void transceive102_energy(transceive102_energyStackData *SD, const emlrtStack
  *sp, const creal_T d2s[1408], boolean_T ft, real_T txGain, real_T rxGain,
  real_T centerFreqTx, real_T centerFreqRx, real_T intFactor, real_T decFactor,
  real_T swapFreqFlag, creal_T dr[1408], uint32_T *ns)
{
  emlrtStack st;
  st.prev = sp;
  st.tls = sp->tls;
  memset(&dr[0], 0, 1408U * sizeof(creal_T));
  *ns = 0U;
  if (!htx_not_empty) {
    st.site = &emlrtRSI;
    SDRuTransmitter_SDRuTransmitter(&st, &htx, centerFreqTx, txGain, intFactor);
    htx_not_empty = true;
  }

  if (!hrx_not_empty) {
    st.site = &b_emlrtRSI;
    SDRuReceiver_SDRuReceiver(&st, &hrx, centerFreqRx, decFactor, rxGain);
    hrx_not_empty = true;
  }

  /* listening mode: */
  if (muDoubleScalarAbs(centerFreqTx - centerFreqRx) > 0.0) {
    /* if Rx and Tx is different, switch for Listening mode */
    if (swapFreqFlag != 0.0) {
      st.site = &c_emlrtRSI;
      SDRuBase_set_CenterFrequency(&hrx, centerFreqTx);
    } else {
      st.site = &d_emlrtRSI;
      SDRuBase_set_CenterFrequency(&hrx, centerFreqRx);
    }
  }

  if (ft) {
    st.site = &e_emlrtRSI;
    SystemCore_release(&st, &hrx);
    st.site = &f_emlrtRSI;
    b_SystemCore_release(&st, &htx);
  } else {
    st.site = &g_emlrtRSI;
    SystemCore_step(&st, &htx, d2s);
    while (*ns < 1U) {
      st.site = &h_emlrtRSI;
      b_SystemCore_step(SD, &st, &hrx, dr, ns);
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }
}
/* Function Definitions */
static void c_getStatefromKepler_Alg_mexFun(int32_T nlhs, mxArray *plhs[2],
  int32_T nrhs, const mxArray *prhs[7])
{
  int32_T n;
  const mxArray *inputs[7];
  const mxArray *outputs[2];
  int32_T b_nlhs;
  emlrtStack st = { NULL,              /* site */
    NULL,                              /* tls */
    NULL                               /* prev */
  };

  st.tls = emlrtRootTLSGlobal;

  /* Check for proper number of arguments. */
  if (nrhs != 7) {
    emlrtErrMsgIdAndTxt(&st, "EMLRT:runTime:WrongNumberOfInputs", 5, 12, 7, 4,
                        22, "getStatefromKepler_Alg");
  }

  if (nlhs > 2) {
    emlrtErrMsgIdAndTxt(&st, "EMLRT:runTime:TooManyOutputArguments", 3, 4, 22,
                        "getStatefromKepler_Alg");
  }

  /* Temporary copy for mex inputs. */
  for (n = 0; n < nrhs; n++) {
    inputs[n] = prhs[n];
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(&st);
    }
  }

  /* Call the function. */
  getStatefromKepler_Alg_api(inputs, outputs);

  /* Copy over outputs to the caller. */
  if (nlhs < 1) {
    b_nlhs = 1;
  } else {
    b_nlhs = nlhs;
  }

  emlrtReturnArrays(b_nlhs, plhs, outputs);

  /* Module termination. */
  getStatefromKepler_Alg_terminate();
}
/* Function Definitions */
static void rffe_test_mexFunction(int32_T nlhs, mxArray *plhs[1], int32_T nrhs,
  const mxArray *prhs[4])
{
  int32_T n;
  const mxArray *inputs[4];
  const mxArray *outputs[1];
  int32_T b_nlhs;
  emlrtStack st = { NULL, NULL, NULL };

  st.tls = emlrtRootTLSGlobal;

  /* Check for proper number of arguments. */
  if (nrhs != 4) {
    emlrtErrMsgIdAndTxt(&st, "EMLRT:runTime:WrongNumberOfInputs", 5, 12, 4, 4, 9,
                        "rffe_test");
  }

  if (nlhs > 1) {
    emlrtErrMsgIdAndTxt(&st, "EMLRT:runTime:TooManyOutputArguments", 3, 4, 9,
                        "rffe_test");
  }

  /* Temporary copy for mex inputs. */
  for (n = 0; n < nrhs; n++) {
    inputs[n] = prhs[n];
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(&st);
    }
  }

  /* Call the function. */
  rffe_test_api(inputs, outputs);

  /* Copy over outputs to the caller. */
  if (nlhs < 1) {
    b_nlhs = 1;
  } else {
    b_nlhs = nlhs;
  }

  emlrtReturnArrays(b_nlhs, plhs, outputs);

  /* Module termination. */
  rffe_test_terminate();
}
void transceive202(transceive202StackData *SD, const emlrtStack *sp, const
                   creal_T d2s[1408], boolean_T ft, real_T txGain, real_T rxGain,
                   real_T centerFreqTx, real_T centerFreqRx, real_T intFactor,
                   real_T decFactor, creal_T dr[1408], uint32_T *ns)
{
  emlrtStack st;
  st.prev = sp;
  st.tls = sp->tls;
  memset(&dr[0], 0, 1408U * sizeof(creal_T));
  *ns = 0U;
  if (!htx_not_empty) {
    st.site = &emlrtRSI;
    SDRuTransmitter_SDRuTransmitter(&st, &htx, centerFreqTx, txGain, intFactor);
    htx_not_empty = true;
  }

  if (!hrx_not_empty) {
    st.site = &b_emlrtRSI;
    SDRuReceiver_SDRuReceiver(&st, &hrx, centerFreqRx, decFactor, rxGain);
    hrx_not_empty = true;
  }

  if (ft) {
    st.site = &c_emlrtRSI;
    SystemCore_release(&st, &hrx);
    st.site = &d_emlrtRSI;
    b_SystemCore_release(&st, &htx);
  } else {
    st.site = &e_emlrtRSI;
    SystemCore_step(&st, &htx, d2s);
    while (*ns < 1U) {
      st.site = &f_emlrtRSI;
      b_SystemCore_step(SD, &st, &hrx, dr, ns);
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }
}
/* Function Definitions */
void compmat(const emlrtStack *sp, const emxArray_uint8_T *x, real_T dims,
             emxArray_real_T *y)
{
  int32_T i1;
  real_T d3;
  int32_T ii;
  int32_T i;
  emxArray_boolean_T *b_x;
  emxArray_int32_T *b_ii;
  int32_T nx;
  int32_T idx;
  boolean_T overflow;
  boolean_T exitg1;
  boolean_T guard1 = false;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /* UNTITLED Summary of this function goes here */
  /*    Detailed explanation goes here */
  i1 = y->size[0] * y->size[1];
  y->size[0] = 1;
  if (!(dims >= 0.0)) {
    emlrtNonNegativeCheckR2012b(dims, (emlrtDCInfo *)&j_emlrtDCI, sp);
  }

  d3 = dims;
  if (d3 != (int32_T)muDoubleScalarFloor(d3)) {
    emlrtIntegerCheckR2012b(d3, (emlrtDCInfo *)&i_emlrtDCI, sp);
  }

  y->size[1] = (int32_T)d3;
  emxEnsureCapacity(sp, (emxArray__common *)y, i1, (int32_T)sizeof(real_T),
                    &f_emlrtRTEI);
  if (!(dims >= 0.0)) {
    emlrtNonNegativeCheckR2012b(dims, (emlrtDCInfo *)&j_emlrtDCI, sp);
  }

  if (d3 != (int32_T)muDoubleScalarFloor(d3)) {
    emlrtIntegerCheckR2012b(d3, (emlrtDCInfo *)&i_emlrtDCI, sp);
  }

  ii = (int32_T)d3;
  for (i1 = 0; i1 < ii; i1++) {
    y->data[i1] = 0.0;
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, dims, mxDOUBLE_CLASS, (int32_T)dims,
    (emlrtRTEInfo *)&n_emlrtRTEI, sp);
  i = 0;
  emxInit_boolean_T(sp, &b_x, 2, &f_emlrtRTEI, true);
  emxInit_int32_T(sp, &b_ii, 2, &g_emlrtRTEI, true);
  while (i <= (int32_T)dims - 1) {
    st.site = &k_emlrtRSI;
    i1 = b_x->size[0] * b_x->size[1];
    b_x->size[0] = 1;
    b_x->size[1] = x->size[1];
    emxEnsureCapacity(&st, (emxArray__common *)b_x, i1, (int32_T)sizeof
                      (boolean_T), &f_emlrtRTEI);
    ii = x->size[0] * x->size[1];
    for (i1 = 0; i1 < ii; i1++) {
      b_x->data[i1] = (x->data[i1] == 1.0 + (real_T)i);
    }

    b_st.site = &h_emlrtRSI;
    nx = b_x->size[1];
    idx = 0;
    i1 = b_ii->size[0] * b_ii->size[1];
    b_ii->size[0] = 1;
    b_ii->size[1] = b_x->size[1];
    emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                      (int32_T), &f_emlrtRTEI);
    c_st.site = &i_emlrtRSI;
    overflow = ((!(1 > b_x->size[1])) && (b_x->size[1] > 2147483646));
    if (overflow) {
      d_st.site = &j_emlrtRSI;
      check_forloop_overflow_error(&d_st);
    }

    ii = 1;
    exitg1 = false;
    while ((!exitg1) && (ii <= nx)) {
      guard1 = false;
      if (b_x->data[ii - 1]) {
        idx++;
        b_ii->data[idx - 1] = ii;
        if (idx >= nx) {
          exitg1 = true;
        } else {
          guard1 = true;
        }
      } else {
        guard1 = true;
      }

      if (guard1) {
        ii++;
      }
    }

    if (idx <= b_x->size[1]) {
    } else {
      emlrtErrorWithMessageIdR2012b(&b_st, &k_emlrtRTEI,
        "Coder:builtins:AssertionFailed", 0);
    }

    if (b_x->size[1] == 1) {
      if (idx == 0) {
        i1 = b_ii->size[0] * b_ii->size[1];
        b_ii->size[0] = 1;
        b_ii->size[1] = 0;
        emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                          (int32_T), &f_emlrtRTEI);
      }
    } else {
      i1 = b_ii->size[0] * b_ii->size[1];
      if (1 > idx) {
        b_ii->size[1] = 0;
      } else {
        b_ii->size[1] = idx;
      }

      emxEnsureCapacity(&b_st, (emxArray__common *)b_ii, i1, (int32_T)sizeof
                        (int32_T), &b_emlrtRTEI);
    }

    i1 = y->size[1];
    if (!((i + 1 >= 1) && (i + 1 <= i1))) {
      emlrtDynamicBoundsCheckR2012b(i + 1, 1, i1, (emlrtBCInfo *)&w_emlrtBCI, sp);
    }

    y->data[i] = b_ii->size[1];
    i++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_int32_T(&b_ii);
  emxFree_boolean_T(&b_x);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
Beispiel #6
0
/* Function Definitions */
void cadjlon(const emlrtStack *sp, real32_T *theta)
{
  int32_T ii_size_idx_0;
  int32_T ii_size_idx_1;
  int32_T ii_data[1];
  int32_T loop_ub;
  int32_T i0;
  int32_T ind_data[1];
  int32_T tmp_data[1];
  real32_T fv0[1];
  real32_T fv1[1];

  /* CADJLON        reduces argument to range from -pi to pi for single value,  */
  /*  use Csetminmax instead  */
  /*  */
  /*        function [theta]=cadjlon(theta); */
  /*  */
  if (*theta > 3.1415926535897931) {
    ii_size_idx_0 = 1;
    ii_size_idx_1 = 1;
    ii_data[0] = 1;
  } else {
    ii_size_idx_0 = 0;
    ii_size_idx_1 = 0;
  }

  loop_ub = ii_size_idx_0 * ii_size_idx_1;
  i0 = 0;
  while (i0 <= loop_ub - 1) {
    ind_data[0] = 1;
    i0 = 1;
  }

  while (!((ii_size_idx_0 == 0) || (ii_size_idx_1 == 0))) {
    i0 = 0;
    while (i0 <= 0) {
      ii_data[0] = ind_data[0] - 1;
      i0 = 1;
    }

    i0 = 0;
    while (i0 <= 0) {
      tmp_data[0] = ind_data[0];
      i0 = 1;
    }

    fv0[0] = *theta;
    i0 = 0;
    while (i0 <= 0) {
      fv0[tmp_data[0] - 1] = *theta - 6.28318548F;
      i0 = 1;
    }

    *theta = fv0[0];
    if (fv0[0] > 3.1415926535897931) {
      ii_size_idx_0 = 1;
      ii_size_idx_1 = 1;
      ii_data[0] = 1;
    } else {
      ii_size_idx_0 = 0;
      ii_size_idx_1 = 0;
    }

    loop_ub = ii_size_idx_0 * ii_size_idx_1;
    i0 = 0;
    while (i0 <= loop_ub - 1) {
      ind_data[0] = ii_data[0];
      i0 = 1;
    }

    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  if (*theta < -3.1415926535897931) {
    ii_size_idx_0 = 1;
    ii_size_idx_1 = 1;
    ii_data[0] = 1;
  } else {
    ii_size_idx_0 = 0;
    ii_size_idx_1 = 0;
  }

  loop_ub = ii_size_idx_0 * ii_size_idx_1;
  i0 = 0;
  while (i0 <= loop_ub - 1) {
    ind_data[0] = ii_data[0];
    i0 = 1;
  }

  while (!((ii_size_idx_0 == 0) || (ii_size_idx_1 == 0))) {
    i0 = 0;
    while (i0 <= 0) {
      ii_data[0] = ind_data[0] - 1;
      i0 = 1;
    }

    i0 = 0;
    while (i0 <= 0) {
      tmp_data[0] = ind_data[0];
      i0 = 1;
    }

    fv1[0] = *theta;
    i0 = 0;
    while (i0 <= 0) {
      fv1[tmp_data[0] - 1] = *theta + 6.28318548F;
      i0 = 1;
    }

    *theta = fv1[0];
    if (fv1[0] < -3.1415926535897931) {
      ii_size_idx_0 = 1;
      ii_size_idx_1 = 1;
      ii_data[0] = 1;
    } else {
      ii_size_idx_0 = 0;
      ii_size_idx_1 = 0;
    }

    loop_ub = ii_size_idx_0 * ii_size_idx_1;
    i0 = 0;
    while (i0 <= loop_ub - 1) {
      ind_data[0] = ii_data[0];
      i0 = 1;
    }

    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }
}
Beispiel #7
0
/* Function Definitions */
void MechanicalPointForce(const emlrtStack *sp, const emxArray_real_T
  *particlePosition, const emxArray_real_T *pointSourcePosition, real_T
  forceDirection, real_T forceMagnitude, real_T cutoff, emxArray_real_T *force)
{
  uint32_T sz[2];
  int32_T ix;
  emxArray_real_T *forceTemp;
  int32_T loop_ub;
  emxArray_real_T *forceMag;
  int32_T vlen;
  int32_T sIdx;
  emxArray_real_T *forceDir;
  emxArray_real_T *distToSource;
  emxArray_int32_T *r0;
  emxArray_boolean_T *r1;
  emxArray_int32_T *r2;
  emxArray_real_T *x;
  emxArray_real_T *b_x;
  emxArray_real_T *r3;
  emxArray_real_T *r4;
  emxArray_real_T *b_pointSourcePosition;
  emxArray_real_T *b_forceDir;
  emxArray_real_T *c_forceDir;
  int32_T k;
  int32_T vstride;
  int32_T iy;
  int32_T ixstart;
  boolean_T overflow;
  real_T s;
  boolean_T b0;
  uint32_T varargin_2[2];
  boolean_T p;
  boolean_T exitg1;
  int32_T iv0[1];
  int32_T iv1[2];
  int32_T b_force[2];
  int32_T iv2[1];
  int32_T b_iy;
  int32_T c_iy;
  int32_T b_forceTemp[2];
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /*  apply mechanical (push or pull) force on particles */
  /*  mechanicalForce is a logical flag  */
  /*  particlPosition is a N by 3 vector of particle position */
  /*  pointSourcePosition is the position of force sources  */
  /*  forceDirection is either  -1 for 'in' or 1 for 'out' */
  /*  forceMagnitude is a positive number between 0 and 1 */
  /*  cutoff is the maximal direction the force operates on particle relative */
  /*  to the pointSourcePosition  */
  /*  the output is a vector of N by 3 of delta position to th */
  for (ix = 0; ix < 2; ix++) {
    sz[ix] = (uint32_T)particlePosition->size[ix];
  }

  emxInit_real_T(sp, &forceTemp, 2, &c_emlrtRTEI, true);
  ix = forceTemp->size[0] * forceTemp->size[1];
  forceTemp->size[0] = (int32_T)sz[0];
  emxEnsureCapacity(sp, (emxArray__common *)forceTemp, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  ix = forceTemp->size[0] * forceTemp->size[1];
  forceTemp->size[1] = (int32_T)sz[1];
  emxEnsureCapacity(sp, (emxArray__common *)forceTemp, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  loop_ub = (int32_T)sz[0] * (int32_T)sz[1];
  for (ix = 0; ix < loop_ub; ix++) {
    forceTemp->data[ix] = 0.0;
  }

  for (ix = 0; ix < 2; ix++) {
    sz[ix] = (uint32_T)particlePosition->size[ix];
  }

  ix = force->size[0] * force->size[1];
  force->size[0] = (int32_T)sz[0];
  emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  ix = force->size[0] * force->size[1];
  force->size[1] = (int32_T)sz[1];
  emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  loop_ub = (int32_T)sz[0] * (int32_T)sz[1];
  for (ix = 0; ix < loop_ub; ix++) {
    force->data[ix] = 0.0;
  }

  emxInit_real_T(sp, &forceMag, 2, &d_emlrtRTEI, true);
  vlen = particlePosition->size[0];
  ix = forceMag->size[0] * forceMag->size[1];
  forceMag->size[0] = vlen;
  emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  vlen = particlePosition->size[0];
  ix = forceMag->size[0] * forceMag->size[1];
  forceMag->size[1] = vlen;
  emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  loop_ub = particlePosition->size[0] * particlePosition->size[0];
  for (ix = 0; ix < loop_ub; ix++) {
    forceMag->data[ix] = 0.0;
  }

  sIdx = 0;
  emxInit_real_T(sp, &forceDir, 2, &e_emlrtRTEI, true);
  b_emxInit_real_T(sp, &distToSource, 1, &f_emlrtRTEI, true);
  emxInit_int32_T(sp, &r0, 1, &emlrtRTEI, true);
  emxInit_boolean_T(sp, &r1, 2, &emlrtRTEI, true);
  emxInit_int32_T(sp, &r2, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &x, 2, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &b_x, 1, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &r3, 1, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &r4, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &b_pointSourcePosition, 2, &emlrtRTEI, true);
  b_emxInit_real_T(sp, &b_forceDir, 1, &emlrtRTEI, true);
  emxInit_real_T(sp, &c_forceDir, 2, &emlrtRTEI, true);
  while (sIdx <= pointSourcePosition->size[0] - 1) {
    loop_ub = pointSourcePosition->size[1];
    ix = pointSourcePosition->size[0];
    if ((sIdx + 1 >= 1) && (sIdx + 1 < ix)) {
      vlen = sIdx + 1;
    } else {
      vlen = emlrtDynamicBoundsCheckR2012b(sIdx + 1, 1, ix, (emlrtBCInfo *)
        &e_emlrtBCI, sp);
    }

    ix = b_pointSourcePosition->size[0] * b_pointSourcePosition->size[1];
    b_pointSourcePosition->size[0] = 1;
    b_pointSourcePosition->size[1] = loop_ub;
    emxEnsureCapacity(sp, (emxArray__common *)b_pointSourcePosition, ix,
                      (int32_T)sizeof(real_T), &emlrtRTEI);
    for (ix = 0; ix < loop_ub; ix++) {
      b_pointSourcePosition->data[b_pointSourcePosition->size[0] * ix] =
        pointSourcePosition->data[(vlen + pointSourcePosition->size[0] * ix) - 1];
    }

    st.site = &emlrtRSI;
    bsxfun(&st, particlePosition, b_pointSourcePosition, forceDir);

    /*  Find the distance between the particles and the source */
    st.site = &b_emlrtRSI;
    b_st.site = &h_emlrtRSI;
    c_st.site = &i_emlrtRSI;
    d_st.site = &j_emlrtRSI;
    for (ix = 0; ix < 2; ix++) {
      sz[ix] = (uint32_T)forceDir->size[ix];
    }

    ix = x->size[0] * x->size[1];
    x->size[0] = (int32_T)sz[0];
    x->size[1] = (int32_T)sz[1];
    emxEnsureCapacity(&d_st, (emxArray__common *)x, ix, (int32_T)sizeof(real_T),
                      &b_emlrtRTEI);
    if (dimagree(x, forceDir)) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &b_emlrtRTEI, "MATLAB:dimagree", 0);
    }

    ix = (int32_T)sz[0] * (int32_T)sz[1];
    for (k = 0; k < ix; k++) {
      x->data[k] = forceDir->data[k] * forceDir->data[k];
    }

    st.site = &b_emlrtRSI;
    b_st.site = &k_emlrtRSI;
    c_st.site = &l_emlrtRSI;
    for (ix = 0; ix < 2; ix++) {
      sz[ix] = (uint32_T)x->size[ix];
    }

    ix = b_x->size[0];
    b_x->size[0] = (int32_T)sz[0];
    emxEnsureCapacity(&c_st, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                      &emlrtRTEI);
    if ((x->size[0] == 0) || (x->size[1] == 0)) {
      ix = b_x->size[0];
      b_x->size[0] = (int32_T)sz[0];
      emxEnsureCapacity(&c_st, (emxArray__common *)b_x, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      loop_ub = (int32_T)sz[0];
      for (ix = 0; ix < loop_ub; ix++) {
        b_x->data[ix] = 0.0;
      }
    } else {
      vlen = x->size[1];
      vstride = x->size[0];
      iy = -1;
      ixstart = -1;
      d_st.site = &m_emlrtRSI;
      overflow = (x->size[0] > 2147483646);
      if (overflow) {
        e_st.site = &g_emlrtRSI;
        check_forloop_overflow_error(&e_st);
      }

      for (loop_ub = 1; loop_ub <= vstride; loop_ub++) {
        ixstart++;
        ix = ixstart;
        s = x->data[ixstart];
        d_st.site = &n_emlrtRSI;
        if (2 > vlen) {
          b0 = false;
        } else {
          b0 = (vlen > 2147483646);
        }

        if (b0) {
          e_st.site = &g_emlrtRSI;
          check_forloop_overflow_error(&e_st);
        }

        for (k = 2; k <= vlen; k++) {
          ix += vstride;
          s += x->data[ix];
        }

        iy++;
        b_x->data[iy] = s;
      }
    }

    st.site = &b_emlrtRSI;
    ix = distToSource->size[0];
    distToSource->size[0] = b_x->size[0];
    emxEnsureCapacity(&st, (emxArray__common *)distToSource, ix, (int32_T)sizeof
                      (real_T), &emlrtRTEI);
    loop_ub = b_x->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      distToSource->data[ix] = b_x->data[ix];
    }

    for (k = 0; k < b_x->size[0]; k++) {
      if (b_x->data[k] < 0.0) {
        b_st.site = &o_emlrtRSI;
        eml_error(&b_st);
      }
    }

    for (k = 0; k < b_x->size[0]; k++) {
      distToSource->data[k] = muDoubleScalarSqrt(distToSource->data[k]);
    }

    /*  Normalize the forceDirection */
    iy = 0;
    while (iy < 3) {
      loop_ub = forceDir->size[0];
      ix = r2->size[0];
      r2->size[0] = loop_ub;
      emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        r2->data[ix] = ix;
      }

      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&c_emlrtBCI,
        sp);
      st.site = &c_emlrtRSI;
      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&d_emlrtBCI,
        &st);
      ix = forceDir->size[0];
      sz[0] = (uint32_T)ix;
      sz[1] = 1U;
      varargin_2[0] = (uint32_T)distToSource->size[0];
      varargin_2[1] = 1U;
      overflow = false;
      p = true;
      k = 0;
      exitg1 = false;
      while ((!exitg1) && (k < 2)) {
        if (!((int32_T)sz[k] == (int32_T)varargin_2[k])) {
          p = false;
          exitg1 = true;
        } else {
          k++;
        }
      }

      if (!p) {
      } else {
        overflow = true;
      }

      if (overflow) {
      } else {
        emlrtErrorWithMessageIdR2012b(&st, &l_emlrtRTEI, "MATLAB:dimagree", 0);
      }

      loop_ub = forceDir->size[0];
      ix = b_x->size[0];
      b_x->size[0] = loop_ub;
      emxEnsureCapacity(&st, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        b_x->data[ix] = forceDir->data[ix + forceDir->size[0] * iy] /
          distToSource->data[ix];
      }

      iv0[0] = r2->size[0];
      emlrtSubAssignSizeCheckR2012b(iv0, 1, *(int32_T (*)[1])b_x->size, 1,
        (emlrtECInfo *)&d_emlrtECI, sp);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceDir->data[r2->data[ix] + forceDir->size[0] * iy] = b_x->data[ix];
      }

      /*  bsxfun(@rdivide,forceDir,distToSource); */
      iy++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    /*  Multiply the */
    if (forceDirection == -1.0) {
      ix = r4->size[0];
      r4->size[0] = distToSource->size[0];
      emxEnsureCapacity(sp, (emxArray__common *)r4, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      loop_ub = distToSource->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        r4->data[ix] = 1.0 + distToSource->data[ix];
      }

      rdivide(sp, forceMagnitude, r4, b_x);
      vlen = b_x->size[0];
      ix = forceMag->size[0] * forceMag->size[1];
      forceMag->size[0] = vlen;
      emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      ix = forceMag->size[0] * forceMag->size[1];
      forceMag->size[1] = 1;
      emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceMag->data[ix] = 1.0 - b_x->data[ix];
      }
    } else {
      if (forceDirection == 1.0) {
        ix = r3->size[0];
        r3->size[0] = distToSource->size[0];
        emxEnsureCapacity(sp, (emxArray__common *)r3, ix, (int32_T)sizeof(real_T),
                          &emlrtRTEI);
        loop_ub = distToSource->size[0];
        for (ix = 0; ix < loop_ub; ix++) {
          r3->data[ix] = 1.0 + distToSource->data[ix];
        }

        rdivide(sp, forceMagnitude, r3, b_x);
        vlen = b_x->size[0];
        ix = forceMag->size[0] * forceMag->size[1];
        forceMag->size[0] = vlen;
        emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                          (real_T), &emlrtRTEI);
        ix = forceMag->size[0] * forceMag->size[1];
        forceMag->size[1] = 1;
        emxEnsureCapacity(sp, (emxArray__common *)forceMag, ix, (int32_T)sizeof
                          (real_T), &emlrtRTEI);
        loop_ub = b_x->size[0];
        for (ix = 0; ix < loop_ub; ix++) {
          forceMag->data[ix] = b_x->data[ix];
        }
      }
    }

    iy = 0;
    while (iy < 3) {
      ix = forceDir->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&b_emlrtBCI,
        sp);
      ix = forceDir->size[0];
      iv1[0] = ix;
      iv1[1] = 1;
      for (ix = 0; ix < 2; ix++) {
        b_force[ix] = forceMag->size[ix];
      }

      if ((iv1[0] != b_force[0]) || (1 != b_force[1])) {
        emlrtSizeEqCheckNDR2012b(iv1, b_force, (emlrtECInfo *)&c_emlrtECI, sp);
      }

      loop_ub = forceTemp->size[0];
      ix = r2->size[0];
      r2->size[0] = loop_ub;
      emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        r2->data[ix] = ix;
      }

      ix = forceTemp->size[1];
      ixstart = 1 + iy;
      emlrtDynamicBoundsCheckR2012b(ixstart, 1, ix, (emlrtBCInfo *)&emlrtBCI, sp);
      loop_ub = forceDir->size[0];
      vlen = forceDir->size[0];
      vstride = forceDir->size[0];
      ix = b_forceDir->size[0];
      b_forceDir->size[0] = vstride;
      emxEnsureCapacity(sp, (emxArray__common *)b_forceDir, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < vstride; ix++) {
        b_forceDir->data[ix] = forceDir->data[ix + forceDir->size[0] * iy];
      }

      ix = c_forceDir->size[0] * c_forceDir->size[1];
      c_forceDir->size[0] = loop_ub;
      c_forceDir->size[1] = 1;
      emxEnsureCapacity(sp, (emxArray__common *)c_forceDir, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < loop_ub; ix++) {
        c_forceDir->data[ix] = b_forceDir->data[ix];
      }

      ix = b_x->size[0];
      b_x->size[0] = vlen;
      emxEnsureCapacity(sp, (emxArray__common *)b_x, ix, (int32_T)sizeof(real_T),
                        &emlrtRTEI);
      for (ix = 0; ix < vlen; ix++) {
        b_x->data[ix] = c_forceDir->data[ix] * forceMag->data[ix];
      }

      iv2[0] = r2->size[0];
      emlrtSubAssignSizeCheckR2012b(iv2, 1, *(int32_T (*)[1])b_x->size, 1,
        (emlrtECInfo *)&b_emlrtECI, sp);
      loop_ub = b_x->size[0];
      for (ix = 0; ix < loop_ub; ix++) {
        forceTemp->data[r2->data[ix] + forceTemp->size[0] * iy] = b_x->data[ix];
      }

      /*  bsxfun(@times,forceDir,forceTemp); */
      iy++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    iy = distToSource->size[0] - 1;
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (distToSource->data[vstride] > cutoff) {
        vlen++;
      }
    }

    ix = r2->size[0];
    r2->size[0] = vlen;
    emxEnsureCapacity(sp, (emxArray__common *)r2, ix, (int32_T)sizeof(int32_T),
                      &emlrtRTEI);
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (distToSource->data[vstride] > cutoff) {
        r2->data[vlen] = vstride + 1;
        vlen++;
      }
    }

    loop_ub = forceTemp->size[1];
    vstride = forceTemp->size[0];
    vlen = r2->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      for (ixstart = 0; ixstart < vlen; ixstart++) {
        iy = r2->data[ixstart];
        if ((iy >= 1) && (iy < vstride)) {
          b_iy = iy;
        } else {
          b_iy = emlrtDynamicBoundsCheckR2012b(iy, 1, vstride, (emlrtBCInfo *)
            &f_emlrtBCI, sp);
        }

        forceTemp->data[(b_iy + forceTemp->size[0] * ix) - 1] = 0.0;
      }
    }

    ix = r1->size[0] * r1->size[1];
    r1->size[0] = forceTemp->size[0];
    r1->size[1] = forceTemp->size[1];
    emxEnsureCapacity(sp, (emxArray__common *)r1, ix, (int32_T)sizeof(boolean_T),
                      &emlrtRTEI);
    loop_ub = forceTemp->size[0] * forceTemp->size[1];
    for (ix = 0; ix < loop_ub; ix++) {
      r1->data[ix] = muDoubleScalarIsNaN(forceTemp->data[ix]);
    }

    iy = r1->size[0] * r1->size[1] - 1;
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (r1->data[vstride]) {
        vlen++;
      }
    }

    ix = r0->size[0];
    r0->size[0] = vlen;
    emxEnsureCapacity(sp, (emxArray__common *)r0, ix, (int32_T)sizeof(int32_T),
                      &emlrtRTEI);
    vlen = 0;
    for (vstride = 0; vstride <= iy; vstride++) {
      if (r1->data[vstride]) {
        r0->data[vlen] = vstride + 1;
        vlen++;
      }
    }

    vstride = forceTemp->size[0];
    vlen = forceTemp->size[1];
    loop_ub = r0->size[0];
    for (ix = 0; ix < loop_ub; ix++) {
      ixstart = vstride * vlen;
      iy = r0->data[ix];
      if ((iy >= 1) && (iy < ixstart)) {
        c_iy = iy;
      } else {
        c_iy = emlrtDynamicBoundsCheckR2012b(iy, 1, ixstart, (emlrtBCInfo *)
          &g_emlrtBCI, sp);
      }

      forceTemp->data[c_iy - 1] = 0.0;
    }

    for (ix = 0; ix < 2; ix++) {
      b_force[ix] = force->size[ix];
    }

    for (ix = 0; ix < 2; ix++) {
      b_forceTemp[ix] = forceTemp->size[ix];
    }

    if ((b_force[0] != b_forceTemp[0]) || (b_force[1] != b_forceTemp[1])) {
      emlrtSizeEqCheckNDR2012b(b_force, b_forceTemp, (emlrtECInfo *)&emlrtECI,
        sp);
    }

    ix = force->size[0] * force->size[1];
    emxEnsureCapacity(sp, (emxArray__common *)force, ix, (int32_T)sizeof(real_T),
                      &emlrtRTEI);
    vlen = force->size[0];
    vstride = force->size[1];
    loop_ub = vlen * vstride;
    for (ix = 0; ix < loop_ub; ix++) {
      force->data[ix] += forceTemp->data[ix];
    }

    sIdx++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&c_forceDir);
  emxFree_real_T(&b_forceDir);
  emxFree_real_T(&b_pointSourcePosition);
  emxFree_real_T(&r4);
  emxFree_real_T(&r3);
  emxFree_real_T(&b_x);
  emxFree_real_T(&x);
  emxFree_int32_T(&r2);
  emxFree_boolean_T(&r1);
  emxFree_int32_T(&r0);
  emxFree_real_T(&distToSource);
  emxFree_real_T(&forceDir);
  emxFree_real_T(&forceMag);
  emxFree_real_T(&forceTemp);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
Beispiel #8
0
/* Function Definitions */
void clcPMP_olyHyb_tmp(const emlrtStack *sp, real_T engKinPre, real_T engKinAct,
  real_T gea, real_T slp, real_T batEng, real_T psiBatEng, real_T psiTim, real_T
  batPwrAux, real_T batEngStp, real_T wayStp, const struct0_T *par, real_T
  *cosHamMin, real_T *batFrcOut, real_T *fulFrcOut)
{
  real_T mtmp;
  real_T vehVel;
  real_T b_engKinPre[2];
  real_T crsSpdVec[2];
  int32_T i18;
  int32_T k;
  boolean_T y;
  boolean_T exitg3;
  boolean_T exitg2;
  real_T crsSpd;
  real_T whlTrq;
  real_T crsTrq;
  real_T iceTrqMax;
  real_T iceTrqMin;
  real_T b_par[100];
  real_T emoTrqMaxPos;
  real_T emoTrqMinPos;
  real_T emoTrqMax;
  real_T emoTrqMin;
  real_T batPwrMax;
  real_T batPwrMin;
  real_T batOcv;
  real_T batEngDltMin;
  real_T batEngDltMax;
  real_T batEngDltMinInx;
  real_T batEngDltMaxInx;
  real_T batEngDlt;
  real_T fulFrc;
  real_T batFrc;
  real_T b_batFrc;
  real_T batPwr;
  real_T emoTrq;
  real_T iceTrq;
  real_T fulPwr;
  int32_T ixstart;
  int32_T itmp;
  int32_T ix;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;

  /* CLCPMP Minimizing Hamiltonian: Co-States for soc and time */
  /*  Erstellungsdatum der ersten Version 19.08.2015 - Stephan Uebel */
  /*  */
  /*  Batterieleistungsgrenzen hinzugefügt am 13.12.2015 */
  /*  ^^added battery power limit */
  /*  */
  /*  Massenaufschlag durch Trägheitsmoment herausgenommen */
  /*  ^^Mass increment removed by inertia */
  /*  */
  /* % Inputdefinition */
  /*  */
  /*  engKinPre     - Double(1,1)  - kinetische Energie am Intervallanfang in J */
  /*                                 ^^ kinetic energy at start of interval (J) */
  /*  engKinAct     - Double(1,1)  - kinetische Energie am Intervallende in J */
  /*                                 ^^ kinetic energe at end of interval (J) */
  /*  gea           - Double(1,1)  - Gang */
  /*                                 ^^ gear */
  /*  slp           - Double(1,1)  - Steigung in rad */
  /*                                 ^^ slope in radians */
  /*  iceFlg        - Boolean(1,1) - Flag für Motorzustand */
  /*                                 ^^ flag for motor condition */
  /*  batEng        - Double(1,1)  - Batterieenergie in J */
  /*                                 ^^ battery energy (J) */
  /*  psibatEng     - Double(1,1)  - Costate für Batterieenergie ohne Einheit */
  /*                                 ^^ costate for battery energy w/o unity */
  /*  psiTim        - Double(1,1)  - Costate für die Zeit ohne Einheit */
  /*                                 ^^ costate for time without unity */
  /*  batPwrAux     - Double(1,1)  - elektr. Nebenverbraucherleistung in W */
  /*                                 ^^ electric auxiliary power consumed (W) */
  /*  batEngStp     - Double(1,1)  - Drehmomentschritt */
  /*                                 ^^ torque step <- no, it's a battery step */
  /*  wayStp        - Double(1,1)  - Intervallschrittweite in m */
  /*                                 ^^ interval step distance (m) */
  /*  par           - Struct(1,1)  - Modelldaten */
  /*                                 ^^ model data */
  /* % Initialisieren der Ausgabe der Funktion */
  /*    initializing function output */
  /*  Ausgabewert des Minimums der Hamiltonfunktion */
  /*    output for minimizing the hamiltonian */
  *cosHamMin = rtInf;

  /*  Batterieladungsänderung im Wegschritt beir minimaler Hamiltonfunktion */
  /*    battery change in path_idx step with the minial hamiltonian */
  *batFrcOut = rtInf;

  /*  Kraftstoffkraftänderung im Wegschritt bei minimaler Hamiltonfunktion */
  /*    fuel change in path_idx step with the minimal hamiltonian */
  *fulFrcOut = 0.0;

  /* % Initialisieren der persistent Größen */
  /*    initialize the persistance variables */
  /*  Diese werden die nur einmal für die Funktion berechnet */
  /*    only calculated once for the function */
  if (!crsSpdHybMax_not_empty) {
    /*  maximale Drehzahl Elektrommotor */
    /*    maximum electric motor rotational speed */
    /*  maximale Drehzahl der Kurbelwelle */
    /*    maximum crankshaft rotational speed */
    crsSpdHybMax = muDoubleScalarMin(par->iceSpdMgd[14850], par->emoSpdMgd[14850]);
    crsSpdHybMax_not_empty = true;

    /*  minimale Drehzahl der Kurbelwelle */
    /*    minimum crankshaft rotational speed */
    crsSpdHybMin = par->iceSpdMgd[0];
  }

  /* % Initialisieren der allgemein benötigten Kenngrößen */
  /*    initializing the commonly required parameters */
  /*  mittlere kinetische Energie im Wegschritt berechnen */
  /*    define the average kinetic energy at path_idx step - is just previous KE */
  /*  mittlere Geschwindigkeit im Wegschritt berechnen */
  /*    define the average speed at path_idx step */
  mtmp = 2.0 * engKinPre / par->vehMas;
  st.site = &g_emlrtRSI;
  if (mtmp < 0.0) {
    b_st.site = &h_emlrtRSI;
    eml_error(&b_st);
  }

  vehVel = muDoubleScalarSqrt(mtmp);

  /* % vorzeitiger Funktionsabbruch? */
  /*    premature function termination? */
  /*  Drehzahl der Kurbelwelle und Grenzen */
  /*    crankshaft speed and limits */
  /*  Aus den kinetischen Energien des Fahrzeugs wird über die Raddrehzahl */
  /*  und die übersetzung vom Getriebe die Kurbelwellendrehzahl berechnet. */
  /*  Zeilenrichtung entspricht den Gängen. (Zeilenvektor) */
  /*    from the vehicle's kinetic energy, the crankshaft speed is calculated */
  /*    by the speed and gearbox translation. Line direction corresponding to */
  /*    the aisles (row rector). EQUATION 1 */
  b_engKinPre[0] = engKinPre;
  b_engKinPre[1] = engKinAct;
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = 2.0 * b_engKinPre[i18] / par->vehMas;
  }

  st.site = &f_emlrtRSI;
  for (k = 0; k < 2; k++) {
    if (crsSpdVec[k] < 0.0) {
      b_st.site = &h_emlrtRSI;
      eml_error(&b_st);
    }
  }

  for (k = 0; k < 2; k++) {
    crsSpdVec[k] = muDoubleScalarSqrt(crsSpdVec[k]);
  }

  i18 = par->geaRat->size[1];
  k = (int32_T)gea;
  emlrtDynamicBoundsCheckR2012b(k, 1, i18, &mb_emlrtBCI, sp);
  mtmp = par->geaRat->data[(int32_T)gea - 1];
  for (i18 = 0; i18 < 2; i18++) {
    crsSpdVec[i18] = mtmp * crsSpdVec[i18] / par->whlDrr;
  }

  /*  Abbruch, wenn die Drehzahlen der Kurbelwelle zu hoch im hybridischen */
  /*  Modus */
  /*    stop if the crankshaft rotatoinal speed is too high in hybrid mode */
  y = false;
  k = 0;
  exitg3 = false;
  while ((!exitg3) && (k < 2)) {
    if (!!(crsSpdVec[k] > crsSpdHybMax)) {
      y = true;
      exitg3 = true;
    } else {
      k++;
    }
  }

  if (y) {
  } else {
    /*  Falls die Drehzahl des Verbrennungsmotors niedriger als die */
    /*  Leerlaufdrehzahl ist, */
    /*    stop if crankhaft rotional speed is lower than the idling speed */
    y = false;
    k = 0;
    exitg2 = false;
    while ((!exitg2) && (k < 2)) {
      if (!!(crsSpdVec[k] < crsSpdHybMin)) {
        y = true;
        exitg2 = true;
      } else {
        k++;
      }
    }

    if (y) {
    } else {
      /*  Prüfen, ob die Drehzahlgrenze des Elektromotors eingehalten wird */
      /*    check if electric motor speed limit is maintained */
      /*  mittlere Kurbelwellendrehzahlen berechnen */
      /*    calculate average crankshaft rotational speed */
      /*    - really just selecting the previous path_idx KE crankshaft speed */
      crsSpd = crsSpdVec[0];

      /* % Längsdynamik berechnen */
      /*    calculate longitundinal dynamics */
      /*  Es wird eine konstante Beschleunigung angenommen, die im Wegschritt */
      /*  wayStp das Fahrzeug von velPre auf velAct beschleunigt. */
      /*    constant acceleration assumed when transitioning from velPre to velAct */
      /*    for the selected wayStp path_idx step distance */
      /*  Berechnen der konstanten Beschleunigung */
      /*    calculate the constant acceleration */
      /*  Aus der mittleren kinetischen Energie im Intervall, der mittleren */
      /*  Steigung und dem Gang lässt sich über die Fahrwiderstandsgleichung */
      /*  die nötige Fahrwiderstandskraft berechnen, die aufgebracht werden */
      /*  muss, um diese zu realisieren. */
      /*    from the (avg) kinetic energy in the interval, the (avg) slope and */
      /*    transition can calculate the necessary traction force on the driving */
      /*    resistance equation (PART OF EQUATION 5) */
      /*  Steigungskraft aus der mittleren Steigung berechnen (Skalar) */
      /*    gradiant force from the calculated (average) gradient */
      /*  Rollreibungskraft berechnen (Skalar) */
      /*    calculated rolling friction force - not included in EQ 5??? */
      /*  Luftwiderstandskraft berechnen (2*c_a/m * E_kin) (Skalar)  */
      /*    calculated air resistance force  */
      /* % Berechnung der minimalen kosten der Hamiltonfunktion */
      /*    Calculating the minimum cost of the Hamiltonian */
      /* % Berechnen der Kraft am Rad für Antriebsstrangmodus */
      /*    calculate the force on the wheel for the drivetrain mode */
      /*  % dynamische Fahrzeugmasse bei Fahrzeugmotor an berechnen. Das */
      /*  % heißt es werden Trägheitsmoment von Verbrennungsmotor, */
      /*  % Elektromotor und Rädern mit einbezogen. */
      /*    calculate dynamic vehicle mass with the vehicle engine (with the moment */
      /*    of intertia of the ICE, electric motor, and wheels) */
      /*  vehMasDyn = (par.iceMoi_geaRat(gea) +... */
      /*      par.emoGeaMoi_geaRat(gea) + par.whlMoi)/par.whlDrr^2 ... */
      /*      + par.vehMas; */
      /*  Radkraft berechnen (Beschleunigungskraft + Steigungskraft + */
      /*  Rollwiderstandskraft + Luftwiderstandskraft) */
      /*    caluclating wheel forces (accerlation force + gradient force + rolling */
      /*    resistance + air resistance)    EQUATION 5 */
      /* % Getriebeübersetzung und -verlust */
      /*    gear ratio and loss */
      /*  Das Drehmoment des Rades ergibt sich über den Radhalbmesser aus */
      /*  der Fahrwiderstandskraft. */
      /*    the weel torque is obtained from the wheel radius of the rolling */
      /*    resistance force (torque = force * distance (in this case, radius) */
      whlTrq = ((((engKinAct - engKinPre) / (par->vehMas * wayStp) * par->vehMas
                  + par->vehMas * 9.81 * muDoubleScalarSin(slp)) +
                 par->whlRolResCof * par->vehMas * 9.81 * muDoubleScalarCos(slp))
                + 2.0 * par->drgCof / par->vehMas * engKinPre) * par->whlDrr;

      /*  Berechnung des Kurbelwellenmoments */
      /*  Hier muss unterschieden werden, ob das Radmoment positiv oder */
      /*  negativ ist, da nur ein einfacher Wirkungsgrad für das Getriebe */
      /*  genutzt wird */
      /*    it's important to determine sign of crankshaft torque (positive or */
      /*    negative), since only a simple efficiency is used for the transmission */
      /*    PART OF EQ4  <- perhaps reversed? not too sure */
      if (whlTrq < 0.0) {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &nb_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] * par->geaEfy;
      } else {
        i18 = par->geaRat->size[1];
        k = (int32_T)gea;
        emlrtDynamicBoundsCheckR2012b(k, 1, i18, &ob_emlrtBCI, sp);
        crsTrq = whlTrq / par->geaRat->data[(int32_T)gea - 1] / par->geaEfy;
      }

      /* % Verbrennungsmotor */
      /*    internal combustion engine */
      /*  maximales Moment des Verbrennungsmotors berechnen */
      /*    calculate max torque of the engine (quadratic based on rotation speed) */
      iceTrqMax = (par->iceTrqMaxCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMaxCof[1] * crsSpdVec[0]) + par->iceTrqMaxCof[2];

      /*  minimales Moment des Verbrennungsmotors berechnen */
      /*    calculating mimimum ICE moment */
      iceTrqMin = (par->iceTrqMinCof[0] * (crsSpdVec[0] * crsSpdVec[0]) +
                   par->iceTrqMinCof[1] * crsSpdVec[0]) + par->iceTrqMinCof[2];

      /* % Elektromotor */
      /*    electric motor */
      /*  maximales Moment, dass die E-Maschine liefern kann */
      /*    max torque that the electric motor can provide - from interpolation */
      /*  emoTrqMaxPos = ... */
      /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMax_emoSpd,crsSpd); */
      for (i18 = 0; i18 < 100; i18++) {
        b_par[i18] = par->emoSpdMgd[150 * i18];
      }

      emoTrqMaxPos = interp1q(b_par, par->emoTrqMax_emoSpd, crsSpdVec[0]);

      /*  Die gültigen Kurbelwellenmomente müssen kleiner sein als das */
      /*  Gesamtmoment von E-Motor und Verbrennungsmotor */
      /*    The valid crankshaft moments must be less than the total moment of the */
      /*    electric motor and the ICE.Otherwise, leave the function */
      if (crsTrq > iceTrqMax + emoTrqMaxPos) {
      } else {
        /* % %% Optimaler Momentensplit - Minimierung der Hamiltonfunktion */
        /*        optimum torque split - minimizing the Hamiltonian */
        /*  Die Vorgehensweise ist ähnlich wie bei der ECMS. Es wird ein Vektor der */
        /*  möglichen Batterieenergieänderungen aufgestellt. Aus diesen lässt sich  */
        /*  eine Batterieklemmleistung berechnen. Aus der über das */
        /*  Kurbelwellenmoment, ein Elektromotormoment berechnet werden kann. */
        /*  Über das geforderte Kurbelwellenmoment, kann für jedes Moment des  */
        /*  Elektromotors ein Moment des Verbrennungsmotors gefunden werden. Für  */
        /*  jedes Momentenpaar kann die Hamiltonfunktion berechnet werden. */
        /*  Ausgegeben wird der minimale Wert der Hamiltonfunktion und die */
        /*  durch das dabei verwendete Elektromotormoment verursachte */
        /*  Batterieladungsänderung. */
        /*    The procedure is similar to ECMS. It's based on a vector of possible */
        /*    battery energy changes, from which a battery terminal power can be */
        /*    calculated. */
        /*    From the crankshaft torque, an electric motor torque can be */
        /*    calculated, and an engine torque can be found for every electric motor */
        /*    moment.  */
        /*    For every moment-pair the Hamiltonian can be calculated. It */
        /*    outputs the minimum Hamilotnian value and the battery charge change */
        /*    caused by the electric motor torque used. */
        /* % Elektromotor - Aufstellen des Batterienergievektors */
        /*    electric motor - positioning the battery energy vectors */
        if (batEngStp > 0.0) {
          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*  FUNCTION CALL */
          /*       Skalar - Wegschrittweite */
          /*       Skalar - mittlere Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*       Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque allowed */
          /*  Skalar - max EM torque possible */
          st.site = &e_emlrtRSI;

          /* Skalar - änderung der minimalen Batterieenergieänderung */
          /*  Skalar - änderung der maximalen Batterieenergieänderung */
          /*       Skalar - Wegschrittweite */
          /*          Skalar - Geschwindigkeit im Intervall */
          /*    Skalar - Nebenverbraucherlast */
          /*    Skalar - Batterieenergie */
          /*          struct - Fahrzeugparameter */
          /*       Skalar - crankshaft rotational speed */
          /*       Skalar - crankshaft torque */
          /*    Skalar - min ICE torque allowed */
          /*    Skalar - max ICE torque */
          /*  Skalar - max EM torque possible */
          /* BatEngDltClc Calculates the change in battery energy */
          /*  */
          /*  Erstellungsdatum der ersten Version 17.11.2015 - Stephan Uebel */
          /*    Berechnung der Verluste des Elektromotors bei voller rein elektrischer */
          /*    Fahrt (voller Lastpunktabsenkung) und bei voller Lastpunktanhebung */
          /*        Calculations of loss of electric motor at purely full electric */
          /*        Driving (full load point lowering) and at full load point raising */
          /*  */
          /*  Version vom 17.02.2016: Keine Einbeziehung von Rotationsmassen */
          /*                          ^^ No inclusion of rotational masses */
          /*  */
          /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
          /*                          ^^ Zero-Order-Hold (no average velocities) */
          /* % Initialisieren der Ausgabe der Funktion */
          /*    initializing the function output (delta battery_energy min and max) */
          /* % Elektromotor */
          /*  minimales Moment, dass die E-Maschine liefern kann */
          /*    minimum moment that the EM can provide (max is an input to function) */
          /*  emoTrqMinPos = ... */
          /*      lininterp1(par.emoSpdMgd(1,:)',par.emoTrqMin_emoSpd,crsSpd); */
          for (i18 = 0; i18 < 100; i18++) {
            b_par[i18] = par->emoSpdMgd[150 * i18];
          }

          emoTrqMinPos = interp1q(b_par, par->emoTrqMin_emoSpd, crsSpdVec[0]);

          /* % Verbrennungsmotor berechnen */
          /*  Durch EM zu lieferndes Kurbelwellenmoment */
          /*    crankshaft torque to be delivered by the electric motor (min and max) */
          emoTrqMax = crsTrq - iceTrqMin;
          emoTrqMin = crsTrq - iceTrqMax;

          /* % Elektromotor berechnen */
          /*    calculate the electric motor */
          if (emoTrqMaxPos < emoTrqMax) {
            /*  Moment des Elektromotors bei maximaler Entladung der Batterie */
            /*    EM torque at max battery discharge */
            emoTrqMax = emoTrqMaxPos;
          }

          if (emoTrqMaxPos < emoTrqMin) {
            /*  Moment des Elektromotors bei minimaler Entladung der Batterie */
            /*    EM torque at min battery discharge */
            emoTrqMin = emoTrqMaxPos;
          }

          emoTrqMax = muDoubleScalarMax(emoTrqMinPos, emoTrqMax);
          emoTrqMin = muDoubleScalarMax(emoTrqMinPos, emoTrqMin);

          /* % Berechnung der änderung der Batterieladung */
          /*    calculating the change in battery charge */
          /*  Interpolation der benötigten Batterieklemmleistung für das */
          /*  EM-Moment. Stellen die nicht definiert sind, werden mit inf */
          /*  ausgegeben. Positive Werte entsprechen entladen der Batterie. */
          /*    interpolating the required battery terminal power for the EM torque. */
          /*    Assign undefined values to inf. Positive values coresspond with battery */
          /*    discharge. */
          /*  batPwrMax = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMax) + batPwrAux; */
          /*   */
          /*  batPwrMin = lininterp2(par.emoSpdMgd(1,:),par.emoTrqMgd(:,1),... */
          /*      par.emoPwr_emoSpd_emoTrq',crsSpd,emoTrqMin) + batPwrAux; */
          b_st.site = &i_emlrtRSI;
          batPwrMax = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMax) + batPwrAux;
          b_st.site = &j_emlrtRSI;
          batPwrMin = codegen_interp2(&b_st, par->emoSpdMgd, par->emoTrqMgd,
            par->emoPwr_emoSpd_emoTrq, crsSpdVec[0], emoTrqMin) + batPwrAux;

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery max power is not above bat max bounds */
          if (batPwrMax > par->batPwrMax) {
            batPwrMax = par->batPwrMax;
          }

          /*  überprüfen, ob Batterieleistung möglich */
          /*    make sure that current battery min power is not below bat min bounds */
          if (batPwrMin > par->batPwrMax) {
            batPwrMin = par->batPwrMax;
          }

          /*  Es kann vorkommen, dass mehr Leistung gespeist werden soll, als */
          /*  möglich ist. */
          /*    double check that the max and min still remain within the other bounds */
          if (batPwrMax < par->batPwrMin) {
            batPwrMax = par->batPwrMin;
          }

          if (batPwrMin < par->batPwrMin) {
            batPwrMin = par->batPwrMin;
          }

          /*  Batteriespannung aus Kennkurve berechnen */
          /*    calculating battery voltage of characteristic curve - eq?-------------- */
          batOcv = batEng * par->batOcvCof_batEng[0] + par->batOcvCof_batEng[1];

          /*  FUNCTION CALL - min delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMin = batFrcClc_tmp(batPwrMax, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  <-multiply by delta_S */
          /*  FUNCTION CALL - max delta bat.energy */
          /*            Skalar - Batterieklemmleistung */
          /*                  Skalar - mittlere Geschwindigkeit im Intervall */
          /*        Skalar - Entladewiderstand */
          /*        Skalar - Ladewiderstand */
          /*                Skalar - battery open-circuit voltage */
          batEngDltMax = batFrcClc_tmp(batPwrMin, vehVel, par->batRstDch,
            par->batRstChr, batOcv) * wayStp;

          /*  Es werden 2 Fälle unterschieden: */
          /*    there are 2 different cases */
          if ((batEngDltMin > 0.0) && (batEngDltMax > 0.0)) {
            /*         %% konventionelles Bremsen + Rekuperieren */
            /*    conventional brakes + recuperation */
            /*  */
            /*  set change in energy to discretized integer values w/ ceil and */
            /*  floor. This also helps for easy looping */
            /*  Konventionelles Bremsen wird ebenfalls untersucht. */
            /*  Hier liegt eventuell noch Beschleunigungspotential, da diese */
            /*  Zustandswechsel u.U. ausgeschlossen werden können. */
            /*  NOTE: u.U. = unter Ümständen = circumstances permitting */
            /*    convetional breaks also investigated. An accelerating potential */
            /*    is still possible, as these states can be excluded */
            /*    (circumstances permitting)  <- ??? not sure what above means */
            /*  */
            /*    so if both min and max changes in battery energy are */
            /*    increasing, then set the delta min to zero */
            batEngDltMinInx = 0.0;
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          } else {
            batEngDltMinInx = muDoubleScalarCeil(batEngDltMin / batEngStp);
            batEngDltMaxInx = muDoubleScalarFloor(batEngDltMax / batEngStp);
          }
        } else {
          batEngDltMinInx = 0.0;
          batEngDltMaxInx = 0.0;
        }

        /*  you got a larger min chnage and a max change, you're out of bounds. Leave */
        /*  the function */
        if (batEngDltMaxInx < batEngDltMinInx) {
        } else {
          /* % Schleife über alle Elektromotormomente */
          /*    now loop through all the electric-motor torques */
          i18 = (int32_T)(batEngDltMaxInx + (1.0 - batEngDltMinInx));
          emlrtForLoopVectorCheckR2012b(batEngDltMinInx, 1.0, batEngDltMaxInx,
            mxDOUBLE_CLASS, i18, &o_emlrtRTEI, sp);
          k = 0;
          while (k <= i18 - 1) {
            batEngDlt = (batEngDltMinInx + (real_T)k) * batEngStp;

            /*  open circuit voltage over each iteration */
            batOcv = (batEng + batEngDlt) * par->batOcvCof_batEng[0] +
              par->batOcvCof_batEng[1];

            /*           Skalar für die Batterieleistung in W */
            /*           Skalar Krafstoffkraft in N */
            /*             FUNCTION CALL */
            /*          Skalar für die Wegschrittweite in m, */
            /*           Skalar - vehicular velocity */
            /*        Nebenverbraucherlast */
            /*           Skalar - battery open circuit voltage */
            /*       Skalar - Batterieenergie�nderung, */
            /*           Skalar - crankshaft speed at given path_idx */
            /*           Skalar - crankshaft torque at given path_idx */
            /*        Skalar - min ICE torque allowed */
            /*        Skalar - max ICE torque */
            /*               struct der Fahrzeugparameter */
            st.site = &d_emlrtRSI;

            /*   Skalar für die Batterieleistung */
            /*       Skalar Kraftstoffkraft */
            /*      Skalar für die Wegschrittweite in m */
            /*          vehicular velocity */
            /*    Nebenverbraucherlast */
            /*       Skalar - battery open circuit voltage */
            /*   Skalar - Batterieenergieänderung */
            /*       Skalar - crankshaft speed at given path_idx */
            /*       Skalar - crankshaft torque at given path_idx */
            /*    Skalar - min ICE torque allowed */
            /*    Skalar - max ICE torque */
            /*           struct der Fahrzeugparameter */
            /*  */
            /* FULENGCLC Calculating fuel consumption */
            /*  Erstellungsdatum der ersten Version 04.09.2015 - Stephan Uebel */
            /*  */
            /*  Diese Funktion berechnet den Kraftstoffverbrauch für einen gegebenen */
            /*  Wegschritt der kinetischen Energie, der Batterieenergie und des */
            /*  Antriebsstrangzustands über dem Weg. */
            /*    this function calculates fuel consumption for a given route step of */
            /*    KE, the battery energy, and drivetrain state of the current path_idx */
            /*  */
            /*  Version vom 17.02.2016 : Rotationsmassen vernachlässigt */
            /*                            ^^ neglected rotatary masses */
            /*  */
            /*  Version vom 25.05.2016: Zero-Order-Hold (keine mittlere Geschwindigkeit) */
            /*  */
            /*  version from 1.06.2016 - removed crsTrq calulations - they are already */
            /*  done in parent function (clcPMP_olHyb_tmp) and do not change w/ each */
            /*  iteration, making the caluclation here unnecessary */
            /* % Initialisieren der Ausgabe der Funktion */
            /*    initializing function output */
            /*    Skalar - electric battery power (W) */
            fulFrc = rtInf;

            /*    Skalar - fuel force intialization (N) */
            /* % Batterie */
            /*  Batterieenergieänderung über dem Weg (Batteriekraft) */
            /*    Change in battery energy over the path_idx way (ie battery power) */
            batFrc = batEngDlt / wayStp;

            /*  Fallunterscheidung, ob Batterie geladen oder entladen wird */
            /*    Case analysis - check if battery is charging or discharging. Set */
            /*    resistance accordingly */
            /*  elektrische Leistung des Elektromotors */
            /*    electric power from electric motor - DERIVATION? dunno */
            /*  innere Batterieleistung / internal batt power */
            /* dissipat. Leist. / dissipated */
            if (batFrc < 0.0) {
              b_batFrc = par->batRstDch;
            } else {
              b_batFrc = par->batRstChr;
            }

            batPwr = (-batFrc * vehVel - batFrc * batFrc * (vehVel * vehVel) /
                      (batOcv * batOcv) * b_batFrc) - batPwrAux;

            /*           Nebenverbrauchlast / auxiliary power */
            /* % Elektromotor */
            /*  Ermitteln des Kurbelwellenmoments durch EM aus Batterieleistung */
            /*    determine crankshaft torque cauesd by EM's battery power */
            /*        switching out codegen_interp2 for lininterp2-just might work! */
            /*  */
            b_st.site = &k_emlrtRSI;
            emoTrq = codegen_interp2(&b_st, par->emoSpdMgd, par->emoPwrMgd,
              par->emoTrq_emoSpd_emoPwr, crsSpd, batPwr);

            /*  emoTrq = lininterp2(par.emoSpdMgd(1,:), par.emoPwrMgd(:,1),... */
            /*      par.emoTrq_emoSpd_emoPwr',crsSpd,emoPwrEle); */
            if (muDoubleScalarIsInf(emoTrq)) {
            } else {
              /*  Grenzen des Elektromotors müssen hier nicht überprüft werden, da die */
              /*  Ladungsdeltas schon so gewählt wurden, dass das maximale Motormoment */
              /*  nicht überstiegen wird. */
              /*    Electric motor limits need not be checked here, since the charge deltas */
              /*    have been chosen so that the max torque is not exceeded. */
              /* % Verbrennungsmotor */
              /*  Ermitteln des Kurbelwellenmoments durch den Verbrennungsmotor */
              /*    Determining the crankshaft moment from the ICE */
              iceTrq = crsTrq - emoTrq;

              /*  Wenn das Verbrennungsmotormoment kleiner als das minimale */
              /*  Moment ist, ist dieser in der Schubabschaltung. Das */
              /*  verbleibende Moment liefern die Bremsen */
              /*    If engine torque is less than the min torque, fuel is cut. The */
              /*    remaining torque is deliver the brakes. */
              if (iceTrq < iceTrqMin) {
                fulPwr = 0.0;
              } else if (iceTrq > iceTrqMax) {
                fulPwr = rtInf;
              } else {
                /*  replacing another coden_interp2 */
                b_st.site = &l_emlrtRSI;
                fulPwr = codegen_interp2(&b_st, par->iceSpdMgd, par->iceTrqMgd,
                  par->iceFulPwr_iceSpd_iceTrq, crsSpd, iceTrq);

                /*      fulPwr = lininterp2(par.iceSpdMgd(1,:), par.iceTrqMgd(:,1), ... */
                /*          par.iceFulPwr_iceSpd_iceTrq', crsSpd, iceTrq); */
              }

              /*  Berechnen der Kraftstoffkraft */
              /*    calculate fuel force */
              fulFrc = fulPwr / vehVel;

              /*  Berechnen der Kraftstoffvolumenänderung */
              /*  caluclate change in fuel volume - energy, no? */
              /* % Ende der Funktion */
            }

            /*       FUNCTION CALL */
            /*           Skalar - Batterieklemmleistung */
            /*           Skalar - mittlere Geschwindigkeit im Intervall */
            /*    Skalar - Entladewiderstand */
            /*    Skalar - Ladewiderstand */
            /*            Skalar - battery open circuit voltage */
            batFrc = batFrcClc_tmp(batPwr, vehVel, par->batRstDch,
              par->batRstChr, batOcv);

            /*     %% Hamiltonfunktion bestimmen */
            /*    determine the hamiltonian */
            /*  Eq (29b) */
            crsSpdVec[0] = (fulFrc + psiBatEng * batFrc) + psiTim / vehVel;
            ixstart = 1;
            mtmp = crsSpdVec[0];
            itmp = 1;
            if (muDoubleScalarIsNaN(crsSpdVec[0])) {
              ix = 2;
              exitg1 = false;
              while ((!exitg1) && (ix < 3)) {
                ixstart = 2;
                if (!muDoubleScalarIsNaN(*cosHamMin)) {
                  mtmp = *cosHamMin;
                  itmp = 2;
                  exitg1 = true;
                } else {
                  ix = 3;
                }
              }
            }

            if ((ixstart < 2) && (*cosHamMin < mtmp)) {
              mtmp = *cosHamMin;
              itmp = 2;
            }

            *cosHamMin = mtmp;

            /*  Wenn der aktuelle Punkt besser ist, als der in cosHamMin */
            /*  gespeicherte Wert, werden die Ausgabegrößen neu beschrieben. */
            /*    if the current point is better than the stored cosHamMin value, */
            /*    then the output values are rewritten (selected prev. value is = 2) */
            if (itmp == 1) {
              *batFrcOut = batFrc;
              *fulFrcOut = fulFrc;
            }

            k++;
            if (*emlrtBreakCheckR2012bFlagVar != 0) {
              emlrtBreakCheckR2012b(sp);
            }
          }
        }
      }
    }
  }

  /*  end of function */
}
/* Function Definitions */
real_T compressedindex(const emlrtStack *sp, const emxArray_real_T *x, const
  emxArray_real_T *ctable, real_T range, real_T dims)
{
  real_T y;
  real_T py;
  int32_T i;
  int32_T i2;
  int32_T i3;
  real_T d4;
  int32_T k;
  int32_T vlen;
  boolean_T p;
  boolean_T b_p;
  int32_T exitg1;
  int32_T b_k;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;

  /* for a  given vector, find its index within the transition space matrix */
  /* workspace; */
  py = 1.0;
  range++;
  emlrtForLoopVectorCheckR2012b(1.0, 1.0, dims - 2.0, mxDOUBLE_CLASS, (int32_T)
    (dims - 2.0), (emlrtRTEInfo *)&o_emlrtRTEI, sp);
  i = 0;
  while (i <= (int32_T)(dims - 2.0) - 1) {
    i2 = x->size[1];
    if (!((i + 1 >= 1) && (i + 1 <= i2))) {
      emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&bb_emlrtBCI,
        sp);
    }

    if (x->data[i] == 0.0) {
    } else {
      i2 = x->size[1];
      if (!((i + 1 >= 1) && (i + 1 <= i2))) {
        emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&cb_emlrtBCI,
          sp);
      }

      d4 = range - (x->data[i] - 1.0);
      if (d4 > range) {
        i3 = 1;
        i2 = 1;
      } else {
        if (d4 != (int32_T)muDoubleScalarFloor(d4)) {
          emlrtIntegerCheckR2012b(d4, (emlrtDCInfo *)&k_emlrtDCI, sp);
        }

        i2 = ctable->size[0];
        i3 = (int32_T)d4;
        if (!((i3 >= 1) && (i3 <= i2))) {
          emlrtDynamicBoundsCheckR2012b(i3, 1, i2, (emlrtBCInfo *)&x_emlrtBCI,
            sp);
        }

        if (range != (int32_T)muDoubleScalarFloor(range)) {
          emlrtIntegerCheckR2012b(range, (emlrtDCInfo *)&k_emlrtDCI, sp);
        }

        i2 = ctable->size[0];
        k = (int32_T)range;
        if (!((k >= 1) && (k <= i2))) {
          emlrtDynamicBoundsCheckR2012b(k, 1, i2, (emlrtBCInfo *)&x_emlrtBCI, sp);
        }

        i2 = k + 1;
      }

      st.site = &l_emlrtRSI;
      d4 = dims - (1.0 + (real_T)i);
      if (d4 != (int32_T)muDoubleScalarFloor(d4)) {
        emlrtIntegerCheckR2012b(d4, (emlrtDCInfo *)&l_emlrtDCI, &st);
      }

      k = ctable->size[1];
      vlen = (int32_T)d4;
      if (!((vlen >= 1) && (vlen <= k))) {
        emlrtDynamicBoundsCheckR2012b(vlen, 1, k, (emlrtBCInfo *)&y_emlrtBCI,
          &st);
      }

      b_st.site = &m_emlrtRSI;
      if ((i2 - i3 == 1) || (i2 - i3 != 1)) {
        p = true;
      } else {
        p = false;
      }

      if (p) {
      } else {
        emlrtErrorWithMessageIdR2012b(&b_st, &p_emlrtRTEI,
          "Coder:toolbox:autoDimIncompatibility", 0);
      }

      p = false;
      b_p = false;
      k = 0;
      do {
        exitg1 = 0;
        if (k < 2) {
          if (k + 1 <= 1) {
            b_k = i2 - i3;
          } else {
            b_k = 1;
          }

          if (b_k != 0) {
            exitg1 = 1;
          } else {
            k++;
          }
        } else {
          b_p = true;
          exitg1 = 1;
        }
      } while (exitg1 == 0);

      if (!b_p) {
      } else {
        p = true;
      }

      if (!p) {
      } else {
        emlrtErrorWithMessageIdR2012b(&b_st, &q_emlrtRTEI,
          "Coder:toolbox:UnsupportedSpecialEmpty", 0);
      }

      c_st.site = &n_emlrtRSI;
      if (i2 - i3 == 0) {
        y = 0.0;
      } else {
        vlen = i2 - i3;
        y = ctable->data[(i3 + ctable->size[0] * ((int32_T)(dims - (1.0 +
          (real_T)i)) - 1)) - 1];
        d_st.site = &o_emlrtRSI;
        if ((!(2 > i2 - i3)) && (i2 - i3 > 2147483646)) {
          e_st.site = &j_emlrtRSI;
          check_forloop_overflow_error(&e_st);
        }

        for (k = 0; k + 2 <= vlen; k++) {
          y += ctable->data[(i3 + k) + ctable->size[0] * ((int32_T)(dims - (1.0
            + (real_T)i)) - 1)];
        }
      }

      py += y;
      i2 = x->size[1];
      if (!((i + 1 >= 1) && (i + 1 <= i2))) {
        emlrtDynamicBoundsCheckR2012b(i + 1, 1, i2, (emlrtBCInfo *)&db_emlrtBCI,
          sp);
      }

      range -= x->data[i];
    }

    i++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  i2 = x->size[1];
  i3 = x->size[1] - 1;
  if (!((i3 >= 1) && (i3 <= i2))) {
    emlrtDynamicBoundsCheckR2012b(i3, 1, i2, (emlrtBCInfo *)&ab_emlrtBCI, sp);
  }

  return py + x->data[i3 - 1];
}
/* Function Definitions */
void occflow(const emlrtStack *sp, const emxArray_real_T *cgridvec,
             emxArray_real_T *cgridvecprev, emxArray_real_T *context, const
             emxArray_real_T *nei_idx, const emxArray_real_T *nei_weight, real_T
             nei_filter_n, const emxArray_real_T *nei4u_idx, const
             emxArray_real_T *nei4u_weight, real_T nei4u_filter_n, real_T occval,
             real_T minthreshold, real_T maxthreshold, real_T reinitval, real_T
             intensifyrate, real_T nocc_attenuaterate, real_T
             unknown_attenuaterate, real_T sigm_coef, real_T
             do_attenuation_first, emxArray_real_T *predvec, emxArray_real_T
             *maxvec)
{
  emxArray_boolean_T *x;
  int32_T ix;
  int32_T idx;
  emxArray_boolean_T *r0;
  int32_T nx;
  emxArray_int32_T *ii;
  boolean_T overflow;
  int32_T iy;
  boolean_T exitg6;
  boolean_T guard3 = false;
  boolean_T guard4 = false;
  emxArray_real_T *newlyoccidx;
  boolean_T exitg5;
  boolean_T guard2 = false;
  boolean_T b_guard3 = false;
  emxArray_real_T *occidx;
  boolean_T exitg4;
  boolean_T guard1 = false;
  boolean_T b_guard2 = false;
  emxArray_real_T *noccidx;
  int32_T nrnocc;
  int32_T j;
  emxArray_real_T *curr_col;
  emxArray_real_T *updt_col;
  emxArray_real_T *z;
  int32_T coccidx;
  boolean_T b_guard1 = false;
  int32_T ixstart;
  int32_T n;
  real_T mtmp;
  boolean_T exitg3;
  int32_T varargin_1[2];
  int32_T k;
  int32_T iv3[2];
  int32_T iv4[2];
  real_T d0;
  emxArray_real_T *tempcontext;
  emxArray_real_T *b_nei4u_weight;
  real_T sumval;
  int32_T m;
  int32_T iv5[2];
  boolean_T b_ix;
  boolean_T exitg2;
  boolean_T b_ixstart;
  int32_T varargin_2[2];
  boolean_T p;
  boolean_T exitg1;
  emlrtStack st;
  emlrtStack b_st;
  emlrtStack c_st;
  emlrtStack d_st;
  emlrtStack e_st;
  emlrtStack f_st;
  (void)unknown_attenuaterate;
  st.prev = sp;
  st.tls = sp->tls;
  b_st.prev = &st;
  b_st.tls = st.tls;
  c_st.prev = &b_st;
  c_st.tls = b_st.tls;
  d_st.prev = &c_st;
  d_st.tls = c_st.tls;
  e_st.prev = &d_st;
  e_st.tls = d_st.tls;
  f_st.prev = &e_st;
  f_st.tls = e_st.tls;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);
  emxInit_boolean_T(sp, &x, 1, &emlrtRTEI, true);

  /*  */
  /*  Occupancy flow with vector input  */
  /*  */
  /*  Compute indices first  */
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] == occval);
  }

  emxInit_boolean_T(sp, &r0, 1, &emlrtRTEI, true);
  ix = r0->size[0];
  r0->size[0] = cgridvecprev->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)r0, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvecprev->size[0];
  for (ix = 0; ix < idx; ix++) {
    r0->data[ix] = (cgridvecprev->data[ix] != occval);
  }

  ix = x->size[0];
  nx = r0->size[0];
  if (ix != nx) {
    emlrtSizeEqCheck1DR2012b(ix, nx, &emlrtECI, sp);
  }

  st.site = &emlrtRSI;
  ix = x->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = x->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (x->data[ix] && r0->data[ix]);
  }

  emxFree_boolean_T(&r0);
  emxInit_int32_T(&st, &ii, 1, &l_emlrtRTEI, true);
  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg6 = false;
  while ((!exitg6) && (iy <= nx)) {
    guard3 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg6 = true;
      } else {
        guard3 = true;
      }
    } else {
      guard3 = true;
    }

    if (guard3) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    guard4 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        guard4 = true;
      }
    } else {
      guard4 = true;
    }

    if (guard4) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxInit_real_T(&b_st, &newlyoccidx, 1, &f_emlrtRTEI, true);
  ix = newlyoccidx->size[0];
  newlyoccidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix] = ii->data[ix];
  }

  st.site = &b_emlrtRSI;
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] == occval);
  }

  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg5 = false;
  while ((!exitg5) && (iy <= nx)) {
    guard2 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg5 = true;
      } else {
        guard2 = true;
      }
    } else {
      guard2 = true;
    }

    if (guard2) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    b_guard3 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        b_guard3 = true;
      }
    } else {
      b_guard3 = true;
    }

    if (b_guard3) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxInit_real_T(&b_st, &occidx, 1, &g_emlrtRTEI, true);
  ix = occidx->size[0];
  occidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)occidx, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    occidx->data[ix] = ii->data[ix];
  }

  st.site = &c_emlrtRSI;
  ix = x->size[0];
  x->size[0] = cgridvec->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)x, ix, (int32_T)sizeof(boolean_T),
                    &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    x->data[ix] = (cgridvec->data[ix] != occval);
  }

  b_st.site = &i_emlrtRSI;
  nx = x->size[0];
  idx = 0;
  ix = ii->size[0];
  ii->size[0] = x->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                    &emlrtRTEI);
  c_st.site = &j_emlrtRSI;
  if (1 > x->size[0]) {
    overflow = false;
  } else {
    overflow = (x->size[0] > 2147483646);
  }

  if (overflow) {
    d_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&d_st);
  }

  iy = 1;
  exitg4 = false;
  while ((!exitg4) && (iy <= nx)) {
    guard1 = false;
    if (x->data[iy - 1]) {
      idx++;
      ii->data[idx - 1] = iy;
      if (idx >= nx) {
        exitg4 = true;
      } else {
        guard1 = true;
      }
    } else {
      guard1 = true;
    }

    if (guard1) {
      iy++;
    }
  }

  if (idx <= x->size[0]) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &s_emlrtRTEI,
      "Coder:builtins:AssertionFailed", 0);
  }

  if (x->size[0] == 1) {
    if (idx == 0) {
      ix = ii->size[0];
      ii->size[0] = 0;
      emxEnsureCapacity(&b_st, (emxArray__common *)ii, ix, (int32_T)sizeof
                        (int32_T), &emlrtRTEI);
    }
  } else {
    if (1 > idx) {
      ix = 0;
    } else {
      ix = idx;
    }

    c_st.site = &k_emlrtRSI;
    overflow = !(ii->size[0] != 1);
    b_guard2 = false;
    if (overflow) {
      overflow = false;
      if (ix != 1) {
        overflow = true;
      }

      if (overflow) {
        overflow = true;
      } else {
        b_guard2 = true;
      }
    } else {
      b_guard2 = true;
    }

    if (b_guard2) {
      overflow = false;
    }

    d_st.site = &m_emlrtRSI;
    if (!overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&d_st, &t_emlrtRTEI,
        "Coder:FE:PotentialVectorVector", 0);
    }

    nx = ii->size[0];
    ii->size[0] = ix;
    emxEnsureCapacity(&b_st, (emxArray__common *)ii, nx, (int32_T)sizeof(int32_T),
                      &c_emlrtRTEI);
  }

  emxFree_boolean_T(&x);
  emxInit_real_T(&b_st, &noccidx, 1, &h_emlrtRTEI, true);
  ix = noccidx->size[0];
  noccidx->size[0] = ii->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)noccidx, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = ii->size[0];
  for (ix = 0; ix < idx; ix++) {
    noccidx->data[ix] = ii->data[ix];
  }

  nrnocc = noccidx->size[0] - 1;

  /*  1 Intensify newly occupied cells  */
  j = 0;
  emxInit_real_T1(sp, &curr_col, 2, &i_emlrtRTEI, true);
  emxInit_real_T1(sp, &updt_col, 2, &j_emlrtRTEI, true);
  emxInit_real_T1(sp, &z, 2, &emlrtRTEI, true);
  while (j <= newlyoccidx->size[0] - 1) {
    /*  For newly occupied cells  */
    ix = newlyoccidx->size[0];
    if (!((j + 1 >= 1) && (j + 1 <= ix))) {
      emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &eb_emlrtBCI, sp);
    }

    coccidx = (int32_T)newlyoccidx->data[j] - 1;
    ix = context->size[0];
    nx = (int32_T)newlyoccidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &emlrtBCI, sp);
    }

    st.site = &d_emlrtRSI;
    b_st.site = &n_emlrtRSI;
    c_st.site = &o_emlrtRSI;
    ix = context->size[1];
    b_guard1 = false;
    if (ix == 1) {
      b_guard1 = true;
    } else {
      ix = context->size[1];
      if (ix != 1) {
        b_guard1 = true;
      } else {
        overflow = false;
      }
    }

    if (b_guard1) {
      overflow = true;
    }

    if (overflow) {
    } else {
      emlrtErrorWithMessageIdR2012b(&c_st, &u_emlrtRTEI,
        "Coder:toolbox:autoDimIncompatibility", 0);
    }

    ix = context->size[1];
    if (ix > 0) {
    } else {
      emlrtErrorWithMessageIdR2012b(&c_st, &v_emlrtRTEI,
        "Coder:toolbox:eml_min_or_max_varDimZero", 0);
    }

    d_st.site = &p_emlrtRSI;
    ixstart = 1;
    n = context->size[1];
    nx = (int32_T)newlyoccidx->data[j];
    mtmp = context->data[nx - 1];
    ix = context->size[1];
    if (ix > 1) {
      if (muDoubleScalarIsNaN(mtmp)) {
        e_st.site = &r_emlrtRSI;
        ix = context->size[1];
        if (2 > ix) {
          overflow = false;
        } else {
          ix = context->size[1];
          overflow = (ix > 2147483646);
        }

        if (overflow) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        ix = 2;
        exitg3 = false;
        while ((!exitg3) && (ix <= n)) {
          ixstart = ix;
          if (!muDoubleScalarIsNaN(context->data[coccidx + context->size[0] *
               (ix - 1)])) {
            mtmp = context->data[coccidx + context->size[0] * (ix - 1)];
            exitg3 = true;
          } else {
            ix++;
          }
        }
      }

      ix = context->size[1];
      if (ixstart < ix) {
        e_st.site = &q_emlrtRSI;
        ix = context->size[1];
        if (ixstart + 1 > ix) {
          overflow = false;
        } else {
          ix = context->size[1];
          overflow = (ix > 2147483646);
        }

        if (overflow) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        for (ix = ixstart + 1; ix <= n; ix++) {
          if (context->data[coccidx + context->size[0] * (ix - 1)] > mtmp) {
            mtmp = context->data[coccidx + context->size[0] * (ix - 1)];
          }
        }
      }
    }

    if (mtmp < minthreshold) {
      idx = context->size[1];
      iy = context->size[0];
      nx = (int32_T)newlyoccidx->data[j];
      if (!((nx >= 1) && (nx <= iy))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, iy, &b_emlrtBCI, sp);
      }

      for (ix = 0; ix < idx; ix++) {
        context->data[(nx + context->size[0] * ix) - 1] = reinitval;
      }

      /*  Reinitialize */
    } else {
      idx = context->size[1];
      nx = (int32_T)newlyoccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = intensifyrate * context->data
          [(nx + context->size[0] * ix) - 1];
      }

      /*  Intensify */
      st.site = &e_emlrtRSI;
      b_st.site = &s_emlrtRSI;
      c_st.site = &o_emlrtRSI;
      d_st.site = &t_emlrtRSI;
      ix = curr_col->size[0] * curr_col->size[1];
      curr_col->size[0] = 1;
      curr_col->size[1] = updt_col->size[1];
      emxEnsureCapacity(&d_st, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      idx = updt_col->size[0] * updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        curr_col->data[ix] = updt_col->data[ix];
      }

      e_st.site = &u_emlrtRSI;
      for (ix = 0; ix < 2; ix++) {
        varargin_1[ix] = updt_col->size[ix];
      }

      ix = z->size[0] * z->size[1];
      z->size[0] = 1;
      z->size[1] = updt_col->size[1];
      emxEnsureCapacity(&e_st, (emxArray__common *)z, ix, (int32_T)sizeof(real_T),
                        &d_emlrtRTEI);
      iy = updt_col->size[1];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = varargin_1[1];
      emxEnsureCapacity(&e_st, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &e_emlrtRTEI);
      if (dimagree(updt_col, curr_col)) {
      } else {
        emlrtErrorWithMessageIdR2012b(&e_st, &x_emlrtRTEI, "MATLAB:dimagree", 0);
      }

      e_st.site = &v_emlrtRSI;
      if (1 > z->size[1]) {
        overflow = false;
      } else {
        overflow = (z->size[1] > 2147483646);
      }

      if (overflow) {
        f_st.site = &l_emlrtRSI;
        check_forloop_overflow_error(&f_st);
      }

      for (k = 0; k + 1 <= iy; k++) {
        updt_col->data[k] = muDoubleScalarMin(curr_col->data[k], maxthreshold);
      }

      /*  Max-thesholding */
      ix = context->size[0];
      nx = (int32_T)newlyoccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &c_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv3[0] = 1;
      iv3[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv3, 2, *(int32_T (*)[2])updt_col->size, 2,
        &b_emlrtECI, sp);
      nx = (int32_T)newlyoccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(nx + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&z);

  /*  2 Attenuate unoccupied cells */
  if (do_attenuation_first == 1.0) {
    j = 0;
    while (j <= nrnocc) {
      /*  For unoccupied cells */
      ix = noccidx->size[0];
      nx = j + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &d_emlrtBCI, sp);
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &e_emlrtBCI, sp);
      }

      idx = context->size[1];
      iy = (int32_T)noccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = context->data[(iy +
          context->size[0] * ix) - 1] * nocc_attenuaterate;
      }

      /*  Attenuate */
      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &f_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv4[0] = 1;
      iv4[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv4, 2, *(int32_T (*)[2])updt_col->size, 2,
        &c_emlrtECI, sp);
      iy = (int32_T)noccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(iy + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }

      j++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }

  /*  4 Propagation  */
  j = 0;
  while (j <= occidx->size[0] - 1) {
    /*  For occupied cells  */
    ix = occidx->size[0];
    if (!((j + 1 >= 1) && (j + 1 <= ix))) {
      emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &bb_emlrtBCI, sp);
    }

    idx = context->size[1];
    ix = context->size[0];
    iy = (int32_T)occidx->data[j];
    if (!((iy >= 1) && (iy <= ix))) {
      emlrtDynamicBoundsCheckR2012b(iy, 1, ix, &g_emlrtBCI, sp);
    }

    ix = curr_col->size[0] * curr_col->size[1];
    curr_col->size[0] = 1;
    curr_col->size[1] = idx;
    emxEnsureCapacity(sp, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                      (real_T), &emlrtRTEI);
    for (ix = 0; ix < idx; ix++) {
      curr_col->data[curr_col->size[0] * ix] = context->data[(iy + context->
        size[0] * ix) - 1];
    }

    ix = nei_idx->size[0];
    nx = (int32_T)occidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &h_emlrtBCI, sp);
    }

    ix = nei_weight->size[0];
    nx = (int32_T)occidx->data[j];
    if (!((nx >= 1) && (nx <= ix))) {
      emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &i_emlrtBCI, sp);
    }

    emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei_filter_n, mxDOUBLE_CLASS,
      (int32_T)nei_filter_n, &p_emlrtRTEI, sp);
    k = 0;
    while (k <= (int32_T)nei_filter_n - 1) {
      /*  For all neighbor cells  */
      ix = curr_col->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &j_emlrtBCI, sp);
      }

      ix = nei_idx->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &k_emlrtBCI, sp);
      }

      ix = nei_weight->size[1];
      nx = k + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &l_emlrtBCI, sp);
      }

      iy = (int32_T)occidx->data[j];
      if (nei_idx->data[(iy + nei_idx->size[0] * k) - 1] != 0.0) {
        /*  If properly connected, propagate */
        iy = (int32_T)occidx->data[j];
        d0 = nei_idx->data[(iy + nei_idx->size[0] * k) - 1];
        if (d0 != (int32_T)muDoubleScalarFloor(d0)) {
          emlrtIntegerCheckR2012b(d0, &emlrtDCI, sp);
        }

        ix = context->size[0];
        nx = (int32_T)d0;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &m_emlrtBCI, sp);
        }

        ix = context->size[1];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &n_emlrtBCI, sp);
        }

        /*  Maximum value thresholding  */
        iy = (int32_T)occidx->data[j];
        idx = (int32_T)occidx->data[j];
        nx = (int32_T)occidx->data[j];
        ix = context->size[0];
        nx = (int32_T)nei_idx->data[(nx + nei_idx->size[0] * k) - 1];
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &cb_emlrtBCI, sp);
        }

        ix = context->size[1];
        if (!((k + 1 >= 1) && (k + 1 <= ix))) {
          emlrtDynamicBoundsCheckR2012b(k + 1, 1, ix, &db_emlrtBCI, sp);
        }

        context->data[(nx + context->size[0] * k) - 1] = muDoubleScalarMax
          (context->data[((int32_T)nei_idx->data[(iy + nei_idx->size[0] * k) - 1]
                          + context->size[0] * k) - 1], muDoubleScalarMin
           (nei_weight->data[(idx + nei_weight->size[0] * k) - 1] *
            curr_col->data[k], maxthreshold));

        /*  Make sure current context propagation does not weaken the flow information */
      }

      k++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&occidx);
  emxInit_real_T1(sp, &tempcontext, 2, &k_emlrtRTEI, true);

  /*  5 Uncertainty in acceleration */
  ix = tempcontext->size[0] * tempcontext->size[1];
  tempcontext->size[0] = context->size[0];
  tempcontext->size[1] = context->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)tempcontext, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = context->size[0] * context->size[1];
  for (ix = 0; ix < idx; ix++) {
    tempcontext->data[ix] = context->data[ix];
  }

  emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei_filter_n, mxDOUBLE_CLASS, (int32_T)
    nei_filter_n, &q_emlrtRTEI, sp);
  j = 0;
  emxInit_real_T1(sp, &b_nei4u_weight, 2, &emlrtRTEI, true);
  while (j <= (int32_T)nei_filter_n - 1) {
    /*  For all context level */
    k = 0;
    while (k <= nei_idx->size[0] - 1) {
      /*  For all cells */
      sumval = 0.0;
      emlrtForLoopVectorCheckR2012b(1.0, 1.0, nei4u_filter_n, mxDOUBLE_CLASS,
        (int32_T)nei4u_filter_n, &r_emlrtRTEI, sp);
      m = 0;
      while (m <= (int32_T)nei4u_filter_n - 1) {
        ix = nei4u_idx->size[0];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &o_emlrtBCI, sp);
        }

        ix = nei4u_idx->size[1];
        nx = m + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &p_emlrtBCI, sp);
        }

        ix = nei4u_weight->size[0];
        nx = k + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &q_emlrtBCI, sp);
        }

        ix = nei4u_weight->size[1];
        nx = m + 1;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &r_emlrtBCI, sp);
        }

        idx = nei4u_weight->size[1];
        ix = nei4u_weight->size[0];
        nx = 1 + k;
        if (!((nx >= 1) && (nx <= ix))) {
          emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &s_emlrtBCI, sp);
        }

        ix = b_nei4u_weight->size[0] * b_nei4u_weight->size[1];
        b_nei4u_weight->size[0] = 1;
        b_nei4u_weight->size[1] = idx;
        emxEnsureCapacity(sp, (emxArray__common *)b_nei4u_weight, ix, (int32_T)
                          sizeof(real_T), &emlrtRTEI);
        for (ix = 0; ix < idx; ix++) {
          b_nei4u_weight->data[b_nei4u_weight->size[0] * ix] =
            nei4u_weight->data[(nx + nei4u_weight->size[0] * ix) - 1];
        }

        st.site = &f_emlrtRSI;
        mtmp = sum(&st, b_nei4u_weight);
        if (nei4u_idx->data[k + nei4u_idx->size[0] * m] != 0.0) {
          d0 = nei4u_idx->data[k + nei4u_idx->size[0] * m];
          if (d0 != (int32_T)muDoubleScalarFloor(d0)) {
            emlrtIntegerCheckR2012b(d0, &b_emlrtDCI, sp);
          }

          ix = context->size[0];
          nx = (int32_T)d0;
          if (!((nx >= 1) && (nx <= ix))) {
            emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &t_emlrtBCI, sp);
          }

          ix = context->size[1];
          nx = j + 1;
          if (!((nx >= 1) && (nx <= ix))) {
            emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &u_emlrtBCI, sp);
          }

          sumval += nei4u_weight->data[k + nei4u_weight->size[0] * m] / mtmp *
            context->data[((int32_T)nei4u_idx->data[k + nei4u_idx->size[0] * m]
                           + context->size[0] * j) - 1];
        }

        m++;
        if (*emlrtBreakCheckR2012bFlagVar != 0) {
          emlrtBreakCheckR2012b(sp);
        }
      }

      ix = tempcontext->size[0];
      nx = 1 + k;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &y_emlrtBCI, sp);
      }

      ix = tempcontext->size[1];
      if (!((j + 1 >= 1) && (j + 1 <= ix))) {
        emlrtDynamicBoundsCheckR2012b(j + 1, 1, ix, &ab_emlrtBCI, sp);
      }

      tempcontext->data[(nx + tempcontext->size[0] * j) - 1] = sumval;
      k++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }

    j++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_real_T(&b_nei4u_weight);
  ix = context->size[0] * context->size[1];
  context->size[0] = tempcontext->size[0];
  context->size[1] = tempcontext->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)context, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = tempcontext->size[1];
  for (ix = 0; ix < idx; ix++) {
    iy = tempcontext->size[0];
    for (nx = 0; nx < iy; nx++) {
      context->data[nx + context->size[0] * ix] = tempcontext->data[nx +
        tempcontext->size[0] * ix];
    }
  }

  if (do_attenuation_first == 0.0) {
    /*  2 Attenuate unoccupied cells */
    j = 0;
    while (j <= nrnocc) {
      /*  For unoccupied cells, attenuate */
      ix = noccidx->size[0];
      nx = j + 1;
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &v_emlrtBCI, sp);
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &w_emlrtBCI, sp);
      }

      idx = context->size[1];
      iy = (int32_T)noccidx->data[j];
      ix = updt_col->size[0] * updt_col->size[1];
      updt_col->size[0] = 1;
      updt_col->size[1] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)updt_col, ix, (int32_T)sizeof
                        (real_T), &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        updt_col->data[updt_col->size[0] * ix] = context->data[(iy +
          context->size[0] * ix) - 1] * nocc_attenuaterate;
      }

      ix = context->size[0];
      nx = (int32_T)noccidx->data[j];
      if (!((nx >= 1) && (nx <= ix))) {
        emlrtDynamicBoundsCheckR2012b(nx, 1, ix, &x_emlrtBCI, sp);
      }

      idx = context->size[1];
      ix = ii->size[0];
      ii->size[0] = idx;
      emxEnsureCapacity(sp, (emxArray__common *)ii, ix, (int32_T)sizeof(int32_T),
                        &emlrtRTEI);
      for (ix = 0; ix < idx; ix++) {
        ii->data[ix] = ix;
      }

      iv5[0] = 1;
      iv5[1] = ii->size[0];
      emlrtSubAssignSizeCheckR2012b(iv5, 2, *(int32_T (*)[2])updt_col->size, 2,
        &d_emlrtECI, sp);
      iy = (int32_T)noccidx->data[j];
      idx = updt_col->size[1];
      for (ix = 0; ix < idx; ix++) {
        context->data[(iy + context->size[0] * ii->data[ix]) - 1] =
          updt_col->data[updt_col->size[0] * ix];
      }

      j++;
      if (*emlrtBreakCheckR2012bFlagVar != 0) {
        emlrtBreakCheckR2012b(sp);
      }
    }
  }

  emxFree_int32_T(&ii);
  emxFree_real_T(&updt_col);
  emxFree_real_T(&noccidx);

  /*  6 Prediction */
  st.site = &g_emlrtRSI;
  ix = tempcontext->size[0] * tempcontext->size[1];
  tempcontext->size[0] = context->size[1];
  tempcontext->size[1] = context->size[0];
  emxEnsureCapacity(&st, (emxArray__common *)tempcontext, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = context->size[0];
  for (ix = 0; ix < idx; ix++) {
    iy = context->size[1];
    for (nx = 0; nx < iy; nx++) {
      tempcontext->data[nx + tempcontext->size[0] * ix] = context->data[ix +
        context->size[0] * nx];
    }
  }

  b_st.site = &n_emlrtRSI;
  c_st.site = &o_emlrtRSI;
  if (((tempcontext->size[0] == 1) && (tempcontext->size[1] == 1)) ||
      (tempcontext->size[0] != 1)) {
    overflow = true;
  } else {
    overflow = false;
  }

  if (overflow) {
  } else {
    emlrtErrorWithMessageIdR2012b(&c_st, &u_emlrtRTEI,
      "Coder:toolbox:autoDimIncompatibility", 0);
  }

  if (tempcontext->size[0] > 0) {
  } else {
    emlrtErrorWithMessageIdR2012b(&c_st, &v_emlrtRTEI,
      "Coder:toolbox:eml_min_or_max_varDimZero", 0);
  }

  ix = curr_col->size[0] * curr_col->size[1];
  curr_col->size[0] = 1;
  curr_col->size[1] = tempcontext->size[1];
  emxEnsureCapacity(&c_st, (emxArray__common *)curr_col, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  n = tempcontext->size[0];
  ix = 0;
  iy = -1;
  d_st.site = &ab_emlrtRSI;
  if (1 > tempcontext->size[1]) {
    overflow = false;
  } else {
    overflow = (tempcontext->size[1] > 2147483646);
  }

  if (overflow) {
    e_st.site = &l_emlrtRSI;
    check_forloop_overflow_error(&e_st);
  }

  for (nx = 1; nx <= tempcontext->size[1]; nx++) {
    d_st.site = &bb_emlrtRSI;
    ixstart = ix;
    idx = ix + n;
    mtmp = tempcontext->data[ix];
    if (n > 1) {
      if (muDoubleScalarIsNaN(tempcontext->data[ix])) {
        e_st.site = &r_emlrtRSI;
        if (ix + 2 > idx) {
          b_ix = false;
        } else {
          b_ix = (idx > 2147483646);
        }

        if (b_ix) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        k = ix + 1;
        exitg2 = false;
        while ((!exitg2) && (k + 1 <= idx)) {
          ixstart = k;
          if (!muDoubleScalarIsNaN(tempcontext->data[k])) {
            mtmp = tempcontext->data[k];
            exitg2 = true;
          } else {
            k++;
          }
        }
      }

      if (ixstart + 1 < idx) {
        e_st.site = &q_emlrtRSI;
        if (ixstart + 2 > idx) {
          b_ixstart = false;
        } else {
          b_ixstart = (idx > 2147483646);
        }

        if (b_ixstart) {
          f_st.site = &l_emlrtRSI;
          check_forloop_overflow_error(&f_st);
        }

        for (k = ixstart + 1; k + 1 <= idx; k++) {
          if (tempcontext->data[k] > mtmp) {
            mtmp = tempcontext->data[k];
          }
        }
      }
    }

    iy++;
    curr_col->data[iy] = mtmp;
    ix += n;
  }

  emxFree_real_T(&tempcontext);
  ix = maxvec->size[0];
  maxvec->size[0] = curr_col->size[1];
  emxEnsureCapacity(sp, (emxArray__common *)maxvec, ix, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  idx = curr_col->size[1];
  for (ix = 0; ix < idx; ix++) {
    maxvec->data[ix] = curr_col->data[curr_col->size[0] * ix];
  }

  emxFree_real_T(&curr_col);
  st.site = &h_emlrtRSI;

  /*  sigm_a  <= if we increase the value, than the sigm function gets peaky! */
  b_st.site = &cb_emlrtRSI;
  ix = predvec->size[0];
  predvec->size[0] = maxvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = maxvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] = -sigm_coef * maxvec->data[ix];
  }

  c_st.site = &cb_emlrtRSI;
  b_exp(&c_st, predvec);
  ix = predvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = predvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] = 1.0 - predvec->data[ix];
  }

  ix = newlyoccidx->size[0];
  newlyoccidx->size[0] = maxvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = maxvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix] = -sigm_coef * maxvec->data[ix];
  }

  c_st.site = &cb_emlrtRSI;
  b_exp(&c_st, newlyoccidx);
  ix = newlyoccidx->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)newlyoccidx, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = newlyoccidx->size[0];
  for (ix = 0; ix < idx; ix++) {
    newlyoccidx->data[ix]++;
  }

  varargin_1[0] = predvec->size[0];
  varargin_1[1] = 1;
  varargin_2[0] = newlyoccidx->size[0];
  varargin_2[1] = 1;
  overflow = false;
  p = true;
  k = 0;
  exitg1 = false;
  while ((!exitg1) && (k < 2)) {
    if (!(varargin_1[k] == varargin_2[k])) {
      p = false;
      exitg1 = true;
    } else {
      k++;
    }
  }

  if (!p) {
  } else {
    overflow = true;
  }

  if (overflow) {
  } else {
    emlrtErrorWithMessageIdR2012b(&b_st, &w_emlrtRTEI, "MATLAB:dimagree", 0);
  }

  ix = predvec->size[0];
  emxEnsureCapacity(&b_st, (emxArray__common *)predvec, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = predvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    predvec->data[ix] /= newlyoccidx->data[ix];
  }

  emxFree_real_T(&newlyoccidx);

  /*  7 Save previous grid */
  ix = cgridvecprev->size[0];
  cgridvecprev->size[0] = cgridvec->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)cgridvecprev, ix, (int32_T)sizeof
                    (real_T), &emlrtRTEI);
  idx = cgridvec->size[0];
  for (ix = 0; ix < idx; ix++) {
    cgridvecprev->data[ix] = cgridvec->data[ix];
  }

  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}
Beispiel #11
0
/*
 * function [counts] = get_unique_counts(a,uniques)
 */
void get_unique_counts(const emlrtStack *sp, const emxArray_real_T *a, const
  emxArray_real_T *uniques, emxArray_real_T *counts)
{
  int32_T i0;
  int32_T loop_ub;
  int32_T i;
  emxArray_boolean_T *s;
  real_T b_uniques;
  int32_T k;
  emlrtHeapReferenceStackEnterFcnR2012b(sp);

  /* 'get_unique_counts:3' counts = zeros(numel(uniques),1); */
  i0 = counts->size[0];
  counts->size[0] = uniques->size[0];
  emxEnsureCapacity(sp, (emxArray__common *)counts, i0, (int32_T)sizeof(real_T),
                    &emlrtRTEI);
  loop_ub = uniques->size[0];
  for (i0 = 0; i0 < loop_ub; i0++) {
    counts->data[i0] = 0.0;
  }

  /* 'get_unique_counts:5' for i = 1:numel(uniques) */
  i = 1;
  emxInit_boolean_T(sp, &s, 3, &emlrtRTEI, true);
  while (i - 1 <= uniques->size[0] - 1) {
    /* 'get_unique_counts:6' counts(i) = nnz(a==uniques(i)); */
    i0 = s->size[0] * s->size[1] * s->size[2];
    s->size[0] = a->size[0];
    s->size[1] = a->size[1];
    s->size[2] = a->size[2];
    emxEnsureCapacity(sp, (emxArray__common *)s, i0, (int32_T)sizeof(boolean_T),
                      &emlrtRTEI);
    i0 = uniques->size[0];
    if (!((i >= 1) && (i <= i0))) {
      emlrtDynamicBoundsCheckR2012b(i, 1, i0, &emlrtBCI, sp);
    }

    b_uniques = uniques->data[i - 1];
    loop_ub = a->size[0] * a->size[1] * a->size[2];
    for (i0 = 0; i0 < loop_ub; i0++) {
      s->data[i0] = (a->data[i0] == b_uniques);
    }

    loop_ub = 0;
    i0 = s->size[0] * s->size[1] * s->size[2];
    for (k = 0; k < i0; k++) {
      if (s->data[k]) {
        loop_ub++;
      }
    }

    i0 = counts->size[0];
    if (!((i >= 1) && (i <= i0))) {
      emlrtDynamicBoundsCheckR2012b(i, 1, i0, &b_emlrtBCI, sp);
    }

    counts->data[i - 1] = loop_ub;
    i++;
    if (*emlrtBreakCheckR2012bFlagVar != 0) {
      emlrtBreakCheckR2012b(sp);
    }
  }

  emxFree_boolean_T(&s);
  emlrtHeapReferenceStackLeaveFcnR2012b(sp);
}