Beispiel #1
0
/* Subroutine */ int derrtz_(char *path, integer *nunit)
{
    /* Local variables */
    doublereal a[4]	/* was [2][2] */, w[2];
    char c2[2];
    doublereal tau[2];
    integer info;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DERRTZ tests the error exits for DTZRQF and STZRZF. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    a[0] = 1.;
    a[2] = 2.;
    a[3] = 3.;
    a[1] = 4.;
    w[0] = 0.;
    w[1] = 0.;
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "TZ")) {

/*        Test error exits for the trapezoidal routines. */

/*        DTZRQF */

	s_copy(srnamc_1.srnamt, "DTZRQF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dtzrqf_(&c_n1, &c__0, a, &c__1, tau, &info);
	chkxer_("DTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dtzrqf_(&c__1, &c__0, a, &c__1, tau, &info);
	chkxer_("DTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dtzrqf_(&c__2, &c__2, a, &c__1, tau, &info);
	chkxer_("DTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DTZRZF */

	s_copy(srnamc_1.srnamt, "DTZRZF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dtzrzf_(&c_n1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dtzrzf_(&c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dtzrzf_(&c__2, &c__2, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dtzrzf_(&c__2, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("DTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of DERRTZ */

} /* derrtz_ */
Beispiel #2
0
/* Subroutine */ int dgelsx_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
	info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    This routine is deprecated and has been replaced by routine DGELSY.   

    DGELSX computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize || A * X - B ||   
    using a complete orthogonal factorization of A.  A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The routine first computes a QR factorization with column pivoting:   
        A * P = Q * [ R11 R12 ]   
                    [  0  R22 ]   
    with R11 defined as the largest leading submatrix whose estimated   
    condition number is less than 1/RCOND.  The order of R11, RANK,   
    is the effective rank of A.   

    Then, R22 is considered to be negligible, and R12 is annihilated   
    by orthogonal transformations from the right, arriving at the   
    complete orthogonal factorization:   
       A * P = Q * [ T11 0 ] * Z   
                   [  0  0 ]   
    The minimum-norm solution is then   
       X = P * Z' [ inv(T11)*Q1'*B ]   
                  [        0       ]   
    where Q1 consists of the first RANK columns of Q.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of   
            columns of matrices B and X. NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been overwritten by details of its   
            complete orthogonal factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, the N-by-NRHS solution matrix X.   
            If m >= n and RANK = n, the residual sum-of-squares for   
            the solution in the i-th column is given by the sum of   
            squares of elements N+1:M in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,M,N).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is an   
            initial column, otherwise it is a free column.  Before   
            the QR factorization of A, all initial columns are   
            permuted to the leading positions; only the remaining   
            free columns are moved as a result of column pivoting   
            during the factorization.   
            On exit, if JPVT(i) = k, then the i-th column of A*P   
            was the k-th column of A.   

    RCOND   (input) DOUBLE PRECISION   
            RCOND is used to determine the effective rank of A, which   
            is defined as the order of the largest leading triangular   
            submatrix R11 in the QR factorization with pivoting of A,   
            whose estimated condition number < 1/RCOND.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the order of the submatrix   
            R11.  This is the same as the order of the submatrix T11   
            in the complete orthogonal factorization of A.   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__0 = 0;
    static doublereal c_b13 = 0.;
    static integer c__2 = 2;
    static integer c__1 = 1;
    static doublereal c_b36 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1;
    /* Local variables */
    static doublereal anrm, bnrm, smin, smax;
    static integer i__, j, k, iascl, ibscl, ismin, ismax;
    static doublereal c1, c2;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaic1_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *);
    static doublereal s1, s2, t1, t2;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), dlabad_(
	    doublereal *, doublereal *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer mn;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dgeqpf_(integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
	    integer *), dlaset_(char *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), xerbla_(char *, 
	    integer *);
    static doublereal bignum;
    extern /* Subroutine */ int dlatzm_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *);
    static doublereal sminpr, smaxpr, smlnum;
    extern /* Subroutine */ int dtzrqf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --jpvt;
    --work;

    /* Function Body */
    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELSX", &i__1);
	return 0;
    }

/*     Quick return if possible   

   Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S") / dlamch_("P");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max elements outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
	*rank = 0;
	goto L100;
    }

    bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A:   
          A * P = Q * R */

    dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);

/*     workspace 3*N. Details of Householder rotations stored   
       in WORK(1:MN).   

       Determine RANK using incremental condition estimation */

    work[ismin] = 1.;
    work[ismax] = 1.;
    smax = (d__1 = a_ref(1, 1), abs(d__1));
    smin = smax;
    if ((d__1 = a_ref(1, 1), abs(d__1)) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
	goto L100;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	dlaic1_(&c__2, rank, &work[ismin], &smin, &a_ref(1, i__), &a_ref(i__, 
		i__), &sminpr, &s1, &c1);
	dlaic1_(&c__1, rank, &work[ismax], &smax, &a_ref(1, i__), &a_ref(i__, 
		i__), &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
	    }
	    work[ismin + *rank] = c1;
	    work[ismax + *rank] = c2;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     Logically partition R = [ R11 R12 ]   
                               [  0  R22 ]   
       where R11 = R(1:RANK,1:RANK)   

       [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
    }

/*     Details of Householder rotations stored in WORK(MN+1:2*MN)   

       B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
	    b[b_offset], ldb, &work[(mn << 1) + 1], info);

/*     workspace NRHS   

       B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
	    a[a_offset], lda, &b[b_offset], ldb);

    i__1 = *n;
    for (i__ = *rank + 1; i__ <= i__1; ++i__) {
	i__2 = *nrhs;
	for (j = 1; j <= i__2; ++j) {
	    b_ref(i__, j) = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *rank;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *n - *rank + 1;
	    dlatzm_("Left", &i__2, nrhs, &a_ref(i__, *rank + 1), lda, &work[
		    mn + i__], &b_ref(i__, 1), &b_ref(*rank + 1, 1), ldb, &
		    work[(mn << 1) + 1]);
/* L50: */
	}
    }

/*     workspace NRHS   

       B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[(mn << 1) + i__] = 1.;
/* L60: */
	}
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[(mn << 1) + i__] == 1.) {
		if (jpvt[i__] != i__) {
		    k = i__;
		    t1 = b_ref(k, j);
		    t2 = b_ref(jpvt[k], j);
L70:
		    b_ref(jpvt[k], j) = t1;
		    work[(mn << 1) + k] = 0.;
		    t1 = t2;
		    k = jpvt[k];
		    t2 = b_ref(jpvt[k], j);
		    if (jpvt[k] != i__) {
			goto L70;
		    }
		    b_ref(i__, j) = t1;
		    work[(mn << 1) + k] = 0.;
		}
	    }
/* L80: */
	}
/* L90: */
    }

/*     Undo scaling */

    if (iascl == 1) {
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    } else if (iascl == 2) {
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    }
    if (ibscl == 1) {
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L100:

    return 0;

/*     End of DGELSX */

} /* dgelsx_ */
Beispiel #3
0
/* Subroutine */ int dchktz_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, doublereal *thresh, logical *tsterr, 
	doublereal *a, doublereal *copya, doublereal *s, doublereal *copys, 
	doublereal *tau, doublereal *work, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, im, in, lda;
    doublereal eps;
    integer mode, info;
    char path[3];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4], imode;
    extern doublereal dqrt12_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    integer mnmin;
    extern doublereal drzt01_(integer *, integer *, doublereal *, doublereal *
, integer *, doublereal *, doublereal *, integer *), drzt02_(
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *), dtzt01_(integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
	     integer *), dtzt02_(integer *, integer *, doublereal *, integer *
, doublereal *, doublereal *, integer *);
    integer nerrs, lwork;
    extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *), dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *), alasum_(char *, integer *, 
	    integer *, integer *, integer *), dlatms_(integer *, 
	    integer *, char *, integer *, char *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, char *, 
	    doublereal *, integer *, doublereal *, integer *), derrtz_(char *, integer *), dtzrqf_(integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *);
    doublereal result[6];
    extern /* Subroutine */ int dtzrzf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___21 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKTZ tests DTZRQF and STZRZF. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) */
/*          where MMAX is the maximum value of M in MVAL and NMAX is the */
/*          maximum value of N in NVAL. */

/*  COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) */

/*  S       (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  COPYS   (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  TAU     (workspace) DOUBLE PRECISION array, dimension (MMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (MMAX*NMAX + 4*NMAX + MMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	derrtz_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL for which M .LE. N. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = n * n + (m << 2) + n, i__3 = max(i__3,i__4), 
		    i__4 = m * n + (mnmin << 1) + (n << 2);
	    lwork = max(i__3,i__4);

	    if (m <= n) {
		for (imode = 1; imode <= 3; ++imode) {
		    if (! dotype[imode]) {
			goto L50;
		    }

/*                 Do for each type of singular value distribution. */
/*                    0:  zero matrix */
/*                    1:  one small singular value */
/*                    2:  exponential distribution */

		    mode = imode - 1;

/*                 Test DTZRQF */

/*                 Generate test matrix of size m by n using */
/*                 singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			dlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L20: */
			}
		    } else {
			d__1 = 1. / eps;
			dlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			dgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			dlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    dlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call DTZRQF to reduce the upper trapezoidal matrix to */
/*                 upper triangular form. */

		    s_copy(srnamc_1.srnamt, "DTZRQF", (ftnlen)32, (ftnlen)6);
		    dtzrqf_(&m, &n, &a[1], &lda, &tau[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = dqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork);

/*                 Compute norm( A - R*Q ) */

		    result[1] = dtzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[2] = dtzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
, &lwork);

/*                 Test DTZRZF */

/*                 Generate test matrix of size m by n using */
/*                 singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			dlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L30: */
			}
		    } else {
			d__1 = 1. / eps;
			dlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			dgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			dlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    dlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call DTZRZF to reduce the upper trapezoidal matrix to */
/*                 upper triangular form. */

		    s_copy(srnamc_1.srnamt, "DTZRZF", (ftnlen)32, (ftnlen)6);
		    dtzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, &
			    info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[3] = dqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork);

/*                 Compute norm( A - R*Q ) */

		    result[4] = drzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[5] = drzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
, &lwork);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___21.ciunit = *nout;
			    s_wsfe(&io___21);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L40: */
		    }
		    nrun += 6;
L50:
		    ;
		}
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End if DCHKTZ */

    return 0;
} /* dchktz_ */