Beispiel #1
0
int main (){
  unsigned int i;
  if(init_hardware("hardware.ini") == 0) {
    fprintf(stderr, "Error in hardware initialization\n");
    exit(EXIT_FAILURE);
  }
    
  /* Interrupt handlers */
  for(i=0; i<16; i++)
    IRQVECTOR[i] = empty_it;

  /* Allows all IT */
  _mask(1);
  chk_hda();
    
  mbrvol(4,2,1);
  mbrvol(6,5,4);
  dvol();

  return 1;
}
void FE2FluidMaterial :: giveVolumetricDeviatoricStiffness(FloatArray &answer, MatResponseMode mode, GaussPoint *gp, TimeStep *tStep)
{
    FE2FluidMaterialStatus *ms = static_cast<FE2FluidMaterialStatus*> (this->giveStatus(gp));
    ms->computeTangents(tStep);
    if ( mode == TangentStiffness ) {
        answer = ms->giveVolumetricDeviatoricTangent();
#ifdef DEBUG_TANGENT
        // Numerical ATS for debugging
        FloatArray tempStrain(3); tempStrain.zero();
        FloatArray sig, strain;
        double epspvol, epspvol11, epspvol22, epspvol12, pressure = 0.0;
        double h = 1.0; // Linear problem, size of this doesn't matter.

        computeDeviatoricStressVector (sig, epspvol, gp, tempStrain, pressure, tStep);
        strain = tempStrain; strain.at(1) += h;
        computeDeviatoricStressVector(sig, epspvol11, gp, strain, pressure, tStep);
        strain = tempStrain; strain.at(2) += h;
        computeDeviatoricStressVector(sig, epspvol22, gp, strain, pressure, tStep);
        strain = tempStrain; strain.at(3) += h;
        computeDeviatoricStressVector(sig, epspvol12, gp, strain, pressure, tStep);

        FloatArray dvol(3);
        dvol.at(1) = (epspvol11 - epspvol)/h;
        dvol.at(2) = (epspvol22 - epspvol)/h;
        dvol.at(3) = (epspvol12 - epspvol)/h;
        dvol.at(1) += 1.0;
        dvol.at(2) += 1.0;

        printf("Analytical volumetric deviatoric tangent = "); answer.printYourself();
        printf("Numerical volumetric deviatoric tangent = "); dvol.printYourself();
        dvol.subtract(answer);
        double norm = dvol.computeNorm();
        if (norm > answer.computeNorm()*DEBUG_ERR && norm > 0.0) {
            OOFEM_ERROR("Error in volumetric deviatoric tangent");
        }
#endif
    } else {
        OOFEM_ERROR("Mode not implemented");
    }
}
Beispiel #3
0
void FE2FluidMaterial :: giveStiffnessMatrices(FloatMatrix &dsdd, FloatArray &dsdp, FloatArray &dedd, double &dedp,
                                               MatResponseMode mode, GaussPoint *gp, TimeStep *tStep)
{
    FE2FluidMaterialStatus *ms = static_cast< FE2FluidMaterialStatus * >( this->giveStatus(gp) );
    ms->computeTangents(tStep);
    if ( mode == TangentStiffness ) {
        dsdd = ms->giveDeviatoricTangent();
        dsdp = ms->giveDeviatoricPressureTangent();
        dedd = ms->giveVolumetricDeviatoricTangent();
        dedp = ms->giveVolumetricPressureTangent();
#if 0
        // Numerical ATS for debugging
        FloatMatrix numericalATS(6, 6);
        FloatArray dsig;
        FloatArray tempStrain(6);

        tempStrain.zero();
        FloatArray sig, strain, sigPert;
        double epspvol;
        computeDeviatoricStressVector(sig, epspvol, gp, tempStrain, 0., tStep);
        double h = 0.001; // Linear problem, size of this doesn't matter.
        for ( int k = 1; k <= 6; ++k ) {
            strain = tempStrain;
            strain.at(k) += h;
            double tmp = strain.at(1) + strain.at(2) + strain.at(3);
            strain.at(1) -= tmp/3.0;
            strain.at(2) -= tmp/3.0;
            strain.at(3) -= tmp/3.0;
            strain.printYourself();
            computeDeviatoricStressVector(sigPert, epspvol, gp, strain, 0., tStep);
            sigPert.printYourself();
            dsig.beDifferenceOf(sigPert, sig);
            numericalATS.setColumn(dsig, k);
        }
        numericalATS.times(1. / h);

        printf("Analytical deviatoric tangent = ");
        dsdd.printYourself();
        printf("Numerical deviatoric tangent = ");
        numericalATS.printYourself();
        numericalATS.subtract(dsdd);
        double norm = numericalATS.computeFrobeniusNorm();
        if ( norm > dsdd.computeFrobeniusNorm() * DEBUG_ERR && norm > 0.0 ) {
            OOFEM_ERROR("Error in deviatoric tangent");
        }
#endif
#if 0
        // Numerical ATS for debugging
        FloatArray strain(3);
        strain.zero();
        FloatArray sig, sigh;
        double epspvol, pressure = 0.0;
        double h = 1.00; // Linear problem, size of this doesn't matter.
        computeDeviatoricStressVector(sig, epspvol, gp, strain, pressure, tStep);
        computeDeviatoricStressVector(sigh, epspvol, gp, strain, pressure + h, tStep);

        FloatArray dsigh;
        dsigh.beDifferenceOf(sigh, sig);
        dsigh.times(1 / h);

        printf("Analytical deviatoric pressure tangent = ");
        dsdp.printYourself();
        printf("Numerical deviatoric pressure tangent = ");
        dsigh.printYourself();
        dsigh.subtract(dsdp);
        double norm = dsigh.computeNorm();
        if ( norm > dsdp.computeNorm() * DEBUG_ERR && norm > 0.0 ) {
            OOFEM_ERROR("Error in deviatoric pressure tangent");
        }
#endif
#if 0
        // Numerical ATS for debugging
        FloatArray tempStrain(3);
        tempStrain.zero();
        FloatArray sig, strain;
        double epspvol, epspvol11, epspvol22, epspvol12, pressure = 0.0;
        double h = 1.0; // Linear problem, size of this doesn't matter.

        computeDeviatoricStressVector(sig, epspvol, gp, tempStrain, pressure, tStep);
        strain = tempStrain;
        strain.at(1) += h;
        computeDeviatoricStressVector(sig, epspvol11, gp, strain, pressure, tStep);
        strain = tempStrain;
        strain.at(2) += h;
        computeDeviatoricStressVector(sig, epspvol22, gp, strain, pressure, tStep);
        strain = tempStrain;
        strain.at(3) += h;
        computeDeviatoricStressVector(sig, epspvol12, gp, strain, pressure, tStep);

        FloatArray dvol(3);
        dvol.at(1) = ( epspvol11 - epspvol ) / h;
        dvol.at(2) = ( epspvol22 - epspvol ) / h;
        dvol.at(3) = ( epspvol12 - epspvol ) / h;
        dvol.at(1) += 1.0;
        dvol.at(2) += 1.0;

        printf("Analytical volumetric deviatoric tangent = ");
        dedd.printYourself();
        printf("Numerical volumetric deviatoric tangent = ");
        dvol.printYourself();
        dvol.subtract(dedd);
        double norm = dvol.computeNorm();
        if ( norm > dedd.computeNorm() * DEBUG_ERR && norm > 0.0 ) {
            OOFEM_ERROR("Error in volumetric deviatoric tangent");
        }
#endif
#if 0
        // Numerical ATS for debugging
        FloatArray strain(3);
        strain.zero();
        FloatArray sig;
        double epspvol, epspvolh, pressure = 0.0;
        double h = 1.0; // Linear problem, size of this doesn't matter.

        computeDeviatoricStressVector(sig, epspvol, gp, strain, pressure, tStep);
        computeDeviatoricStressVector(sig, epspvolh, gp, strain, pressure + h, tStep);

        double dvol = -( epspvolh - epspvol ) / h;

        printf("Analytical volumetric pressure tangent = %e\n", dedp);
        printf("Numerical volumetric pressure tangent = %e\n", dvol);

        double norm = fabs(dvol - dedp);
        if ( norm > fabs(dedp) * DEBUG_ERR && norm > 0.0 ) {
            OOFEM_ERROR("Error in volumetric pressure tangent");
        }
#endif
    } else {
        OOFEM_ERROR("Mode not implemented");
    }
}