Beispiel #1
0
int32_t minio_init_encoder (int technique, int k, int m,
                            unsigned char **encode_matrix,
                            unsigned char **encode_tbls)
{
        size_t encode_matrix_size;
        size_t encode_tbls_size;
        unsigned char *tmp_matrix;
        unsigned char *tmp_tbls;

        tmp_matrix = (unsigned char *) malloc (k * (k + m));
        tmp_tbls = (unsigned char *) malloc (k * (k + m) * 32);

	if (technique == 0) {
                /*
                  Commonly used method for choosing coefficients in erasure
                  encoding but does not guarantee invertable for every sub
                  matrix.  For large k it is possible to find cases where the
                  decode matrix chosen from sources and parity not in erasure
                  are not invertable. Users may want to adjust for k > 5.
                  -- Intel
                */
		gf_gen_rs_matrix (tmp_matrix, k + m, k);
	} else if (technique == 1) {
		gf_gen_cauchy1_matrix (tmp_matrix, k + m, k);
        }

	ec_init_tables(k, m, &tmp_matrix[k * k], tmp_tbls);

        *encode_matrix = tmp_matrix;
        *encode_tbls = tmp_tbls;

        return 0;
}
JNIEXPORT jint JNICALL Java_org_apache_hadoop_raid_ReedSolomonDecoder_isaDeInit
  (JNIEnv *env, jclass myclass, jint stripeSize, jint paritySize, jintArray matrix){

  
        Codec_Parameter_de * pCodecParameter = NULL;
        jint * jmatrix = NULL;

        pthread_once(&key_once, make_key);

        if(NULL == (pCodecParameter = (Codec_Parameter_de *)pthread_getspecific(keyDe))){
            pCodecParameter = (Codec_Parameter_de *)malloc(sizeof(Codec_Parameter_de));
            if(!pCodecParameter){
                printf("Out of memory in ISA decoder init\n");
                return -1;
            }

            if (stripeSize > KMAX || paritySize > (MMAX - KMAX)){
                printf("max stripe size is %d and max parity size is %d\n", KMAX, MMAX - KMAX);
                return -2;
            }

            int totalSize = paritySize + stripeSize;
            pCodecParameter->paritySize = paritySize;
            pCodecParameter->stripeSize = stripeSize;
            pCodecParameter->data = (u8 **)malloc(sizeof(u8 *) * (stripeSize + paritySize));
            pCodecParameter->code = (u8 **)malloc(sizeof(u8 *) * (paritySize));
            pCodecParameter->datajbuf = (jobject *)malloc(sizeof(jobject) * (stripeSize + paritySize));
            pCodecParameter->erasured = (int *)malloc(sizeof(int) * (stripeSize + paritySize));


//            gf_mk_field();
            //gf_gen_rs_matrix(pCodecParameter->a, totalSize, stripeSize);
            int i, j;
            jmatrix = env->GetIntArrayElements(matrix, false);
            memset(pCodecParameter->a, 0, stripeSize*totalSize);
            for(i=0; i<stripeSize; i++){
                 pCodecParameter->a[stripeSize*i + i] = 1;
            }
            for(i=stripeSize; i<totalSize; i++){
                for(j=0; j<stripeSize; j++){
                   pCodecParameter->a[stripeSize*i+j] = jmatrix[stripeSize*(i-stripeSize)+j];
                   //printf(".....=%d\n",pCodecParameter->a[stripeSize*i+j]);
                }
            }
            
            ec_init_tables(stripeSize, paritySize, &(pCodecParameter->a)[stripeSize * stripeSize], pCodecParameter->g_tbls);
            (void) pthread_setspecific(keyDe, pCodecParameter);
        }
        return 0;
 }
    void run_benchmark()
    {
        gauge::config_set cs = get_current_configuration();
        uint32_t size = cs.get_value<uint32_t>("size");
        uint32_t vectors = cs.get_value<uint32_t>("vectors");

        RUN
        {
            // Make parity vects
            ec_init_tables(vectors, vectors, &a[vectors * vectors], g_tbls);

            for (uint32_t i = 0; i < vectors; ++i)
            {
                gf_vect_dot_prod(size, vectors, g_tbls,
                                 m_symbols_two.data(), m_symbols_one[i]);
            }
        }
    }
int main(int argc, char *argv[])
{
	int re = 0;
	int i, j, p, rtest, m, k;
	int nerrs, nsrcerrs;
	void *buf;
	unsigned int decode_index[MMAX];
	unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
	unsigned char *encode_matrix, *decode_matrix, *invert_matrix, *g_tbls;
	unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
	unsigned char *recov[TEST_SOURCES];

	int rows, align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *temp_ubuffs[TEST_SOURCES];

	printf("erasure_code_sse_test: %dx%d ", TEST_SOURCES, TEST_LEN);
	srand(TEST_SEED);

	// Allocate the arrays
	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	for (i = 0; i < TEST_SOURCES; i++) {
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		temp_buffs[i] = buf;
	}

	// Test erasure code by encode and recovery

	encode_matrix = malloc(MMAX * KMAX);
	decode_matrix = malloc(MMAX * KMAX);
	invert_matrix = malloc(MMAX * KMAX);
	g_tbls = malloc(KMAX * TEST_SOURCES * 32);
	if (encode_matrix == NULL || decode_matrix == NULL
	    || invert_matrix == NULL || g_tbls == NULL) {
		printf("Test failure! Error with malloc\n");
		return -1;
	}
	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;

	// Make random data
	for (i = 0; i < k; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	// Generate encode matrix encode_matrix
	// The matrix generated by gf_gen_rs_matrix
	// is not always invertable.
	gf_gen_rs_matrix(encode_matrix, m, k);

	// Generate g_tbls from encode matrix encode_matrix
	ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);

	// Perform matrix dot_prod for EC encoding
	// using g_tbls from encode matrix encode_matrix
	ec_encode_data_sse(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

	// Generate decode matrix
	re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
				  invert_matrix, decode_index, src_err_list, src_in_err,
				  nerrs, nsrcerrs, k, m);
	if (re != 0) {
		printf("Fail to gf_gen_decode_matrix\n");
		return -1;
	}
	// Pack recovery array as list of valid sources
	// Its order must be the same as the order
	// to generate matrix b in gf_gen_decode_matrix
	for (i = 0; i < k; i++) {
		recov[i] = buffs[decode_index[i]];
	}

	// Recover data
	ec_init_tables(k, nerrs, decode_matrix, g_tbls);
	ec_encode_data_sse(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
	for (i = 0; i < nerrs; i++) {

		if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf(" - erase list = ");
			for (j = 0; j < nerrs; j++)
				printf(" %d", src_err_list[j]);
			printf(" - Index = ");
			for (p = 0; p < k; p++)
				printf(" %d", decode_index[p]);
			printf("\nencode_matrix:\n");
			dump_u8xu8((u8 *) encode_matrix, m, k);
			printf("inv b:\n");
			dump_u8xu8((u8 *) invert_matrix, k, k);
			printf("\ndecode_matrix:\n");
			dump_u8xu8((u8 *) decode_matrix, m, k);
			printf("recov %d:", src_err_list[i]);
			dump(temp_buffs[k + i], 25);
			printf("orig   :");
			dump(buffs[src_err_list[i]], 25);
			return -1;
		}
	}

	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;

	// Make random data
	for (i = 0; i < k; i++)
		for (j = 0; j < TEST_LEN; j++)
			buffs[i][j] = rand();

	// The matrix generated by gf_gen_cauchy1_matrix
	// is always invertable.
	gf_gen_cauchy1_matrix(encode_matrix, m, k);

	// Generate g_tbls from encode matrix encode_matrix
	ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);

	// Perform matrix dot_prod for EC encoding
	// using g_tbls from encode matrix encode_matrix
	ec_encode_data_sse(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

	// Generate decode matrix
	re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
				  invert_matrix, decode_index, src_err_list, src_in_err,
				  nerrs, nsrcerrs, k, m);
	if (re != 0) {
		printf("Fail to gf_gen_decode_matrix\n");
		return -1;
	}
	// Pack recovery array as list of valid sources
	// Its order must be the same as the order
	// to generate matrix b in gf_gen_decode_matrix
	for (i = 0; i < k; i++) {
		recov[i] = buffs[decode_index[i]];
	}

	// Recover data
	ec_init_tables(k, nerrs, decode_matrix, g_tbls);
	ec_encode_data_sse(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
	for (i = 0; i < nerrs; i++) {

		if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf(" - erase list = ");
			for (j = 0; j < nerrs; j++)
				printf(" %d", src_err_list[j]);
			printf(" - Index = ");
			for (p = 0; p < k; p++)
				printf(" %d", decode_index[p]);
			printf("\nencode_matrix:\n");
			dump_u8xu8((u8 *) encode_matrix, m, k);
			printf("inv b:\n");
			dump_u8xu8((u8 *) invert_matrix, k, k);
			printf("\ndecode_matrix:\n");
			dump_u8xu8((u8 *) decode_matrix, m, k);
			printf("recov %d:", src_err_list[i]);
			dump(temp_buffs[k + i], 25);
			printf("orig   :");
			dump(buffs[src_err_list[i]], 25);
			return -1;
		}
	}

	// Do more random tests
	for (rtest = 0; rtest < RANDOMS; rtest++) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		// Make random data
		for (i = 0; i < k; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data_sse(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = buffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data_sse(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((u8 *) encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((u8 *) invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((u8 *) decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(buffs, m, 25);
				printf("orig   :");
				dump(buffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_buffs[k + i], 25);
				return -1;
			}
		}
		putchar('.');
	}

	// Run tests at end of buffer for Electric Fence
	k = 16;
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	if (k > KMAX)
		return -1;

	for (rows = 1; rows <= 16; rows++) {
		m = k + rows;
		if (m > MMAX)
			return -1;

		// Make random data
		for (i = 0; i < k; i++)
			for (j = 0; j < TEST_LEN; j++)
				buffs[i][j] = rand();

		for (size = EFENCE_TEST_MIN_SIZE; size <= TEST_SIZE; size += align) {
			for (i = 0; i < m; i++) {	// Line up TEST_SIZE from end
				efence_buffs[i] = buffs[i] + TEST_LEN - size;
			}

			// The matrix generated by gf_gen_cauchy1_matrix
			// is always invertable.
			gf_gen_cauchy1_matrix(encode_matrix, m, k);

			// Make parity vects
			// Generate g_tbls from encode matrix a
			ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
			// Perform matrix dot_prod for EC encoding
			// using g_tbls from encode matrix a
			ec_encode_data_sse(size, k, m - k, g_tbls, efence_buffs,
					   &efence_buffs[k]);

			// Random errors
			memset(src_in_err, 0, TEST_SOURCES);
			gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

			// Generate decode matrix
			re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
						  invert_matrix, decode_index, src_err_list,
						  src_in_err, nerrs, nsrcerrs, k, m);
			if (re != 0) {
				printf("Fail to gf_gen_decode_matrix\n");
				return -1;
			}
			// Pack recovery array as list of valid sources
			// Its order must be the same as the order
			// to generate matrix b in gf_gen_decode_matrix
			for (i = 0; i < k; i++) {
				recov[i] = efence_buffs[decode_index[i]];
			}

			// Recover data
			ec_init_tables(k, nerrs, decode_matrix, g_tbls);
			ec_encode_data_sse(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

			for (i = 0; i < nerrs; i++) {

				if (0 !=
				    memcmp(temp_buffs[k + i], efence_buffs[src_err_list[i]],
					   size)) {
					printf("Efence: Fail error recovery (%d, %d, %d)\n", m,
					       k, nerrs);

					printf("size = %d\n", size);

					printf("Test erase list = ");
					for (j = 0; j < nerrs; j++)
						printf(" %d", src_err_list[j]);
					printf(" - Index = ");
					for (p = 0; p < k; p++)
						printf(" %d", decode_index[p]);
					printf("\nencode_matrix:\n");
					dump_u8xu8((u8 *) encode_matrix, m, k);
					printf("inv b:\n");
					dump_u8xu8((u8 *) invert_matrix, k, k);
					printf("\ndecode_matrix:\n");
					dump_u8xu8((u8 *) decode_matrix, m, k);

					printf("recov %d:", src_err_list[i]);
					dump(temp_buffs[k + i], align);
					printf("orig   :");
					dump(efence_buffs[src_err_list[i]], align);
					return -1;
				}
			}
		}

	}

	// Test rand ptr alignment if available

	for (rtest = 0; rtest < RANDOMS; rtest++) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for (i = 0; i < m; i++) {
			memset(buffs[i], 0, TEST_LEN);	// zero pad to check write-over
			memset(temp_buffs[i], 0, TEST_LEN);	// zero pad to check write-over
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
			temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
		}

		for (i = 0; i < k; i++)
			for (j = 0; j < size; j++)
				ubuffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data_sse(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);

		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = ubuffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data_sse(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_ubuffs[k + i], ubuffs[src_err_list[i]], size)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((unsigned char *)encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((unsigned char *)invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((unsigned char *)decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(ubuffs, m, 25);
				printf("orig   :");
				dump(ubuffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_ubuffs[k + i], 25);
				return -1;
			}
		}

		// Confirm that padding around dests is unchanged
		memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B);	// Make reference zero buff

		for (i = 0; i < m; i++) {

			offset = ubuffs[i] - buffs[i];

			if (memcmp(buffs[i], temp_buffs[0], offset)) {
				printf("Fail rand ualign encode pad start\n");
				return -1;
			}
			if (memcmp
			    (buffs[i] + offset + size, temp_buffs[0],
			     PTR_ALIGN_CHK_B - offset)) {
				printf("Fail rand ualign encode pad end\n");
				return -1;
			}
		}

		for (i = 0; i < nerrs; i++) {

			offset = temp_ubuffs[k + i] - temp_buffs[k + i];
			if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) {
				printf("Fail rand ualign decode pad start\n");
				return -1;
			}
			if (memcmp
			    (temp_buffs[k + i] + offset + size, temp_buffs[0],
			     PTR_ALIGN_CHK_B - offset)) {
				printf("Fail rand ualign decode pad end\n");
				return -1;
			}
		}

		putchar('.');
	}

	// Test size alignment

	align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16;

	for (size = TEST_LEN; size > 0; size -= align) {
		while ((m = (rand() % MMAX)) < 2) ;
		while ((k = (rand() % KMAX)) >= m || k < 1) ;

		if (m > MMAX || k > KMAX)
			continue;

		for (i = 0; i < k; i++)
			for (j = 0; j < size; j++)
				buffs[i][j] = rand();

		// The matrix generated by gf_gen_cauchy1_matrix
		// is always invertable.
		gf_gen_cauchy1_matrix(encode_matrix, m, k);

		// Make parity vects
		// Generate g_tbls from encode matrix a
		ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
		// Perform matrix dot_prod for EC encoding
		// using g_tbls from encode matrix a
		ec_encode_data_sse(size, k, m - k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
		// Generate decode matrix
		re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
					  invert_matrix, decode_index, src_err_list,
					  src_in_err, nerrs, nsrcerrs, k, m);
		if (re != 0) {
			printf("Fail to gf_gen_decode_matrix\n");
			return -1;
		}
		// Pack recovery array as list of valid sources
		// Its order must be the same as the order
		// to generate matrix b in gf_gen_decode_matrix
		for (i = 0; i < k; i++) {
			recov[i] = buffs[decode_index[i]];
		}

		// Recover data
		ec_init_tables(k, nerrs, decode_matrix, g_tbls);
		ec_encode_data_sse(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for (i = 0; i < nerrs; i++) {

			if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], size)) {
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (j = 0; j < nerrs; j++)
					printf(" %d", src_err_list[j]);
				printf(" - Index = ");
				for (p = 0; p < k; p++)
					printf(" %d", decode_index[p]);
				printf("\nencode_matrix:\n");
				dump_u8xu8((unsigned char *)encode_matrix, m, k);
				printf("inv b:\n");
				dump_u8xu8((unsigned char *)invert_matrix, k, k);
				printf("\ndecode_matrix:\n");
				dump_u8xu8((unsigned char *)decode_matrix, m, k);
				printf("orig data:\n");
				dump_matrix(buffs, m, 25);
				printf("orig   :");
				dump(buffs[src_err_list[i]], 25);
				printf("recov %d:", src_err_list[i]);
				dump(temp_buffs[k + i], 25);
				return -1;
			}
		}
	}

	printf("done EC tests: Pass\n");
	return 0;
}
Beispiel #5
0
int main(int argc, char *argv[])
{
        int i, j, rtest, m, k, nerrs, r;
        void *buf;
        u8 *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
        u8 a[MMAX * KMAX], b[MMAX * KMAX], c[MMAX * KMAX], d[MMAX * KMAX];
        u8 g_tbls[KMAX * TEST_SOURCES * 32], src_in_err[TEST_SOURCES];
        u8 src_err_list[TEST_SOURCES], *recov[TEST_SOURCES];
        struct perf start, stop;

        // Pick test parameters
        m = 14;
        k = 10;
        nerrs = 4;
        const u8 err_list[] = {2, 4, 5, 7};

        printf("erasure_code_base_perf: %dx%d %d\n", m, TEST_LEN(m), nerrs);

        if (m > MMAX || k > KMAX || nerrs > (m - k)){
                printf(" Input test parameter error\n");
                return -1;
        }

        memcpy(src_err_list, err_list, nerrs);
        memset(src_in_err, 0, TEST_SOURCES);
        for (i = 0; i < nerrs; i++)
                src_in_err[src_err_list[i]] = 1;

        // Allocate the arrays
        for (i = 0; i < m; i++) {
                if (posix_memalign(&buf, 64, TEST_LEN(m))) {
                        printf("alloc error: Fail\n");
                        return -1;
                }
                buffs[i] = buf;
        }

        for (i = 0; i < (m - k); i++) {
                if (posix_memalign(&buf, 64, TEST_LEN(m))) {
                        printf("alloc error: Fail\n");
                        return -1;
                }
                temp_buffs[i] = buf;
        }

        // Make random data
        for (i = 0; i < k; i++)
                for (j = 0; j < TEST_LEN(m); j++)
                        buffs[i][j] = rand();

        gf_gen_rs_matrix(a, m, k);
        ec_init_tables(k, m - k, &a[k * k], g_tbls);
        ec_encode_data_base(TEST_LEN(m), k, m - k, g_tbls, buffs, &buffs[k]);

        // Start encode test
        perf_start(&start);
        for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
                // Make parity vects
                ec_init_tables(k, m - k, &a[k * k], g_tbls);
                ec_encode_data_base(TEST_LEN(m), k, m - k, g_tbls, buffs, &buffs[k]);
        }
        perf_stop(&stop);
        printf("erasure_code_base_encode" TEST_TYPE_STR ": ");
        perf_print(stop, start, (long long)(TEST_LEN(m)) * (m) * rtest);

        // Start decode test
        perf_start(&start);
        for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
                // Construct b by removing error rows
                for (i = 0, r = 0; i < k; i++, r++) {
                        while (src_in_err[r])
                                r++;
                        recov[i] = buffs[r];
                        for (j = 0; j < k; j++)
                                b[k * i + j] = a[k * r + j];
                }

                if (gf_invert_matrix(b, d, k) < 0) {
                        printf("BAD MATRIX\n");
                        return -1;
                }

                for (i = 0; i < nerrs; i++)
                        for (j = 0; j < k; j++)
                                c[k * i + j] = d[k * src_err_list[i] + j];

                // Recover data
                ec_init_tables(k, nerrs, c, g_tbls);
                ec_encode_data_base(TEST_LEN(m), k, nerrs, g_tbls, recov, temp_buffs);
        }
        perf_stop(&stop);

        for (i = 0; i < nerrs; i++) {
                if (0 != memcmp(temp_buffs[i], buffs[src_err_list[i]], TEST_LEN(m))) {
                        printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
                        return -1;
                }
        }

        printf("erasure_code_base_decode" TEST_TYPE_STR ": ");
        perf_print(stop, start, (long long)(TEST_LEN(m)) * (k + nerrs) * rtest);

        printf("done all: Pass\n");
        return 0;
}
int main(int argc, char *argv[])
{
    int i, j, rtest, m, k, nerrs, r, err;
    void *buf;
    u8 *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES];
    u8 a[MMAX*KMAX], b[MMAX*KMAX], c[MMAX*KMAX], d[MMAX*KMAX];
    u8 g_tbls[KMAX*TEST_SOURCES*32], src_in_err[TEST_SOURCES];
    u8 src_err_list[TEST_SOURCES], *recov[TEST_SOURCES];
    struct perf start, stop;

    m = 32;
    k = 28;
    printf("erasure_code_sse_perf: %dx%d ",
           m, (TEST_LEN(m)));


    // Allocate the arrays
    for(i=0; i<TEST_SOURCES; i++) {
        if (posix_memalign(&buf, 64, TEST_LEN(m))) {
            printf("alloc error: Fail");
            return -1;
        }
        buffs[i] = buf;
    }

    for (i=0; i<TEST_SOURCES; i++) {
        if (posix_memalign(&buf, 64, TEST_LEN(m))) {
            printf("alloc error: Fail");
            return -1;
        }
        temp_buffs[i] = buf;
    }

    // Test erasure code by encode and recovery

    // Pick a first test
    if (m > MMAX || k > KMAX)
        return -1;


    // Make random data
    for(i=0; i<k; i++)
        for(j=0; j<(TEST_LEN(m)); j++)
            buffs[i][j] = rand();


    memset(src_in_err, 0, TEST_SOURCES);

    srand(1);
    for (i=0, nerrs=0; i<k && nerrs<m-k; i++) {
        err = 1 & rand();
        src_in_err[i] = err;
        if (err)
            src_err_list[nerrs++] = i;
    }
    if (nerrs == 0) { // should have at least one error
        while ((err = (rand() % KMAX)) >= k) ;
        src_err_list[nerrs++] = err;
        src_in_err[err] = 1;
    }
    printf("Test erase list = ");
    for (i=0; i<nerrs; i++)
        printf(" %d", src_err_list[i]);
    printf("\n");

    perf_start(&start);

    for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
        gf_gen_rs_matrix(a, m, k);

        // Make parity vects
        ec_init_tables(k, m-k, &a[k*k], g_tbls);
        ec_encode_data_sse((TEST_LEN(m)),
                           k, m-k, g_tbls, buffs, &buffs[k]);
    }

    perf_stop(&stop);
    printf("erasure_code_sse_encode" TEST_TYPE_STR ": ");
    perf_print(stop,start,
               (long long)(TEST_LEN(m))*(m)*rtest);

    perf_start(&start);

    for (rtest = 0; rtest < TEST_LOOPS(m); rtest++) {
        // Construct b by removing error rows
        for(i=0, r=0; i<k; i++, r++) {
            while (src_in_err[r])
                r++;
            for(j=0; j<k; j++)
                b[k*i+j] = a[k*r+j];
        }

        if (gf_invert_matrix(b, d, k) < 0) {
            printf("BAD MATRIX\n");
            return -1;
        }

        for(i=0, r=0; i<k; i++, r++) {
            while (src_in_err[r])
                r++;
            recov[i] = buffs[r];
        }

        for(i=0; i<nerrs; i++) {
            for(j=0; j<k; j++) {
                c[k*i+j]=d[k*src_err_list[i]+j];
            }
        }

        // Recover data
        ec_init_tables(k, nerrs, c, g_tbls);
        ec_encode_data_sse((TEST_LEN(m)),
                           k, nerrs, g_tbls, recov, &temp_buffs[k]);

    }

    perf_stop(&stop);
    for(i=0; i<nerrs; i++) {
        if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]],
                        (TEST_LEN(m)))) {
            printf("Fail error recovery (%d, %d, %d) - ",
                   m, k, nerrs);
            printf(" - erase list = ");
            for (j=0; j<nerrs; j++)
                printf(" %d", src_err_list[j]);
            printf("\na:\n");
            dump_u8xu8((u8*)a, m, k);
            printf("inv b:\n");
            dump_u8xu8((u8*)d, k, k);
            printf("orig data:\n");
            dump_matrix(buffs, m, 25);
            printf("orig   :");
            dump(buffs[src_err_list[i]],25);
            printf("recov %d:",src_err_list[i]);
            dump(temp_buffs[k+i], 25);
            return -1;
        }
    }

    printf("erasure_code_sse_decode" TEST_TYPE_STR ": ");
    perf_print(stop,start,
               (long long)(TEST_LEN(m))*(k+nerrs)*rtest);

    printf("done all: Pass\n");
    return 0;
}
JNIEXPORT jint JNICALL Java_org_apache_hadoop_raid_ReedSolomonDecoder_isaDecode
  (JNIEnv *env, jclass myclass, jobjectArray alldata, jintArray erasures, jint blocksize){
      Codec_Parameter_de * pCodecParameter = NULL;
      pthread_once(&key_once, make_key);
      jboolean isCopy;

      int * erasured = NULL;
      int i, j, p, r, k, errorlocation;
      int alldataLen = env->GetArrayLength(alldata);
      int erasureLen = env->GetArrayLength(erasures);
      int src_error_list[erasureLen];
      u8 s;

// Check all the parameters.

      if(NULL == (pCodecParameter = (Codec_Parameter_de *)pthread_getspecific(keyDe))){
          printf("ReedSolomonDecoder DE not initilized!\n");
          return -3;
      }

      if(erasureLen > pCodecParameter->paritySize){
          printf("Too many erasured data!\n");
          return -4;
      }

      if(alldataLen != pCodecParameter->stripeSize + pCodecParameter->paritySize){
          printf("Wrong data and parity data size.\n");
          return -5;
      }

      for(j = 0; j < pCodecParameter->stripeSize + pCodecParameter->paritySize; j++){
          pCodecParameter->erasured[j] = -1;
      }

      int * tmp = (int *)env->GetIntArrayElements(erasures, &isCopy);

      int parityErrors = 0; 


      for(j = 0; j < erasureLen; j++){
          if (tmp[j] >= pCodecParameter->paritySize) {  // errors in parity will not be fixed
              errorlocation = tmp[j] - pCodecParameter->paritySize;
              pCodecParameter->erasured[errorlocation] = 1;
          }
          else if (tmp[j] >= 0){ // put error parity postion
              pCodecParameter->erasured[tmp[j] + pCodecParameter->stripeSize] = 1;
              parityErrors++;
          }

      }
      
      // make the src_error_list in the right order
      for(j = 0, r = 0; j < pCodecParameter->paritySize + pCodecParameter->stripeSize; j++ ) {
          if(pCodecParameter->erasured[j] == 1)    src_error_list[r++] = j ;
      }

      for(j = pCodecParameter->paritySize, i = 0, r = 0; j < pCodecParameter->paritySize + pCodecParameter->stripeSize; j++){
          pCodecParameter->datajbuf[j] = env->GetObjectArrayElement(alldata, j);
          pCodecParameter->data[j] = (u8 *)env->GetDirectBufferAddress(pCodecParameter->datajbuf[j]);
          if(pCodecParameter->erasured[j - pCodecParameter->paritySize] == -1){
               pCodecParameter->recov[r++] = pCodecParameter->data[j];
          }
          else{
               pCodecParameter->code[i++] = pCodecParameter->data[j];
          }
      }
//first parity length elements in alldata are saving parity data 
      for (j = 0; j < pCodecParameter->paritySize ; j++){
          pCodecParameter->datajbuf[j] = env->GetObjectArrayElement(alldata, j);
          pCodecParameter->data[j] = (u8 *)env->GetDirectBufferAddress(pCodecParameter->datajbuf[j]);
          if(pCodecParameter->erasured[j + pCodecParameter->stripeSize] == -1) {
              pCodecParameter->recov[r++] = pCodecParameter->data[j];
          } else {
              pCodecParameter->code[i++] = pCodecParameter->data[j];
          }
      }

      for(i = 0, r = 0; i < pCodecParameter->stripeSize; i++, r++){
          while(pCodecParameter->erasured[r] == 1) r++;
            for(j = 0; j < pCodecParameter->stripeSize; j++){
                 pCodecParameter->b[pCodecParameter->stripeSize * i + j] = 
                            pCodecParameter->a[pCodecParameter->stripeSize * r + j];
            }
      }

      //Construct d, the inverted matrix.

      if(gf_invert_matrix(pCodecParameter->b, pCodecParameter->d, pCodecParameter->stripeSize) < 0){
          printf("BAD MATRIX!\n");
          return -6;
      }
      int srcErrors = erasureLen - parityErrors;

      for(i = 0; i < srcErrors; i++){
          for(j = 0; j < pCodecParameter->stripeSize; j++){

              //store all the erasured line numbers's to the c. 
              pCodecParameter->c[pCodecParameter->stripeSize * i + j] = 
                    pCodecParameter->d[pCodecParameter->stripeSize * src_error_list[i] + j];
          }
      }

      // recover data
      for(i = srcErrors, p = 0; i < erasureLen; i++, p++) {
         for(j = 0; j < pCodecParameter->stripeSize; j++)  {
            pCodecParameter->e[pCodecParameter->stripeSize * p + j] = pCodecParameter->a[pCodecParameter->stripeSize * src_error_list[i] + j];
         }
      }
      
      // e * invert - b
      for(p = 0; p < parityErrors; p++) {
         for(i = 0; i < pCodecParameter->stripeSize; i++) {
            s = 0; 
            for(j = 0; j < pCodecParameter->stripeSize; j++)
              s ^= gf_mul(pCodecParameter->d[j * pCodecParameter->stripeSize + i], pCodecParameter->e[pCodecParameter->stripeSize * p + j]);
            pCodecParameter->c[pCodecParameter->stripeSize * (srcErrors + p) + i] = s;
         }
      }
      ec_init_tables(pCodecParameter->stripeSize, erasureLen, pCodecParameter->c, pCodecParameter->g_tbls);

    // Get all the repaired data into pCodecParameter->data, in the first erasuredLen rows.
      ec_encode_data(blocksize, pCodecParameter->stripeSize, erasureLen, pCodecParameter->g_tbls, 
                        pCodecParameter->recov, pCodecParameter->code);

    // Set the repaired data to alldata. 
      for(j = 0; j < pCodecParameter->stripeSize + pCodecParameter->paritySize ; j++){
          if(pCodecParameter->erasured[j - pCodecParameter->paritySize] != -1){
              env->SetObjectArrayElement(alldata, j, pCodecParameter->datajbuf[j]);
          }
      }
      
      if(isCopy){
          env->ReleaseIntArrayElements(erasures, (jint *)tmp, JNI_ABORT);
      }
      return 0;
 }
int main(int argc, char *argv[])
{
	int i, j, rtest, m, k, nerrs, r, err;
	void *buf;
	unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES], *a, *b, *c, *d, *g_tbls;
	unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
	unsigned char *recov[TEST_SOURCES];

	int rows, align, size;
	unsigned char *efence_buffs[TEST_SOURCES];
	unsigned int offset;
	u8 *ubuffs[TEST_SOURCES];
	u8 *temp_ubuffs[TEST_SOURCES];

	printf("erasure_code_sse_test: %dx%d ", TEST_SOURCES, TEST_LEN);


	// Allocate the arrays
	for(i=0; i<TEST_SOURCES; i++){
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		buffs[i] = buf;
	}

	for(i=0; i<TEST_SOURCES; i++){
		if (posix_memalign(&buf, 64, TEST_LEN)) {
			printf("alloc error: Fail");
			return -1;
		}
		temp_buffs[i] = buf;
	}

	// Test erasure code by encode and recovery

	a = malloc(MMAX*KMAX);
	b = malloc(MMAX*KMAX);
	c = malloc(MMAX*KMAX);
	d = malloc(MMAX*KMAX);
	g_tbls = malloc(KMAX*TEST_SOURCES*32);

	if (a == NULL || b == NULL || c == NULL || d == NULL || g_tbls == NULL) {
		printf("Test failure! Error with malloc\n");
		return -1;
	}

	// Pick a first test
	m = 9;
	k = 5;
	if (m > MMAX || k > KMAX)
		return -1;


	// Make random data
	for(i=0; i<k; i++)
		for(j=0; j<TEST_LEN; j++)
			buffs[i][j] = rand();


	gf_gen_rs_matrix(a, m, k);
	ec_init_tables(k, m-k, &a[k*k], g_tbls);
	ec_encode_data_sse(TEST_LEN, k, m-k, g_tbls, buffs, &buffs[k]);


	// Choose random buffers to be in erasure
	memset(src_in_err, 0, TEST_SOURCES);
	for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
		err = 1 & rand();
		src_in_err[i] = err;
		if (err)
			src_err_list[nerrs++] = i;
	}

	// Construct matrix b by removing error rows
	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) 
			r++; 
		for(j=0; j<k; j++)
			b[k*i+j] = a[k*r+j];
	}


	// Generate decode matrix d as matrix inverse of b
	if (gf_invert_matrix(b, d, k) < 0){
		printf("BAD MATRIX\n");
		return -1;
	}
	
	// Pack recovery array as list of valid sources
	for(i=0, r=0; i<k; i++, r++){
		while (src_in_err[r]) 
			r++;
		recov[i] = buffs[r];
	}

	for(i=0; i<nerrs; i++){
		for(j=0; j<k; j++){
			c[k*i+j]=d[k*src_err_list[i]+j];
		}
	}

	// Recover data
	ec_init_tables(k, nerrs, c, g_tbls);
	ec_encode_data(TEST_LEN,
			k, nerrs, g_tbls, recov, &temp_buffs[k]);

	for(i=0; i<nerrs; i++){

		if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], TEST_LEN)){
			printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
			printf("recov %d:",src_err_list[i]); 
			dump(temp_buffs[k+i], 25);
			printf("orig   :");     
			dump(buffs[src_err_list[i]],25);
			return -1;
		}
	}
	
	// Do more random tests

	for (rtest = 0; rtest < RANDOMS; rtest++){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX) 
			continue;


		// Make random data
		for(i=0; i<k; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();


		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(TEST_LEN, k, m-k, g_tbls, buffs, &buffs[k]);



		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}
	
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = buffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], TEST_LEN)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(buffs, m, 25);
				printf("orig   :");     
				dump(buffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_buffs[k+i], 25);
				return -1;
			}
		}
		putchar('.');
	}

	// Run tests at end of buffer for Electric Fence
	k = 16;
	align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16;
	if (k > KMAX)
		return -1;

	for(rows=1; rows<=16; rows++){
		m = k+rows;
		if (m > MMAX)
			return -1;

		// Make random data
		for(i=0; i<k; i++)
			for(j=0; j<TEST_LEN; j++)
				buffs[i][j] = rand();


		for(size=EFENCE_TEST_MIN_SIZE; size<=TEST_SIZE; size+=align){
			for(i=0; i<m; i++) // Line up TEST_SIZE from end
				efence_buffs[i] = buffs[i] + TEST_LEN - size;

			gf_gen_rs_matrix(a, m, k);
			ec_init_tables(k, m-k, &a[k*k], g_tbls);
			ec_encode_data_sse(size, k, m-k, g_tbls, efence_buffs, &efence_buffs[k]);

			// Random errors
			memset(src_in_err, 0, TEST_SOURCES);
			for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
				err = 1 & rand();
				src_in_err[i] = err;
				if (err)
					src_err_list[nerrs++] = i;
			}
			if (nerrs == 0){  // should have at least one error
				while ((err = (rand() % KMAX)) >= k) ;
				src_err_list[nerrs++] = err;
				src_in_err[err] = 1;
			}

			// Construct b by removing error rows
			for(i=0, r=0; i<k; i++, r++){
				while (src_in_err[r])
					r++;
				for(j=0; j<k; j++)
					b[k*i+j] = a[k*r+j];
			}

			// Generate decode matrix d as matrix inverse of b
			if (gf_invert_matrix(b, d, k) < 0){
				printf("BAD MATRIX\n");
				return -1;
			}

			// Pack recovery array as list of valid sources
			for(i=0, r=0; i<k; i++, r++){
				while (src_in_err[r])
					r++;
				recov[i] = efence_buffs[r];
			}
			for(i=0; i<nerrs; i++){
				for(j=0; j<k; j++){
					c[k*i+j]=d[k*src_err_list[i]+j];
				}
			}

			// Recover data
			ec_init_tables(k, nerrs, c, g_tbls);
			ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

			for(i=0; i<nerrs; i++){

				if (0 != memcmp(temp_buffs[k+i], efence_buffs[src_err_list[i]], size)){
					printf("Efence: Fail error recovery (%d, %d, %d)\n", m, k, nerrs);

					printf("Test erase list = ");
					for (i=0; i<nerrs; i++)
						printf(" %d", src_err_list[i]);
					printf("\n");

					printf("recov %d:",src_err_list[i]);
					dump(temp_buffs[k+i], align);
					printf("orig   :");
					dump(efence_buffs[src_err_list[i]],align);
					return -1;
				}
			}
		}

	}

	// Test rand ptr alignment if available

	for(rtest=0; rtest<RANDOMS; rtest++){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX)
			continue;

		size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;

		offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
		// Add random offsets
		for(i=0; i<m; i++) {
			memset(buffs[i], 0, TEST_LEN);  // zero pad to check write-over
			memset(temp_buffs[i], 0, TEST_LEN);  // zero pad to check write-over
			ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
			temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
		}

		for(i=0; i<k; i++)
			for(j=0; j<size; j++)
				ubuffs[i][j] = rand();

		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(size, k, m-k, g_tbls, ubuffs, &ubuffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}

		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = ubuffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_ubuffs[k+i], ubuffs[src_err_list[i]], size)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(ubuffs, m, 25);
				printf("orig   :");     
				dump(ubuffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_ubuffs[k+i], 25);
				return -1;
			}
		}

		// Confirm that padding around dests is unchanged
		memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B);  // Make reference zero buff

		for(i=0; i<m; i++){

			offset = ubuffs[i] - buffs[i];

			if (memcmp(buffs[i], temp_buffs[0], offset)){
				printf("Fail rand ualign encode pad start\n");
				return -1;
			}
			if (memcmp(buffs[i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)){
				printf("Fail rand ualign encode pad end\n");
				return -1;
			}
		}

		for(i=0; i<nerrs; i++){

			offset = temp_ubuffs[k+i] - temp_buffs[k+i];
			if (memcmp(temp_buffs[k+i], temp_buffs[0], offset)){
				printf("Fail rand ualign decode pad start\n");
				return -1;
			}
			if (memcmp(temp_buffs[k+i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)){
				printf("Fail rand ualign decode pad end\n");
				return -1;
			}
		}

		putchar('.');
	}

	// Test size alignment
	align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16;

	for(size=TEST_LEN; size>0; size-=align){
		while ((m = (rand() % MMAX)) < 2);
		while ((k = (rand() % KMAX)) >= m || k < 1);

		if (m>MMAX || k>KMAX)
			continue;

		for(i=0; i<k; i++)
			for(j=0; j<size; j++)
				buffs[i][j] = rand();

		gf_gen_rs_matrix(a, m, k);

		// Make parity vects
		ec_init_tables(k, m-k, &a[k*k], g_tbls);
		ec_encode_data_sse(size, k, m-k, g_tbls, buffs, &buffs[k]);

		// Random errors
		memset(src_in_err, 0, TEST_SOURCES);
		for (i=0, nerrs=0; i<k && nerrs<m-k; i++){
			err = 1 & rand();
			src_in_err[i] = err;
			if (err)
				src_err_list[nerrs++] = i;
		}
		if (nerrs == 0){  // should have at least one error
			while ((err = (rand() % KMAX)) >= k) ;
			src_err_list[nerrs++] = err;
			src_in_err[err] = 1;
		}

		// Construct b by removing error rows
		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			for(j=0; j<k; j++)
				b[k*i+j] = a[k*r+j];
		}

		if (gf_invert_matrix(b, d, k) < 0){
			printf("BAD MATRIX\n");
			return -1;
		}

		for(i=0, r=0; i<k; i++, r++){
			while (src_in_err[r]) 
				r++;
			recov[i] = buffs[r];
		}
		for(i=0; i<nerrs; i++){
			for(j=0; j<k; j++){
				c[k*i+j]=d[k*src_err_list[i]+j];
			}
		}

		// Recover data
		ec_init_tables(k, nerrs, c, g_tbls);
		ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]);

		for(i=0; i<nerrs; i++){

			if (0 != memcmp(temp_buffs[k+i], buffs[src_err_list[i]], size)){
				printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
				printf(" - erase list = ");
				for (i=0; i<nerrs; i++)
					printf(" %d", src_err_list[i]);
				printf("\na:\n"); 
				dump_u8xu8((unsigned char*)a, m, k);
				printf("inv b:\n");   
				dump_u8xu8((unsigned char*)d, k, k);
				printf("orig data:\n"); 
				dump_matrix(buffs, m, 25);
				printf("orig   :");     
				dump(buffs[src_err_list[i]],25);
				printf("recov %d:",src_err_list[i]); 
				dump(temp_buffs[k+i], 25);
				return -1;
			}
		}
	}

	printf("done EC tests: Pass\n");
	return 0;
}
Beispiel #9
0
int minio_init_decoder (int32_t *error_index,
                        int k, int n, int errs,
                        unsigned char *encode_matrix,
                        unsigned char **decode_matrix,
                        unsigned char **decode_tbls,
                        uint32_t **decode_index)
{
        int i, j, r, l;

        uint32_t      *tmp_decode_index = (uint32_t *) malloc(sizeof(uint32_t) * k);
        unsigned char *input_matrix;
        unsigned char *inverse_matrix;
        unsigned char *tmp_decode_matrix;
        unsigned char *tmp_decode_tbls;

        input_matrix = (unsigned char *) malloc(sizeof(unsigned char) * k * n);
        inverse_matrix = (unsigned char *) malloc(sizeof(unsigned char) * k * n);
        tmp_decode_matrix = (unsigned char *) malloc(sizeof(unsigned char) * k * n);;
        tmp_decode_tbls = (unsigned char *) malloc(sizeof(unsigned char) * k * n * 32);

        for (i = 0, r = 0; i < k; i++, r++) {
                while (_minio_src_index_in_error(r, error_index, errs))
                        r++;
                for (j = 0; j < k; j++) {
                        input_matrix[k * i + j] = encode_matrix[k * r + j];
                }
                tmp_decode_index[i] = r;
        }

        // Not all vandermonde matrix can be inverted
        if (gf_invert_matrix(input_matrix, inverse_matrix, k) < 0) {
                free(tmp_decode_matrix);
                free(tmp_decode_tbls);
                free(tmp_decode_index);
                return -1;
        }

        for (l = 0; l < errs; l++) {
                if (error_index[l] < k) {
                        // decoding matrix elements for data chunks
                        for (j = 0; j < k; j++) {
                                tmp_decode_matrix[k * l + j] =
                                        inverse_matrix[k *
                                                       error_index[l] + j];
                        }
                } else {
                        // decoding matrix element for coding chunks
                        for (i = 0; i < k; i++) {
                                unsigned char s = 0;
                                for (j = 0; j < k; j++) {
                                        s ^= gf_mul(inverse_matrix[j * k + i],
                                                    encode_matrix[k *
                                                                  error_index[l] + j]);
                                }
                                tmp_decode_matrix[k * l + i] = s;
                        }
                }
        }

        ec_init_tables (k, errs, tmp_decode_matrix, tmp_decode_tbls);

        *decode_matrix = tmp_decode_matrix;
        *decode_tbls = tmp_decode_tbls;
        *decode_index = tmp_decode_index;

        return 0;
}