal, and S is diagonal (if KS=0) or symmetric */ /* tridiagonal (if KS=1). */ /* Specifically: */ /* RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU' | / ( n ulp ) */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER */ /* If UPLO='U', the upper triangle of A and V will be used and */ /* the (strictly) lower triangle will not be referenced. */ /* If UPLO='L', the lower triangle of A and V will be used and */ /* the (strictly) upper triangle will not be referenced. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, DSBT21 does nothing. */ /* It must be at least zero. */ /* KA (input) INTEGER */ /* The bandwidth of the matrix A. It must be at least zero. If */ /* it is larger than N-1, then max( 0, N-1 ) will be used. */ /* KS (input) INTEGER */ /* The bandwidth of the matrix S. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* A (input) DOUBLE PRECISION array, dimension (LDA, N) */ /* The original (unfactored) matrix. It is assumed to be */ /* symmetric, and only the upper (UPLO='U') or only the lower */ /* (UPLO='L') will be referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least 1 */ /* and at least min( KA, N-1 ). */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix S. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix S. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KS=0. */ /* U (input) DOUBLE PRECISION array, dimension (LDU, N) */ /* The orthogonal matrix in the decomposition, expressed as a */ /* dense matrix (i.e., not as a product of Householder */ /* transformations, Givens transformations, etc.) */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N**2+N) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Constants */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --work; --result; /* Function Body */ result[1] = 0.; result[2] = 0.; if (*n <= 0) { return 0; } /* Computing MAX */ /* Computing MIN */ i__3 = *n - 1; i__1 = 0, i__2 = min(i__3,*ka); ika = max(i__1,i__2); lw = *n * (*n + 1) / 2; if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Epsilon") * dlamch_("Base"); /* Some Error Checks */ /* Do Test 1 */ /* Norm of A: */ /* Computing MAX */ d__1 = dlansb_("1", cuplo, n, &ika, &a[a_offset], lda, &work[1]); anorm = max(d__1,unfl); /* Compute error matrix: Error = A - U S U' */ /* Copy A from SB to SP storage format. */ j = 0; i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (lower) { /* Computing MIN */ i__3 = ika + 1, i__4 = *n + 1 - jc; i__2 = min(i__3,i__4); for (jr = 1; jr <= i__2; ++jr) { ++j; work[j] = a[jr + jc * a_dim1]; /* L10: */ } i__2 = *n + 1 - jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; work[j] = 0.; /* L20: */ } } else { i__2 = jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; work[j] = 0.; /* L30: */ } /* Computing MIN */ i__2 = ika, i__3 = jc - 1; for (jr = min(i__2,i__3); jr >= 0; --jr) { ++j; work[j] = a[ika + 1 - jr + jc * a_dim1]; /* L40: */ } } /* L50: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { d__1 = -d__[j]; dspr_(cuplo, n, &d__1, &u[j * u_dim1 + 1], &c__1, &work[1]) ; /* L60: */ } if (*n > 1 && *ks == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { d__1 = -e[j]; dspr2_(cuplo, n, &d__1, &u[j * u_dim1 + 1], &c__1, &u[(j + 1) * u_dim1 + 1], &c__1, &work[1]); /* L70: */ } } wnorm = dlansp_("1", cuplo, n, &work[1], &work[lw + 1]); if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.) { /* Computing MIN */ d__1 = wnorm, d__2 = *n * anorm; result[1] = min(d__1,d__2) / anorm / (*n * ulp); } else { /* Computing MIN */ d__1 = wnorm / anorm, d__2 = (doublereal) (*n); result[1] = min(d__1,d__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU' - I */ dgemm_("N", "C", n, n, n, &c_b22, &u[u_offset], ldu, &u[u_offset], ldu, & c_b23, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { work[(*n + 1) * (j - 1) + 1] += -1.; /* L80: */ } /* Computing MIN */ /* Computing 2nd power */ i__1 = *n; d__1 = dlange_("1", n, n, &work[1], n, &work[i__1 * i__1 + 1]), d__2 = (doublereal) (*n); result[2] = min(d__1,d__2) / (*n * ulp); return 0; /* End of DSBT21 */ } /* dsbt21_ */