void LinearRegression::calculate()
{
  if (enough() && fabs(double(_count)*_sumXsquared - _sumX*_sumX) > DBL_EPSILON)
  {
    _b = (double(_count)*_sumXY - _sumY*_sumX)/(double(_count)*_sumXsquared - _sumX*_sumX);
    _a = (_sumY - _b*_sumX)/double(_count);

    double sx  = _b*(_sumXY - _sumX*_sumY/double(_count));
    double sy2 = _sumYsquared - _sumY*_sumY/double(_count);
    double sy  = sy2 - sx;

    _coefD = sx/sy2;
    _coefC = sqrt(_coefD);
    _stdError = sqrt(sy/double(_count - 2));
  }
  else
  {
    _a = 0.0;
    _b = 0.0;

    _coefD = 0.0;
    _coefC = 0.0;
    _stdError = 0.0;
  }
}
Beispiel #2
0
void MainWindow::rankVPN()
{
    for( int i = 0; i < vpnList.count(); ++i )
    {
        connect(vpnList[i], SIGNAL(enough()), this, SLOT(downloadVPN()));
        vpnList[i]->rank();
    }
}
int main(){
	int i;
	double up=2000000.0,lw=0,mid;
	scanf("%d%d",&N,&F);
	for(i=1;i<=N;i++)
		scanf("%d",org+i),org[i]*=1000;
	while(up-lw > .5){
		mid = (up+lw)/2.0;
		if(enough(mid)) lw=mid;
		else up=mid;
	}
	printf("%d\n",(int)up);
	return 0;

}
Beispiel #4
0
bool test(int type_num, int deep, int last)
{
	int i, j;
	printf("test(%d %d %d)...\n", type_num, deep, last); /////////
	for (i = last+1; i < g; i++) {
		types[deep] = i;
		if (deep == type_num - 1) {
			if (enough(type_num)) {
				fprintf (fout, "%d", type_num);
				for (j = 0; j < type_num; j++)
					fprintf(fout, " %d", types[j]+1);
				fprintf(fout, "\n");
				return true;
			}
		} else {
			if(test(type_num, deep+1, i))
				return true;
		}
	}

	return false;
}
Beispiel #5
0
    std::string newRunQuery(OperationContext* txn,
                            Message& m,
                            QueryMessage& q,
                            CurOp& curop,
                            Message &result,
                            bool fromDBDirectClient) {
        // Validate the namespace.
        const char *ns = q.ns;
        uassert(16332, "can't have an empty ns", ns[0]);

        const NamespaceString nsString(ns);
        uassert(16256, str::stream() << "Invalid ns [" << ns << "]", nsString.isValid());

        // Set curop information.
        curop.debug().ns = ns;
        curop.debug().ntoreturn = q.ntoreturn;
        curop.debug().query = q.query;
        curop.setQuery(q.query);

        // If the query is really a command, run it.
        if (nsString.isCommand()) {
            int nToReturn = q.ntoreturn;
            uassert(16979, str::stream() << "bad numberToReturn (" << nToReturn
                                         << ") for $cmd type ns - can only be 1 or -1",
                    nToReturn == 1 || nToReturn == -1);

            curop.markCommand();

            BufBuilder bb;
            bb.skip(sizeof(QueryResult::Value));

            BSONObjBuilder cmdResBuf;
            if (!runCommands(txn, ns, q.query, curop, bb, cmdResBuf, false, q.queryOptions)) {
                uasserted(13530, "bad or malformed command request?");
            }

            curop.debug().iscommand = true;
            // TODO: Does this get overwritten/do we really need to set this twice?
            curop.debug().query = q.query;

            QueryResult::View qr = bb.buf();
            bb.decouple();
            qr.setResultFlagsToOk();
            qr.msgdata().setLen(bb.len());
            curop.debug().responseLength = bb.len();
            qr.msgdata().setOperation(opReply);
            qr.setCursorId(0);
            qr.setStartingFrom(0);
            qr.setNReturned(1);
            result.setData(qr.view2ptr(), true);
            return "";
        }

        const NamespaceString nss(q.ns);

        // Parse the qm into a CanonicalQuery.
        CanonicalQuery* cq;
        Status canonStatus = CanonicalQuery::canonicalize(
                                    q, &cq, WhereCallbackReal(txn, StringData(nss.db())));
        if (!canonStatus.isOK()) {
            uasserted(17287, str::stream() << "Can't canonicalize query: " << canonStatus.toString());
        }

        QLOG() << "Running query:\n" << cq->toString();
        LOG(2) << "Running query: " << cq->toStringShort();

        // Parse, canonicalize, plan, transcribe, and get a plan executor.
        PlanExecutor* rawExec = NULL;

        // We use this a lot below.
        const LiteParsedQuery& pq = cq->getParsed();

        AutoGetCollectionForRead ctx(txn, nss);

        const int dbProfilingLevel = (ctx.getDb() != NULL) ? ctx.getDb()->getProfilingLevel() :
                                                             serverGlobalParams.defaultProfile;

        Collection* collection = ctx.getCollection();

        // We'll now try to get the query executor that will execute this query for us. There
        // are a few cases in which we know upfront which executor we should get and, therefore,
        // we shortcut the selection process here.
        //
        // (a) If the query is over a collection that doesn't exist, we use an EOFStage.
        //
        // (b) if the query is a replication's initial sync one, we use a specifically designed
        // stage that skips extents faster (see details in exec/oplogstart.h).
        //
        // Otherwise we go through the selection of which executor is most suited to the
        // query + run-time context at hand.
        Status status = Status::OK();
        if (NULL != collection && pq.getOptions().oplogReplay) {
            // Takes ownership of 'cq'.
            status = getOplogStartHack(txn, collection, cq, &rawExec);
        }
        else {
            size_t options = QueryPlannerParams::DEFAULT;
            if (shardingState.needCollectionMetadata(pq.ns())) {
                options |= QueryPlannerParams::INCLUDE_SHARD_FILTER;
            }
            // Takes ownership of 'cq'.
            status = getExecutor(txn, collection, cq, PlanExecutor::YIELD_AUTO, &rawExec, options);
        }

        if (!status.isOK()) {
            // NOTE: Do not access cq as getExecutor has deleted it.
            uasserted(17007, "Unable to execute query: " + status.reason());
        }

        verify(NULL != rawExec);
        auto_ptr<PlanExecutor> exec(rawExec);

        // If it's actually an explain, do the explain and return rather than falling through
        // to the normal query execution loop.
        if (pq.isExplain()) {
            BufBuilder bb;
            bb.skip(sizeof(QueryResult::Value));

            BSONObjBuilder explainBob;
            Explain::explainStages(exec.get(), ExplainCommon::EXEC_ALL_PLANS, &explainBob);

            // Add the resulting object to the return buffer.
            BSONObj explainObj = explainBob.obj();
            bb.appendBuf((void*)explainObj.objdata(), explainObj.objsize());

            curop.debug().iscommand = true;
            // TODO: Does this get overwritten/do we really need to set this twice?
            curop.debug().query = q.query;

            // Set query result fields.
            QueryResult::View qr = bb.buf();
            bb.decouple();
            qr.setResultFlagsToOk();
            qr.msgdata().setLen(bb.len());
            curop.debug().responseLength = bb.len();
            qr.msgdata().setOperation(opReply);
            qr.setCursorId(0);
            qr.setStartingFrom(0);
            qr.setNReturned(1);
            result.setData(qr.view2ptr(), true);
            return "";
        }

        // We freak out later if this changes before we're done with the query.
        const ChunkVersion shardingVersionAtStart = shardingState.getVersion(cq->ns());

        // Handle query option $maxTimeMS (not used with commands).
        curop.setMaxTimeMicros(static_cast<unsigned long long>(pq.getMaxTimeMS()) * 1000);
        txn->checkForInterrupt(); // May trigger maxTimeAlwaysTimeOut fail point.

        // uassert if we are not on a primary, and not a secondary with SlaveOk query parameter set.
        bool slaveOK = pq.getOptions().slaveOk || pq.hasReadPref();
        status = repl::getGlobalReplicationCoordinator()->checkCanServeReadsFor(
                txn,
                NamespaceString(cq->ns()),
                slaveOK);
        uassertStatusOK(status);

        // If this exists, the collection is sharded.
        // If it doesn't exist, we can assume we're not sharded.
        // If we're sharded, we might encounter data that is not consistent with our sharding state.
        // We must ignore this data.
        CollectionMetadataPtr collMetadata;
        if (!shardingState.needCollectionMetadata(pq.ns())) {
            collMetadata = CollectionMetadataPtr();
        }
        else {
            collMetadata = shardingState.getCollectionMetadata(pq.ns());
        }

        // Run the query.
        // bb is used to hold query results
        // this buffer should contain either requested documents per query or
        // explain information, but not both
        BufBuilder bb(32768);
        bb.skip(sizeof(QueryResult::Value));

        // How many results have we obtained from the executor?
        int numResults = 0;

        // If we're replaying the oplog, we save the last time that we read.
        OpTime slaveReadTill;

        // Do we save the PlanExecutor in a ClientCursor for getMore calls later?
        bool saveClientCursor = false;

        BSONObj obj;
        PlanExecutor::ExecState state;
        // uint64_t numMisplacedDocs = 0;

        // Get summary info about which plan the executor is using.
        curop.debug().planSummary = Explain::getPlanSummary(exec.get());

        while (PlanExecutor::ADVANCED == (state = exec->getNext(&obj, NULL))) {
            // Add result to output buffer.
            bb.appendBuf((void*)obj.objdata(), obj.objsize());

            // Count the result.
            ++numResults;

            // Possibly note slave's position in the oplog.
            if (pq.getOptions().oplogReplay) {
                BSONElement e = obj["ts"];
                if (Date == e.type() || Timestamp == e.type()) {
                    slaveReadTill = e._opTime();
                }
            }

            // TODO: only one type of 2d search doesn't support this.  We need a way to pull it out
            // of CanonicalQuery. :(
            const bool supportsGetMore = true;
            if (!supportsGetMore && (enough(pq, numResults)
                                     || bb.len() >= MaxBytesToReturnToClientAtOnce)) {
                break;
            }
            else if (enoughForFirstBatch(pq, numResults, bb.len())) {
                QLOG() << "Enough for first batch, wantMore=" << pq.wantMore()
                       << " numToReturn=" << pq.getNumToReturn()
                       << " numResults=" << numResults
                       << endl;
                // If only one result requested assume it's a findOne() and don't save the cursor.
                if (pq.wantMore() && 1 != pq.getNumToReturn()) {
                    QLOG() << " executor EOF=" << exec->isEOF() << endl;
                    saveClientCursor = !exec->isEOF();
                }
                break;
            }
        }

        // If we cache the executor later, we want to deregister it as it receives notifications
        // anyway by virtue of being cached.
        //
        // If we don't cache the executor later, we are deleting it, so it must be deregistered.
        //
        // So, no matter what, deregister the executor.
        exec->deregisterExec();

        // Caller expects exceptions thrown in certain cases.
        if (PlanExecutor::EXEC_ERROR == state) {
            scoped_ptr<PlanStageStats> stats(exec->getStats());
            error() << "Plan executor error, stats: "
                    << Explain::statsToBSON(*stats);
            uasserted(17144, "Executor error: " + WorkingSetCommon::toStatusString(obj));
        }

        // Why save a dead executor?
        if (PlanExecutor::DEAD == state) {
            saveClientCursor = false;
        }
        else if (pq.getOptions().tailable) {
            // If we're tailing a capped collection, we don't bother saving the cursor if the
            // collection is empty. Otherwise, the semantics of the tailable cursor is that the
            // client will keep trying to read from it. So we'll keep it around.
            if (collection && collection->numRecords(txn) != 0 && pq.getNumToReturn() != 1) {
                saveClientCursor = true;
            }
        }

        // TODO(greg): This will go away soon.
        if (!shardingState.getVersion(pq.ns()).isWriteCompatibleWith(shardingVersionAtStart)) {
            // if the version changed during the query we might be missing some data and its safe to
            // send this as mongos can resend at this point
            throw SendStaleConfigException(pq.ns(), "version changed during initial query",
                                           shardingVersionAtStart,
                                           shardingState.getVersion(pq.ns()));
        }

        const logger::LogComponent queryLogComponent = logger::LogComponent::kQuery;
        const logger::LogSeverity logLevelOne = logger::LogSeverity::Debug(1);

        PlanSummaryStats summaryStats;
        Explain::getSummaryStats(exec.get(), &summaryStats);

        curop.debug().ntoskip = pq.getSkip();
        curop.debug().nreturned = numResults;
        curop.debug().scanAndOrder = summaryStats.hasSortStage;
        curop.debug().nscanned = summaryStats.totalKeysExamined;
        curop.debug().nscannedObjects = summaryStats.totalDocsExamined;
        curop.debug().idhack = summaryStats.isIdhack;

        // Set debug information for consumption by the profiler.
        if (dbProfilingLevel > 0 ||
            curop.elapsedMillis() > serverGlobalParams.slowMS ||
            logger::globalLogDomain()->shouldLog(queryLogComponent, logLevelOne)) {
            // Get BSON stats.
            scoped_ptr<PlanStageStats> execStats(exec->getStats());
            BSONObjBuilder statsBob;
            Explain::statsToBSON(*execStats, &statsBob);
            curop.debug().execStats.set(statsBob.obj());

            // Replace exec stats with plan summary if stats cannot fit into CachedBSONObj.
            if (curop.debug().execStats.tooBig() && !curop.debug().planSummary.empty()) {
                BSONObjBuilder bob;
                bob.append("summary", curop.debug().planSummary.toString());
                curop.debug().execStats.set(bob.done());
            }
        }

        long long ccId = 0;
        if (saveClientCursor) {
            // We won't use the executor until it's getMore'd.
            exec->saveState();

            // Allocate a new ClientCursor.  We don't have to worry about leaking it as it's
            // inserted into a global map by its ctor.
            ClientCursor* cc = new ClientCursor(collection, exec.get(),
                                                cq->getParsed().getOptions().toInt(),
                                                cq->getParsed().getFilter());
            ccId = cc->cursorid();

            if (fromDBDirectClient) {
                cc->setUnownedRecoveryUnit(txn->recoveryUnit());
            }
            else if (state == PlanExecutor::IS_EOF && pq.getOptions().tailable) {
                // Don't stash the RU for tailable cursors at EOF, let them get a new RU on their
                // next getMore.
            }
            else {
                // We stash away the RecoveryUnit in the ClientCursor.  It's used for subsequent
                // getMore requests.  The calling OpCtx gets a fresh RecoveryUnit.
                cc->setOwnedRecoveryUnit(txn->releaseRecoveryUnit());
                StorageEngine* storageEngine = getGlobalEnvironment()->getGlobalStorageEngine();
                txn->setRecoveryUnit(storageEngine->newRecoveryUnit(txn));
            }

            QLOG() << "caching executor with cursorid " << ccId
                   << " after returning " << numResults << " results" << endl;

            // ClientCursor takes ownership of executor.  Release to make sure it's not deleted.
            exec.release();

            // TODO document
            if (pq.getOptions().oplogReplay && !slaveReadTill.isNull()) {
                cc->slaveReadTill(slaveReadTill);
            }

            // TODO document
            if (pq.getOptions().exhaust) {
                curop.debug().exhaust = true;
            }

            // Set attributes for getMore.
            cc->setCollMetadata(collMetadata);
            cc->setPos(numResults);

            // If the query had a time limit, remaining time is "rolled over" to the cursor (for
            // use by future getmore ops).
            cc->setLeftoverMaxTimeMicros(curop.getRemainingMaxTimeMicros());
        }
        else {
            QLOG() << "Not caching executor but returning " << numResults << " results.\n";
        }

        // Add the results from the query into the output buffer.
        result.appendData(bb.buf(), bb.len());
        bb.decouple();

        // Fill out the output buffer's header.
        QueryResult::View qr = result.header().view2ptr();
        qr.setCursorId(ccId);
        curop.debug().cursorid = (0 == ccId ? -1 : ccId);
        qr.setResultFlagsToOk();
        qr.msgdata().setOperation(opReply);
        qr.setStartingFrom(0);
        qr.setNReturned(numResults);

        // curop.debug().exhaust is set above.
        return curop.debug().exhaust ? pq.ns() : "";
    }
Beispiel #6
0
    /**
     * This is called by db/ops/query.cpp.  This is the entry point for answering a query.
     */
    std::string newRunQuery(CanonicalQuery* cq, CurOp& curop, Message &result) {
        QLOG() << "Running query on new system: " << cq->toString();

        // This is a read lock.
        Client::ReadContext ctx(cq->ns(), storageGlobalParams.dbpath);

        // Parse, canonicalize, plan, transcribe, and get a runner.
        Runner* rawRunner = NULL;

        // We use this a lot below.
        const LiteParsedQuery& pq = cq->getParsed();

        // Need to call cq->toString() now, since upon error getRunner doesn't guarantee
        // cq is in a consistent state.
        string cqStr = cq->toString();

        // We'll now try to get the query runner that will execute this query for us. There
        // are a few cases in which we know upfront which runner we should get and, therefore,
        // we shortcut the selection process here.
        //
        // (a) If the query is over a collection that doesn't exist, we get a special runner
        // that's is so (a runner) which doesn't return results, the EOFRunner.
        //
        // (b) if the query is a replication's initial sync one, we get a SingleSolutinRunner
        // that uses a specifically designed stage that skips extents faster (see details in
        // exec/oplogstart.h)
        //
        // Otherwise we go through the selection of which runner is most suited to the
        // query + run-time context at hand.
        Status status = Status::OK();
        if (ctx.ctx().db()->getCollection(cq->ns()) == NULL) {
            rawRunner = new EOFRunner(cq, cq->ns());
        }
        else if (pq.hasOption(QueryOption_OplogReplay)) {
            status = getOplogStartHack(cq, &rawRunner);
        }
        else {
            // Takes ownership of cq.
            size_t options = QueryPlannerParams::DEFAULT;
            if (shardingState.needCollectionMetadata(pq.ns())) {
                options |= QueryPlannerParams::INCLUDE_SHARD_FILTER;
            }
            status = getRunner(cq, &rawRunner, options);
        }

        if (!status.isOK()) {
            uasserted(17007, "Couldn't get runner for query because: " + status.reason() + " query is " + cqStr);
        }

        verify(NULL != rawRunner);
        auto_ptr<Runner> runner(rawRunner);

        // We freak out later if this changes before we're done with the query.
        const ChunkVersion shardingVersionAtStart = shardingState.getVersion(cq->ns());

        // Handle query option $maxTimeMS (not used with commands).
        curop.setMaxTimeMicros(static_cast<unsigned long long>(pq.getMaxTimeMS()) * 1000);
        killCurrentOp.checkForInterrupt(); // May trigger maxTimeAlwaysTimeOut fail point.

        // uassert if we are not on a primary, and not a secondary with SlaveOk query parameter set.
        replVerifyReadsOk(&pq);

        // If this exists, the collection is sharded.
        // If it doesn't exist, we can assume we're not sharded.
        // If we're sharded, we might encounter data that is not consistent with our sharding state.
        // We must ignore this data.
        CollectionMetadataPtr collMetadata;
        if (!shardingState.needCollectionMetadata(pq.ns())) {
            collMetadata = CollectionMetadataPtr();
        }
        else {
            collMetadata = shardingState.getCollectionMetadata(pq.ns());
        }

        // Run the query.
        // bb is used to hold query results
        // this buffer should contain either requested documents per query or
        // explain information, but not both
        BufBuilder bb(32768);
        bb.skip(sizeof(QueryResult));

        // How many results have we obtained from the runner?
        int numResults = 0;

        // If we're replaying the oplog, we save the last time that we read.
        OpTime slaveReadTill;

        // Do we save the Runner in a ClientCursor for getMore calls later?
        bool saveClientCursor = false;

        // We turn on auto-yielding for the runner here.  The runner registers itself with the
        // active runners list in ClientCursor.
        ClientCursor::registerRunner(runner.get());
        runner->setYieldPolicy(Runner::YIELD_AUTO);
        auto_ptr<DeregisterEvenIfUnderlyingCodeThrows> safety(
            new DeregisterEvenIfUnderlyingCodeThrows(runner.get()));

        BSONObj obj;
        Runner::RunnerState state;
        // uint64_t numMisplacedDocs = 0;

        // set this outside loop. we will need to use this both within loop and when deciding
        // to fill in explain information
        const bool isExplain = pq.isExplain();

        while (Runner::RUNNER_ADVANCED == (state = runner->getNext(&obj, NULL))) {
            // Add result to output buffer. This is unnecessary if explain info is requested
            if (!isExplain) {
                bb.appendBuf((void*)obj.objdata(), obj.objsize());
            }

            // Count the result.
            ++numResults;

            // Possibly note slave's position in the oplog.
            if (pq.hasOption(QueryOption_OplogReplay)) {
                BSONElement e = obj["ts"];
                if (Date == e.type() || Timestamp == e.type()) {
                    slaveReadTill = e._opTime();
                }
            }

            // TODO: only one type of 2d search doesn't support this.  We need a way to pull it out
            // of CanonicalQuery. :(
            const bool supportsGetMore = true;
            if (isExplain) {
                if (enoughForExplain(pq, numResults)) {
                    break;
                }
            }
            else if (!supportsGetMore && (enough(pq, numResults)
                                          || bb.len() >= MaxBytesToReturnToClientAtOnce)) {
                break;
            }
            else if (enoughForFirstBatch(pq, numResults, bb.len())) {
                QLOG() << "Enough for first batch, wantMore=" << pq.wantMore()
                       << " numToReturn=" << pq.getNumToReturn()
                       << " numResults=" << numResults
                       << endl;
                // If only one result requested assume it's a findOne() and don't save the cursor.
                if (pq.wantMore() && 1 != pq.getNumToReturn()) {
                    QLOG() << " runner EOF=" << runner->isEOF() << endl;
                    saveClientCursor = !runner->isEOF();
                }
                break;
            }
        }

        // If we cache the runner later, we want to deregister it as it receives notifications
        // anyway by virtue of being cached.
        //
        // If we don't cache the runner later, we are deleting it, so it must be deregistered.
        //
        // So, no matter what, deregister the runner.
        safety.reset();

        // Caller expects exceptions thrown in certain cases:
        // * in-memory sort using too much RAM.
        if (Runner::RUNNER_ERROR == state) {
            uasserted(17144, "Runner error, memory limit for sort probably exceeded");
        }

        // Why save a dead runner?
        if (Runner::RUNNER_DEAD == state) {
            saveClientCursor = false;
        }
        else if (pq.hasOption(QueryOption_CursorTailable)) {
            // If we're tailing a capped collection, we don't bother saving the cursor if the
            // collection is empty. Otherwise, the semantics of the tailable cursor is that the
            // client will keep trying to read from it. So we'll keep it around.
            Collection* collection = ctx.ctx().db()->getCollection(cq->ns());
            if (collection && collection->numRecords() != 0 && pq.getNumToReturn() != 1) {
                saveClientCursor = true;
            }
        }

        // TODO(greg): This will go away soon.
        if (!shardingState.getVersion(pq.ns()).isWriteCompatibleWith(shardingVersionAtStart)) {
            // if the version changed during the query we might be missing some data and its safe to
            // send this as mongos can resend at this point
            throw SendStaleConfigException(pq.ns(), "version changed during initial query",
                                           shardingVersionAtStart,
                                           shardingState.getVersion(pq.ns()));
        }

        // Append explain information to query results by asking the runner to produce them.
        if (isExplain) {
            TypeExplain* bareExplain;
            Status res = runner->getExplainPlan(&bareExplain);

            if (!res.isOK()) {
                error() << "could not produce explain of query '" << pq.getFilter()
                        << "', error: " << res.reason();
                // If numResults and the data in bb don't correspond, we'll crash later when rooting
                // through the reply msg.
                BSONObj emptyObj;
                bb.appendBuf((void*)emptyObj.objdata(), emptyObj.objsize());
                // The explain output is actually a result.
                numResults = 1;
                // TODO: we can fill out millis etc. here just fine even if the plan screwed up.
            }
            else {
                boost::scoped_ptr<TypeExplain> explain(bareExplain);

                // Fill in the missing run-time fields in explain, starting with propeties of
                // the process running the query.
                std::string server = mongoutils::str::stream()
                    << getHostNameCached() << ":" << serverGlobalParams.port;
                explain->setServer(server);

                // We might have skipped some results due to chunk migration etc. so our count is
                // correct.
                explain->setN(numResults);

                // Clock the whole operation.
                explain->setMillis(curop.elapsedMillis());

                BSONObj explainObj = explain->toBSON();
                bb.appendBuf((void*)explainObj.objdata(), explainObj.objsize());

                // The explain output is actually a result.
                numResults = 1;
            }
        }

        long long ccId = 0;
        if (saveClientCursor) {
            // We won't use the runner until it's getMore'd.
            runner->saveState();

            // Allocate a new ClientCursor.  We don't have to worry about leaking it as it's
            // inserted into a global map by its ctor.
            ClientCursor* cc = new ClientCursor(runner.get(), cq->getParsed().getOptions(),
                                                cq->getParsed().getFilter());
            ccId = cc->cursorid();

            QLOG() << "caching runner with cursorid " << ccId
                   << " after returning " << numResults << " results" << endl;

            // ClientCursor takes ownership of runner.  Release to make sure it's not deleted.
            runner.release();

            // TODO document
            if (pq.hasOption(QueryOption_OplogReplay) && !slaveReadTill.isNull()) {
                cc->slaveReadTill(slaveReadTill);
            }

            // TODO document
            if (pq.hasOption(QueryOption_Exhaust)) {
                curop.debug().exhaust = true;
            }

            // Set attributes for getMore.
            cc->setCollMetadata(collMetadata);
            cc->setPos(numResults);

            // If the query had a time limit, remaining time is "rolled over" to the cursor (for
            // use by future getmore ops).
            cc->setLeftoverMaxTimeMicros(curop.getRemainingMaxTimeMicros());
        }
        else {
            QLOG() << "not caching runner but returning " << numResults << " results\n";
        }

        // Add the results from the query into the output buffer.
        result.appendData(bb.buf(), bb.len());
        bb.decouple();

        // Fill out the output buffer's header.
        QueryResult* qr = static_cast<QueryResult*>(result.header());
        qr->cursorId = ccId;
        curop.debug().cursorid = (0 == ccId ? -1 : ccId);
        qr->setResultFlagsToOk();
        qr->setOperation(opReply);
        qr->startingFrom = 0;
        qr->nReturned = numResults;

        curop.debug().ntoskip = pq.getSkip();
        curop.debug().nreturned = numResults;

        // curop.debug().exhaust is set above.
        return curop.debug().exhaust ? pq.ns() : "";
    }
Beispiel #7
0
    /**
     * This is called by db/ops/query.cpp.  This is the entry point for answering a query.
     */
    string newRunQuery(Message& m, QueryMessage& q, CurOp& curop, Message &result) {
        log() << "Running query on new system: " << q.query.toString() << endl;

        // This is a read lock.
        Client::ReadContext ctx(q.ns, dbpath);

        // Parse, canonicalize, plan, transcribe, and get a runner.
        Runner* rawRunner;
        CanonicalQuery* cq;
        Status status = getRunner(q, &rawRunner, &cq);
        if (!status.isOK()) {
            uasserted(17007, "Couldn't process query " + q.query.toString()
                         + " why: " + status.reason());
        }
        verify(NULL != rawRunner);
        auto_ptr<Runner> runner(rawRunner);

        // We freak out later if this changes before we're done with the query.
        const ChunkVersion shardingVersionAtStart = shardingState.getVersion(q.ns);

        // We use this a lot below.
        const LiteParsedQuery& pq = cq->getParsed();

        // TODO: Document why we do this.
        // TODO: do this when we can pass in our own parsed query
        //replVerifyReadsOk(&pq);

        // If this exists, the collection is sharded.
        // If it doesn't exist, we can assume we're not sharded.
        // If we're sharded, we might encounter data that is not consistent with our sharding state.
        // We must ignore this data.
        CollectionMetadataPtr collMetadata;
        if (!shardingState.needCollectionMetadata(pq.ns())) {
            collMetadata = CollectionMetadataPtr();
        }
        else {
            collMetadata = shardingState.getCollectionMetadata(pq.ns());
        }

        // Run the query.
        BufBuilder bb(32768);
        bb.skip(sizeof(QueryResult));

        // How many results have we obtained from the runner?
        int numResults = 0;

        // If we're replaying the oplog, we save the last time that we read.
        OpTime slaveReadTill;

        // Do we save the Runner in a ClientCursor for getMore calls later?
        bool saveClientCursor = false;

        // We turn on auto-yielding for the runner here, so we must register it with the active
        // runners list in ClientCursor.
        ClientCursor::registerRunner(runner.get());
        runner->setYieldPolicy(Runner::YIELD_AUTO);

        BSONObj obj;
        Runner::RunnerState state;

        while (Runner::RUNNER_ADVANCED == (state = runner->getNext(&obj, NULL))) {
            // If we're sharded make sure that we don't return any data that hasn't been migrated
            // off of our shared yet.
            if (collMetadata) {
                // This information can change if we yield and as such we must make sure to re-fetch
                // it if we yield.
                KeyPattern kp(collMetadata->getKeyPattern());
                // This performs excessive BSONObj creation but that's OK for now.
                if (!collMetadata->keyBelongsToMe(kp.extractSingleKey(obj))) { continue; }
            }

            // Add result to output buffer.
            bb.appendBuf((void*)obj.objdata(), obj.objsize());

            // Count the result.
            ++numResults;

            // Possibly note slave's position in the oplog.
            if (pq.hasOption(QueryOption_OplogReplay)) {
                BSONElement e = obj["ts"];
                if (Date == e.type() || Timestamp == e.type()) {
                    slaveReadTill = e._opTime();
                }
            }

            // TODO: only one type of 2d search doesn't support this.  We need a way to pull it out
            // of CanonicalQuery. :(
            const bool supportsGetMore = true;
            const bool isExplain = pq.isExplain();
            if (isExplain && enoughForExplain(pq, numResults)) {
                break;
            }
            else if (!supportsGetMore && (enough(pq, numResults)
                                          || bb.len() >= MaxBytesToReturnToClientAtOnce)) {
                break;
            }
            else if (enoughForFirstBatch(pq, numResults, bb.len())) {
                // If only one result requested assume it's a findOne() and don't save the cursor.
                if (pq.wantMore() && 1 != pq.getNumToReturn()) {
                    saveClientCursor = true;
                }
                break;
            }
        }

        // If we cache the runner later, we want to deregister it as it receives notifications
        // anyway by virtue of being cached.
        //
        // If we don't cache the runner later, we are deleting it, so it must be deregistered.
        //
        // So, no matter what, deregister the runner.
        ClientCursor::deregisterRunner(runner.get());

        // Why save a dead runner?
        if (Runner::RUNNER_DEAD == state) { saveClientCursor = false; }

        // TODO: Stage creation can set tailable depending on what's in the parsed query.  We have
        // the full parsed query available during planning...set it there.
        //
        // TODO: If we're tailable we want to save the client cursor.  Make sure we do this later.
        //if (pq.hasOption(QueryOption_CursorTailable) && pq.getNumToReturn() != 1) { ... }

        // TODO(greg): This will go away soon.
        if (!shardingState.getVersion(pq.ns()).isWriteCompatibleWith(shardingVersionAtStart)) {
            // if the version changed during the query we might be missing some data and its safe to
            // send this as mongos can resend at this point
            throw SendStaleConfigException(pq.ns(), "version changed during initial query",
                                           shardingVersionAtStart,
                                           shardingState.getVersion(pq.ns()));
        }

        long long ccId = 0;
        if (saveClientCursor) {
            // We won't use the runner until it's getMore'd.
            runner->saveState();

            // Allocate a new ClientCursor.  We don't have to worry about leaking it as it's
            // inserted into a global map by its ctor.
            ClientCursor* cc = new ClientCursor(runner.get(), cq->getParsed().getOptions(),
                                                cq->getParsed().getFilter());
            ccId = cc->cursorid();

            log() << "caching runner with cursorid " << ccId << endl;

            // ClientCursor takes ownership of runner.  Release to make sure it's not deleted.
            runner.release();

            // TODO document
            if (pq.hasOption(QueryOption_OplogReplay) && !slaveReadTill.isNull()) {
                cc->slaveReadTill(slaveReadTill);
            }

            // TODO document
            if (pq.hasOption(QueryOption_Exhaust)) {
                curop.debug().exhaust = true;
            }

            // Set attributes for getMore.
            cc->setCollMetadata(collMetadata);
            cc->setPos(numResults);

            // If the query had a time limit, remaining time is "rolled over" to the cursor (for
            // use by future getmore ops).
            cc->setLeftoverMaxTimeMicros(curop.getRemainingMaxTimeMicros());
        }

        // Add the results from the query into the output buffer.
        result.appendData(bb.buf(), bb.len());
        bb.decouple();

        // Fill out the output buffer's header.
        QueryResult* qr = static_cast<QueryResult*>(result.header());
        qr->cursorId = ccId;
        curop.debug().cursorid = (0 == ccId ? -1 : ccId);
        qr->setResultFlagsToOk();
        qr->setOperation(opReply);
        qr->startingFrom = 0;
        qr->nReturned = numResults;
        // TODO: nscanned is bogus.
        // curop.debug().nscanned = ( cursor ? cursor->nscanned() : 0LL );
        curop.debug().ntoskip = pq.getSkip();
        curop.debug().nreturned = numResults;

        // curop.debug().exhaust is set above.
        return curop.debug().exhaust ? pq.ns() : "";
    }
Beispiel #8
0
    std::string newRunQuery(Message& m, QueryMessage& q, CurOp& curop, Message &result) {
        // Validate the namespace.
        const char *ns = q.ns;
        uassert(16332, "can't have an empty ns", ns[0]);

        const NamespaceString nsString(ns);
        uassert(16256, str::stream() << "Invalid ns [" << ns << "]", nsString.isValid());

        // Set curop information.
        curop.debug().ns = ns;
        curop.debug().ntoreturn = q.ntoreturn;
        curop.debug().query = q.query;
        curop.setQuery(q.query);

        // If the query is really a command, run it.
        if (nsString.isCommand()) {
            int nToReturn = q.ntoreturn;
            uassert(16979, str::stream() << "bad numberToReturn (" << nToReturn
                                         << ") for $cmd type ns - can only be 1 or -1",
                    nToReturn == 1 || nToReturn == -1);

            curop.markCommand();

            BufBuilder bb;
            bb.skip(sizeof(QueryResult));

            BSONObjBuilder cmdResBuf;
            if (!runCommands(ns, q.query, curop, bb, cmdResBuf, false, q.queryOptions)) {
                uasserted(13530, "bad or malformed command request?");
            }

            curop.debug().iscommand = true;
            // TODO: Does this get overwritten/do we really need to set this twice?
            curop.debug().query = q.query;

            QueryResult* qr = reinterpret_cast<QueryResult*>(bb.buf());
            bb.decouple();
            qr->setResultFlagsToOk();
            qr->len = bb.len();
            curop.debug().responseLength = bb.len();
            qr->setOperation(opReply);
            qr->cursorId = 0;
            qr->startingFrom = 0;
            qr->nReturned = 1;
            result.setData(qr, true);
            return "";
        }

        // This is a read lock.  We require this because if we're parsing a $where, the
        // where-specific parsing code assumes we have a lock and creates execution machinery that
        // requires it.
        Client::ReadContext ctx(q.ns);
        Collection* collection = ctx.ctx().db()->getCollection( ns );

        // Parse the qm into a CanonicalQuery.
        CanonicalQuery* cq;
        Status canonStatus = CanonicalQuery::canonicalize(q, &cq);
        if (!canonStatus.isOK()) {
            uasserted(17287, str::stream() << "Can't canonicalize query: " << canonStatus.toString());
        }
        verify(cq);

        QLOG() << "Running query:\n" << cq->toString();
        LOG(2) << "Running query: " << cq->toStringShort();

        // Parse, canonicalize, plan, transcribe, and get a runner.
        Runner* rawRunner = NULL;

        // We use this a lot below.
        const LiteParsedQuery& pq = cq->getParsed();

        // We'll now try to get the query runner that will execute this query for us. There
        // are a few cases in which we know upfront which runner we should get and, therefore,
        // we shortcut the selection process here.
        //
        // (a) If the query is over a collection that doesn't exist, we get a special runner
        // that's is so (a runner) which doesn't return results, the EOFRunner.
        //
        // (b) if the query is a replication's initial sync one, we get a SingleSolutinRunner
        // that uses a specifically designed stage that skips extents faster (see details in
        // exec/oplogstart.h)
        //
        // Otherwise we go through the selection of which runner is most suited to the
        // query + run-time context at hand.
        Status status = Status::OK();
        if (collection == NULL) {
            rawRunner = new EOFRunner(cq, cq->ns());
        }
        else if (pq.hasOption(QueryOption_OplogReplay)) {
            status = getOplogStartHack(collection, cq, &rawRunner);
        }
        else {
            // Takes ownership of cq.
            size_t options = QueryPlannerParams::DEFAULT;
            if (shardingState.needCollectionMetadata(pq.ns())) {
                options |= QueryPlannerParams::INCLUDE_SHARD_FILTER;
            }
            status = getRunner(cq, &rawRunner, options);
        }

        if (!status.isOK()) {
            // NOTE: Do not access cq as getRunner has deleted it.
            uasserted(17007, "Unable to execute query: " + status.reason());
        }

        verify(NULL != rawRunner);
        auto_ptr<Runner> runner(rawRunner);

        // We freak out later if this changes before we're done with the query.
        const ChunkVersion shardingVersionAtStart = shardingState.getVersion(cq->ns());

        // Handle query option $maxTimeMS (not used with commands).
        curop.setMaxTimeMicros(static_cast<unsigned long long>(pq.getMaxTimeMS()) * 1000);
        killCurrentOp.checkForInterrupt(); // May trigger maxTimeAlwaysTimeOut fail point.

        // uassert if we are not on a primary, and not a secondary with SlaveOk query parameter set.
        replVerifyReadsOk(&pq);

        // If this exists, the collection is sharded.
        // If it doesn't exist, we can assume we're not sharded.
        // If we're sharded, we might encounter data that is not consistent with our sharding state.
        // We must ignore this data.
        CollectionMetadataPtr collMetadata;
        if (!shardingState.needCollectionMetadata(pq.ns())) {
            collMetadata = CollectionMetadataPtr();
        }
        else {
            collMetadata = shardingState.getCollectionMetadata(pq.ns());
        }

        // Run the query.
        // bb is used to hold query results
        // this buffer should contain either requested documents per query or
        // explain information, but not both
        BufBuilder bb(32768);
        bb.skip(sizeof(QueryResult));

        // How many results have we obtained from the runner?
        int numResults = 0;

        // If we're replaying the oplog, we save the last time that we read.
        OpTime slaveReadTill;

        // Do we save the Runner in a ClientCursor for getMore calls later?
        bool saveClientCursor = false;

        // We turn on auto-yielding for the runner here.  The runner registers itself with the
        // active runners list in ClientCursor.
        auto_ptr<ScopedRunnerRegistration> safety(new ScopedRunnerRegistration(runner.get()));
        runner->setYieldPolicy(Runner::YIELD_AUTO);

        BSONObj obj;
        Runner::RunnerState state;
        // uint64_t numMisplacedDocs = 0;

        // set this outside loop. we will need to use this both within loop and when deciding
        // to fill in explain information
        const bool isExplain = pq.isExplain();

        // Have we retrieved info about which plan the runner will
        // use to execute the query yet?
        bool gotPlanInfo = false;
        PlanInfo* rawInfo;
        boost::scoped_ptr<PlanInfo> planInfo;

        while (Runner::RUNNER_ADVANCED == (state = runner->getNext(&obj, NULL))) {
            // Add result to output buffer. This is unnecessary if explain info is requested
            if (!isExplain) {
                bb.appendBuf((void*)obj.objdata(), obj.objsize());
            }

            // Count the result.
            ++numResults;

            // In the case of the multi plan runner, we may not be able to
            // successfully retrieve plan info until after the query starts
            // to run. This is because the multi plan runner doesn't know what
            // plan it will end up using until it runs candidates and selects
            // the best.
            //
            // TODO: Do we ever want to output what the MPR is comparing?
            if (!gotPlanInfo) {
                Status infoStatus = runner->getInfo(NULL, &rawInfo);
                if (infoStatus.isOK()) {
                    gotPlanInfo = true;
                    planInfo.reset(rawInfo);
                    // planSummary is really a ThreadSafeString which copies the data from
                    // the provided pointer.
                    curop.debug().planSummary = planInfo->planSummary.c_str();
                }
            }

            // Possibly note slave's position in the oplog.
            if (pq.hasOption(QueryOption_OplogReplay)) {
                BSONElement e = obj["ts"];
                if (Date == e.type() || Timestamp == e.type()) {
                    slaveReadTill = e._opTime();
                }
            }

            // TODO: only one type of 2d search doesn't support this.  We need a way to pull it out
            // of CanonicalQuery. :(
            const bool supportsGetMore = true;
            if (isExplain) {
                if (enoughForExplain(pq, numResults)) {
                    break;
                }
            }
            else if (!supportsGetMore && (enough(pq, numResults)
                                          || bb.len() >= MaxBytesToReturnToClientAtOnce)) {
                break;
            }
            else if (enoughForFirstBatch(pq, numResults, bb.len())) {
                QLOG() << "Enough for first batch, wantMore=" << pq.wantMore()
                       << " numToReturn=" << pq.getNumToReturn()
                       << " numResults=" << numResults
                       << endl;
                // If only one result requested assume it's a findOne() and don't save the cursor.
                if (pq.wantMore() && 1 != pq.getNumToReturn()) {
                    QLOG() << " runner EOF=" << runner->isEOF() << endl;
                    saveClientCursor = !runner->isEOF();
                }
                break;
            }
        }

        // Try to get information about the plan which the runner
        // will use to execute the query, it we don't have it already.
        if (!gotPlanInfo) {
            Status infoStatus = runner->getInfo(NULL, &rawInfo);
            if (infoStatus.isOK()) {
                gotPlanInfo = true;
                planInfo.reset(rawInfo);
                // planSummary is really a ThreadSafeString which copies the data from
                // the provided pointer.
                curop.debug().planSummary = planInfo->planSummary.c_str();
            }
        }

        // If we cache the runner later, we want to deregister it as it receives notifications
        // anyway by virtue of being cached.
        //
        // If we don't cache the runner later, we are deleting it, so it must be deregistered.
        //
        // So, no matter what, deregister the runner.
        safety.reset();

        // Caller expects exceptions thrown in certain cases.
        if (Runner::RUNNER_ERROR == state) {
            TypeExplain* bareExplain;
            Status res = runner->getInfo(&bareExplain, NULL);
            if (res.isOK()) {
                boost::scoped_ptr<TypeExplain> errorExplain(bareExplain);
                error() << "Runner error, stats:\n"
                        << errorExplain->stats.jsonString(Strict, true);
            }
            uasserted(17144, "Runner error: " + WorkingSetCommon::toStatusString(obj));
        }

        // Why save a dead runner?
        if (Runner::RUNNER_DEAD == state) {
            saveClientCursor = false;
        }
        else if (pq.hasOption(QueryOption_CursorTailable)) {
            // If we're tailing a capped collection, we don't bother saving the cursor if the
            // collection is empty. Otherwise, the semantics of the tailable cursor is that the
            // client will keep trying to read from it. So we'll keep it around.
            Collection* collection = ctx.ctx().db()->getCollection(cq->ns());
            if (collection && collection->numRecords() != 0 && pq.getNumToReturn() != 1) {
                saveClientCursor = true;
            }
        }

        // TODO(greg): This will go away soon.
        if (!shardingState.getVersion(pq.ns()).isWriteCompatibleWith(shardingVersionAtStart)) {
            // if the version changed during the query we might be missing some data and its safe to
            // send this as mongos can resend at this point
            throw SendStaleConfigException(pq.ns(), "version changed during initial query",
                                           shardingVersionAtStart,
                                           shardingState.getVersion(pq.ns()));
        }

        // Used to fill in explain and to determine if the query is slow enough to be logged.
        int elapsedMillis = curop.elapsedMillis();

        // Get explain information if:
        // 1) it is needed by an explain query;
        // 2) profiling is enabled; or
        // 3) profiling is disabled but we still need explain details to log a "slow" query.
        // Producing explain information is expensive and should be done only if we are certain
        // the information will be used.
        boost::scoped_ptr<TypeExplain> explain(NULL);
        if (isExplain ||
            ctx.ctx().db()->getProfilingLevel() > 0 ||
            elapsedMillis > serverGlobalParams.slowMS) {
            // Ask the runner to produce explain information.
            TypeExplain* bareExplain;
            Status res = runner->getInfo(&bareExplain, NULL);
            if (res.isOK()) {
                explain.reset(bareExplain);
            }
            else if (isExplain) {
                error() << "could not produce explain of query '" << pq.getFilter()
                        << "', error: " << res.reason();
                // If numResults and the data in bb don't correspond, we'll crash later when rooting
                // through the reply msg.
                BSONObj emptyObj;
                bb.appendBuf((void*)emptyObj.objdata(), emptyObj.objsize());
                // The explain output is actually a result.
                numResults = 1;
                // TODO: we can fill out millis etc. here just fine even if the plan screwed up.
            }
        }

        // Fill in the missing run-time fields in explain, starting with propeties of
        // the process running the query.
        if (isExplain && NULL != explain.get()) {
            std::string server = mongoutils::str::stream()
                << getHostNameCached() << ":" << serverGlobalParams.port;
            explain->setServer(server);

            // We might have skipped some results due to chunk migration etc. so our count is
            // correct.
            explain->setN(numResults);

            // Clock the whole operation.
            explain->setMillis(elapsedMillis);

            BSONObj explainObj = explain->toBSON();
            bb.appendBuf((void*)explainObj.objdata(), explainObj.objsize());

            // The explain output is actually a result.
            numResults = 1;
        }

        long long ccId = 0;
        if (saveClientCursor) {
            // We won't use the runner until it's getMore'd.
            runner->saveState();

            // Allocate a new ClientCursor.  We don't have to worry about leaking it as it's
            // inserted into a global map by its ctor.
            ClientCursor* cc = new ClientCursor(collection, runner.get(),
                                                cq->getParsed().getOptions(),
                                                cq->getParsed().getFilter());
            ccId = cc->cursorid();

            QLOG() << "caching runner with cursorid " << ccId
                   << " after returning " << numResults << " results" << endl;

            // ClientCursor takes ownership of runner.  Release to make sure it's not deleted.
            runner.release();

            // TODO document
            if (pq.hasOption(QueryOption_OplogReplay) && !slaveReadTill.isNull()) {
                cc->slaveReadTill(slaveReadTill);
            }

            // TODO document
            if (pq.hasOption(QueryOption_Exhaust)) {
                curop.debug().exhaust = true;
            }

            // Set attributes for getMore.
            cc->setCollMetadata(collMetadata);
            cc->setPos(numResults);

            // If the query had a time limit, remaining time is "rolled over" to the cursor (for
            // use by future getmore ops).
            cc->setLeftoverMaxTimeMicros(curop.getRemainingMaxTimeMicros());
        }
        else {
            QLOG() << "Not caching runner but returning " << numResults << " results.\n";
        }

        // Add the results from the query into the output buffer.
        result.appendData(bb.buf(), bb.len());
        bb.decouple();

        // Fill out the output buffer's header.
        QueryResult* qr = static_cast<QueryResult*>(result.header());
        qr->cursorId = ccId;
        curop.debug().cursorid = (0 == ccId ? -1 : ccId);
        qr->setResultFlagsToOk();
        qr->setOperation(opReply);
        qr->startingFrom = 0;
        qr->nReturned = numResults;

        // Set debug information for consumption by the profiler.
        curop.debug().ntoskip = pq.getSkip();
        curop.debug().nreturned = numResults;
        if (NULL != explain.get()) {
            if (explain->isScanAndOrderSet()) {
                curop.debug().scanAndOrder = explain->getScanAndOrder();
            }
            else {
                curop.debug().scanAndOrder = false;
            }

            if (explain->isNScannedSet()) {
                curop.debug().nscanned = explain->getNScanned();
            }

            if (explain->isNScannedObjectsSet()) {
                curop.debug().nscannedObjects = explain->getNScannedObjects();
            }

            if (explain->isIDHackSet()) {
                curop.debug().idhack = explain->getIDHack();
            }

            if (!explain->stats.isEmpty()) {
                // execStats is a CachedBSONObj because it lives in the race-prone
                // curop.
                curop.debug().execStats.set(explain->stats);

                // Replace exec stats with plan summary if stats cannot fit into CachedBSONObj.
                if (curop.debug().execStats.tooBig() && !curop.debug().planSummary.empty()) {
                    BSONObjBuilder bob;
                    bob.append("summary", curop.debug().planSummary.toString());
                    curop.debug().execStats.set(bob.done());
                }

            }
        }

        // curop.debug().exhaust is set above.
        return curop.debug().exhaust ? pq.ns() : "";
    }
Beispiel #9
0
int Assemble(struct supertype *st, char *mddev, int mdfd,
	     mddev_ident_t ident, char *conffile,
	     mddev_dev_t devlist,
	     int readonly, int runstop,
	     char *update,
	     int verbose, int force)
{
	/*
	 * The task of Assemble is to find a collection of
	 * devices that should (according to their superblocks)
	 * form an array, and to give this collection to the MD driver.
	 * In Linux-2.4 and later, this involves submitting a
	 * SET_ARRAY_INFO ioctl with no arg - to prepare
	 * the array - and then submit a number of
	 * ADD_NEW_DISK ioctls to add disks into
	 * the array.  Finally RUN_ARRAY might
	 * be submitted to start the array.
	 *
	 * Much of the work of Assemble is in finding and/or
	 * checking the disks to make sure they look right.
	 *
	 * If mddev is not set, then scan must be set and we
	 *  read through the config file for dev+uuid mapping
	 *  We recurse, setting mddev, for each device that
	 *    - isn't running
	 *    - has a valid uuid (or any uuid if !uuidset)
	 *
	 * If mddev is set, we try to determine state of md.
	 *   check version - must be at least 0.90.0
	 *   check kernel version.  must be at least 2.4.
	 *    If not, we can possibly fall back on START_ARRAY
	 *   Try to GET_ARRAY_INFO.
	 *     If possible, give up
	 *     If not, try to STOP_ARRAY just to make sure
	 *
	 * If !uuidset and scan, look in conf-file for uuid
	 *       If not found, give up
	 * If !devlist and scan and uuidset, get list of devs from conf-file 
	 *
	 * For each device:
	 *   Check superblock - discard if bad
	 *   Check uuid (set if we don't have one) - discard if no match
	 *   Check superblock similarity if we have a superblock - discard if different
	 *   Record events, devicenum
	 * This should give us a list of devices for the array
	 * We should collect the most recent event number
	 *
	 * Count disks with recent enough event count
	 * While force && !enough disks
	 *    Choose newest rejected disks, update event count
	 *     mark clean and rewrite superblock
	 * If recent kernel:
	 *    SET_ARRAY_INFO
	 *    foreach device with recent events : ADD_NEW_DISK
	 *    if runstop == 1 || "enough" disks and runstop==0 -> RUN_ARRAY
	 * If old kernel:
	 *    Check the device numbers in superblock are right
	 *    update superblock if any changes
	 *    START_ARRAY
	 *
	 */
	int old_linux = 0;
	int vers;
	void *first_super = NULL, *super = NULL;
	struct {
		char *devname;
		unsigned int major, minor;
		unsigned int oldmajor, oldminor;
		long long events;
		int uptodate;
		int state;
		int raid_disk;
		int disk_nr;
	} *devices;
	int *best = NULL; /* indexed by raid_disk */
	unsigned int bestcnt = 0;
	int devcnt = 0;
	unsigned int okcnt, sparecnt;
	unsigned int req_cnt;
	unsigned int i;
	int most_recent = 0;
	int chosen_drive;
	int change = 0;
	int inargv = 0;
	int start_partial_ok = force || devlist==NULL;
	unsigned int num_devs;
	mddev_dev_t tmpdev;
	struct mdinfo info;
	struct mddev_ident_s ident2;
	char *avail;
	int nextspare = 0;
	
	vers = md_get_version(mdfd);
	if (vers <= 0) {
		fprintf(stderr, Name ": %s appears not to be an md device.\n", mddev);
		return 1;
	}
	if (vers < 9000) {
		fprintf(stderr, Name ": Assemble requires driver version 0.90.0 or later.\n"
			"    Upgrade your kernel or try --build\n");
		return 1;
	}
	if (get_linux_version() < 2004000)
		old_linux = 1;

	if (ioctl(mdfd, GET_ARRAY_INFO, &info.array)>=0) {
		fprintf(stderr, Name ": device %s already active - cannot assemble it\n",
			mddev);
		return 1;
	}
	ioctl(mdfd, STOP_ARRAY, NULL); /* just incase it was started but has no content */

	/*
	 * If any subdevs are listed, then any that don't
	 * match ident are discarded.  Remainder must all match and
	 * become the array.
	 * If no subdevs, then we scan all devices in the config file, but
	 * there must be something in the identity
	 */

	if (!devlist &&
	    ident->uuid_set == 0 &&
	    ident->super_minor < 0 &&
	    ident->devices == NULL) {
		fprintf(stderr, Name ": No identity information available for %s - cannot assemble.\n",
			mddev);
		return 1;
	}
	if (devlist == NULL)
		devlist = conf_get_devs(conffile);
	else inargv = 1;

	tmpdev = devlist; num_devs = 0;
	while (tmpdev) {
		num_devs++;
		tmpdev = tmpdev->next;
	}
	devices = malloc(num_devs * sizeof(*devices));

	if (!st && ident->st) st = ident->st;

	if (verbose>0)
	    fprintf(stderr, Name ": looking for devices for %s\n",
		    mddev);

	while ( devlist) {
		char *devname;
		int dfd;
		struct stat stb;
		struct supertype *tst = st;

		devname = devlist->devname;
		devlist = devlist->next;

		if (ident->devices &&
		    !match_oneof(ident->devices, devname)) {
			if ((inargv && verbose>=0) || verbose > 0)
				fprintf(stderr, Name ": %s is not one of %s\n", devname, ident->devices);
			continue;
		}

		if (super) {
			free(super);
			super = NULL;
		}
		
		dfd = dev_open(devname, O_RDONLY|O_EXCL);
		if (dfd < 0) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": cannot open device %s: %s\n",
					devname, strerror(errno));
		} else if (fstat(dfd, &stb)< 0) {
			/* Impossible! */
			fprintf(stderr, Name ": fstat failed for %s: %s\n",
				devname, strerror(errno));
		} else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
			fprintf(stderr, Name ": %s is not a block device.\n",
				devname);
		} else if (!tst && (tst = guess_super(dfd)) == NULL) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": no recogniseable superblock\n");
		} else if (tst->ss->load_super(tst,dfd, &super, NULL)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf( stderr, Name ": no RAID superblock on %s\n",
					 devname);
		} else {
			tst->ss->getinfo_super(&info, &ident2, super);
		}
		if (dfd >= 0) close(dfd);

		if (ident->uuid_set && (!update || strcmp(update, "uuid")!= 0) &&
		    (!super || same_uuid(info.uuid, ident->uuid, tst->ss->swapuuid)==0)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": %s has wrong uuid.\n",
					devname);
			continue;
		}
		if (ident->name[0] &&
		    (!super || strncmp(ident2.name, ident->name, 32)!=0)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": %s has wrong name.\n",
					devname);
			continue;
		}
		if (ident->super_minor != UnSet &&
		    (!super || ident->super_minor != info.array.md_minor)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": %s has wrong super-minor.\n",
					devname);
			continue;
		}
		if (ident->level != UnSet &&
		    (!super|| ident->level != info.array.level)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": %s has wrong raid level.\n",
					devname);
			continue;
		}
		if (ident->raid_disks != UnSet &&
		    (!super || ident->raid_disks!= info.array.raid_disks)) {
			if ((inargv && verbose >= 0) || verbose > 0)
				fprintf(stderr, Name ": %s requires wrong number of drives.\n",
					devname);
			continue;
		}

		/* If we are this far, then we are commited to this device.
		 * If the super_block doesn't exist, or doesn't match others,
		 * then we cannot continue
		 */

		if (!super) {
			fprintf(stderr, Name ": %s has no superblock - assembly aborted\n",
				devname);
			free(first_super);
			return 1;
		}


		st = tst; /* commit to this format, if haven't already */
		if (st->ss->compare_super(&first_super, super)) {
			fprintf(stderr, Name ": superblock on %s doesn't match others - assembly aborted\n",
				devname);
			free(super);
			free(first_super);
			return 1;
		}

		/* looks like a good enough match to update the super block if needed */
		if (update) {
			/* prepare useful information in info structures */
			struct stat stb2;
			fstat(mdfd, &stb2);
			info.array.md_minor = minor(stb2.st_rdev);

			if (strcmp(update, "uuid")==0 &&
			    !ident->uuid_set) {
				int rfd;
				if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
				    read(rfd, ident->uuid, 16) != 16) {
					*(__u32*)(ident->uuid) = random();
					*(__u32*)(ident->uuid+1) = random();
					*(__u32*)(ident->uuid+2) = random();
					*(__u32*)(ident->uuid+3) = random();
				}
				if (rfd >= 0) close(rfd);
				ident->uuid_set = 1;
			}
			memcpy(info.uuid, ident->uuid, 16);
			st->ss->update_super(&info, super, update, devname, verbose);
			
			dfd = dev_open(devname, O_RDWR|O_EXCL);
			if (dfd < 0) 
				fprintf(stderr, Name ": Cannot open %s for superblock update\n",
					devname);
			else if (st->ss->store_super(st, dfd, super))
				fprintf(stderr, Name ": Could not re-write superblock on %s.\n",
					devname);
			if (dfd >= 0)
				close(dfd);
		}

		if (verbose > 0)
			fprintf(stderr, Name ": %s is identified as a member of %s, slot %d.\n",
				devname, mddev, info.disk.raid_disk);
		devices[devcnt].devname = devname;
		devices[devcnt].major = major(stb.st_rdev);
		devices[devcnt].minor = minor(stb.st_rdev);
		devices[devcnt].oldmajor = info.disk.major;
		devices[devcnt].oldminor = info.disk.minor;
		devices[devcnt].events = info.events;
		devices[devcnt].raid_disk = info.disk.raid_disk;
		devices[devcnt].disk_nr = info.disk.number;
		devices[devcnt].uptodate = 0;
		devices[devcnt].state = info.disk.state;
		if (most_recent < devcnt) {
			if (devices[devcnt].events
			    > devices[most_recent].events)
				most_recent = devcnt;
		}
		if (info.array.level == -4) 
			/* with multipath, the raid_disk from the superblock is meaningless */
			i = devcnt;
		else
			i = devices[devcnt].raid_disk;
		if (i+1 == 0) {
			if (nextspare < info.array.raid_disks)
				nextspare = info.array.raid_disks;
			i = nextspare++;
		}
		if (i < 10000) {
			if (i >= bestcnt) {
				unsigned int newbestcnt = i+10;
				int *newbest = malloc(sizeof(int)*newbestcnt);
				unsigned int c;
				for (c=0; c < newbestcnt; c++)
					if (c < bestcnt)
						newbest[c] = best[c];
					else
						newbest[c] = -1;
				if (best)free(best);
				best = newbest;
				bestcnt = newbestcnt;
			}
			if (best[i] == -1
			    || devices[best[i]].events < devices[devcnt].events)
				best[i] = devcnt;
		}
		devcnt++;
	}

	if (super)
		free(super);
	super = NULL;

	if (update && strcmp(update, "byteorder")==0)
		st->minor_version = 90;

	if (devcnt == 0) {
		fprintf(stderr, Name ": no devices found for %s\n",
			mddev);
		free(first_super);
		return 1;
	}

	st->ss->getinfo_super(&info, &ident2, first_super);

	/* now we have some devices that might be suitable.
	 * I wonder how many
	 */
	avail = malloc(info.array.raid_disks);
	memset(avail, 0, info.array.raid_disks);
	okcnt = 0;
	sparecnt=0;
	for (i=0; i< bestcnt ;i++) {
		int j = best[i];
		int event_margin = 1; /* always allow a difference of '1'
				       * like the kernel does
				       */
		if (j < 0) continue;
		/* note: we ignore error flags in multipath arrays
		 * as they don't make sense
		 */
		if (info.array.level != -4)
			if (!(devices[j].state & (1<<MD_DISK_SYNC))) {
				if (!(devices[j].state & (1<<MD_DISK_FAULTY)))
					sparecnt++;
				continue;
			}
		if (devices[j].events+event_margin >=
		    devices[most_recent].events) {
			devices[j].uptodate = 1;
			if (i < info.array.raid_disks) {
				okcnt++;
				avail[i]=1;
			} else
				sparecnt++;
		}
	}
	while (force && !enough(info.array.level, info.array.raid_disks,
				info.array.layout,
				avail, okcnt)) {
		/* Choose the newest best drive which is
		 * not up-to-date, update the superblock
		 * and add it.
		 */
		int fd;
		chosen_drive = -1;
		for (i=0; i<info.array.raid_disks && i < bestcnt; i++) {
			int j = best[i];
			if (j>=0 &&
			    !devices[j].uptodate &&
			    devices[j].events > 0 &&
			    (chosen_drive < 0 ||
			     devices[j].events > devices[chosen_drive].events))
				chosen_drive = j;
		}
		if (chosen_drive < 0)
			break;
		if (verbose >= 0)
			fprintf(stderr, Name ": forcing event count in %s(%d) from %d upto %d\n",
				devices[chosen_drive].devname, devices[chosen_drive].raid_disk,
				(int)(devices[chosen_drive].events),
				(int)(devices[most_recent].events));
		fd = dev_open(devices[chosen_drive].devname, O_RDWR|O_EXCL);
		if (fd < 0) {
			fprintf(stderr, Name ": Couldn't open %s for write - not updating\n",
				devices[chosen_drive].devname);
			devices[chosen_drive].events = 0;
			continue;
		}
		if (st->ss->load_super(st,fd, &super, NULL)) {
			close(fd);
			fprintf(stderr, Name ": RAID superblock disappeared from %s - not updating.\n",
				devices[chosen_drive].devname);
			devices[chosen_drive].events = 0;
			continue;
		}
		info.events = devices[most_recent].events;
		st->ss->update_super(&info, super, "force", devices[chosen_drive].devname, verbose);

		if (st->ss->store_super(st, fd, super)) {
			close(fd);
			fprintf(stderr, Name ": Could not re-write superblock on %s\n",
				devices[chosen_drive].devname);
			devices[chosen_drive].events = 0;
			free(super);
			continue;
		}
		close(fd);
		devices[chosen_drive].events = devices[most_recent].events;
		devices[chosen_drive].uptodate = 1;
		avail[chosen_drive] = 1;
		okcnt++;
		free(super);
	}

	/* Now we want to look at the superblock which the kernel will base things on
	 * and compare the devices that we think are working with the devices that the
	 * superblock thinks are working.
	 * If there are differences and --force is given, then update this chosen
	 * superblock.
	 */
	chosen_drive = -1;
	super = NULL;
	for (i=0; chosen_drive < 0 && i<bestcnt; i++) {
		int j = best[i];
		int fd;

		if (j<0)
			continue;
		if (!devices[j].uptodate)
			continue;
		chosen_drive = j;
		if ((fd=dev_open(devices[j].devname, O_RDONLY|O_EXCL))< 0) {
			fprintf(stderr, Name ": Cannot open %s: %s\n",
				devices[j].devname, strerror(errno));
			return 1;
		}
		if (st->ss->load_super(st,fd, &super, NULL)) {
			close(fd);
			fprintf(stderr, Name ": RAID superblock has disappeared from %s\n",
				devices[j].devname);
			return 1;
		}
		close(fd);
	}
	if (super == NULL) {
		fprintf(stderr, Name ": No suitable drives found for %s\n", mddev);
		return 1;
	}
	st->ss->getinfo_super(&info, &ident2, super);
	for (i=0; i<bestcnt; i++) {
		int j = best[i];
		unsigned int desired_state;

		if (i < info.array.raid_disks)
			desired_state = (1<<MD_DISK_ACTIVE) | (1<<MD_DISK_SYNC);
		else
			desired_state = 0;

		if (j<0)
			continue;
		if (!devices[j].uptodate)
			continue;
		info.disk.number = devices[j].disk_nr;
		info.disk.raid_disk = i;
		info.disk.state = desired_state;

		if (devices[j].uptodate &&
		    st->ss->update_super(&info, super, "assemble", NULL, verbose)) {
			if (force) {
				if (verbose >= 0)
					fprintf(stderr, Name ": "
						"clearing FAULTY flag for device %d in %s for %s\n",
						j, mddev, devices[j].devname);
				change = 1;
			} else {
				if (verbose >= -1)
					fprintf(stderr, Name ": "
						"device %d in %s has wrong state in superblock, but %s seems ok\n",
						i, mddev, devices[j].devname);
			}
		}
#if 0
		if (!devices[j].uptodate &&
		    !(super.disks[i].state & (1 << MD_DISK_FAULTY))) {
			fprintf(stderr, Name ": devices %d of %s is not marked FAULTY in superblock, but cannot be found\n",
				i, mddev);
		}
#endif
	}
	if (force && okcnt == info.array.raid_disks-1) {
		/* FIXME check event count */
		change += st->ss->update_super(&info, super, "force", 
					devices[chosen_drive].devname, verbose);
	}

	if (change) {
		int fd;
		fd = dev_open(devices[chosen_drive].devname, O_RDWR|O_EXCL);
		if (fd < 0) {
			fprintf(stderr, Name ": Could open %s for write - cannot Assemble array.\n",
				devices[chosen_drive].devname);
			return 1;
		}
		if (st->ss->store_super(st, fd, super)) {
			close(fd);
			fprintf(stderr, Name ": Could not re-write superblock on %s\n",
				devices[chosen_drive].devname);
			return 1;
		}
		close(fd);
	}

	/* count number of in-sync devices according to the superblock.
	 * We must have this number to start the array without -s or -R
	 */
	req_cnt = info.array.working_disks;

	/* Almost ready to actually *do* something */
	if (!old_linux) {
		int rv;
		if ((vers % 100) >= 1) { /* can use different versions */
			mdu_array_info_t inf;
			memset(&inf, 0, sizeof(inf));
			inf.major_version = st->ss->major;
			inf.minor_version = st->minor_version;
			rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
		} else 
			rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);

		if (rv) {
			fprintf(stderr, Name ": SET_ARRAY_INFO failed for %s: %s\n",
				mddev, strerror(errno));
			return 1;
		}
		if (ident->bitmap_fd >= 0) {
			if (ioctl(mdfd, SET_BITMAP_FILE, ident->bitmap_fd) != 0) {
				fprintf(stderr, Name ": SET_BITMAP_FILE failed.\n");
				return 1;
			}
		}
					
		/* First, add the raid disks, but add the chosen one last */
		for (i=0; i<= bestcnt; i++) {
			int j;
			if (i < bestcnt) {
				j = best[i];
				if (j == chosen_drive)
					continue;
			} else
				j = chosen_drive;

			if (j >= 0 /* && devices[j].uptodate */) {
				mdu_disk_info_t disk;
				memset(&disk, 0, sizeof(disk));
				disk.major = devices[j].major;
				disk.minor = devices[j].minor;
				if (ioctl(mdfd, ADD_NEW_DISK, &disk)!=0) {
					fprintf(stderr, Name ": failed to add %s to %s: %s\n",
						devices[j].devname,
						mddev,
						strerror(errno));
					if (i < info.array.raid_disks || i == bestcnt)
						okcnt--;
					else
						sparecnt--;
				} else if (verbose > 0)
					fprintf(stderr, Name ": added %s to %s as %d\n",
						devices[j].devname, mddev, devices[j].raid_disk);
			} else if (verbose > 0 && i < info.array.raid_disks)
				fprintf(stderr, Name ": no uptodate device for slot %d of %s\n",
					i, mddev);
		}
		
		if (runstop == 1 ||
		    (runstop == 0 && 
		     ( enough(info.array.level, info.array.raid_disks, info.array.layout, avail, okcnt) &&
		       (okcnt >= req_cnt || start_partial_ok)
			     ))) {
			if (ioctl(mdfd, RUN_ARRAY, NULL)==0) {
				if (verbose >= 0) {
					fprintf(stderr, Name ": %s has been started with %d drive%s",
						mddev, okcnt, okcnt==1?"":"s");
					if (okcnt < info.array.raid_disks) 
						fprintf(stderr, " (out of %d)", info.array.raid_disks);
					if (sparecnt)
						fprintf(stderr, " and %d spare%s", sparecnt, sparecnt==1?"":"s");
					fprintf(stderr, ".\n");
				}
				return 0;
			}
			fprintf(stderr, Name ": failed to RUN_ARRAY %s: %s\n",
				mddev, strerror(errno));
			return 1;
		}
		if (runstop == -1) {
			fprintf(stderr, Name ": %s assembled from %d drive%s, but not started.\n",
				mddev, okcnt, okcnt==1?"":"s");
			return 0;
		}
		if (verbose >= 0) {
			fprintf(stderr, Name ": %s assembled from %d drive%s", mddev, okcnt, okcnt==1?"":"s");
			if (sparecnt)
				fprintf(stderr, " and %d spare%s", sparecnt, sparecnt==1?"":"s");
			if (!enough(info.array.level, info.array.raid_disks, info.array.layout, avail, okcnt))
				fprintf(stderr, " - not enough to start the array.\n");
			else {
				if (req_cnt == info.array.raid_disks)
					fprintf(stderr, " - need all %d to start it", req_cnt);
				else
					fprintf(stderr, " - need %d of %d to start", req_cnt, info.array.raid_disks);
				fprintf(stderr, " (use --run to insist).\n");
			}
		}
		return 1;
	} else {
		/* The "chosen_drive" is a good choice, and if necessary, the superblock has
		 * been updated to point to the current locations of devices.
		 * so we can just start the array
		 */
		unsigned long dev;
		dev = makedev(devices[chosen_drive].major,
			    devices[chosen_drive].minor);
		if (ioctl(mdfd, START_ARRAY, dev)) {
		    fprintf(stderr, Name ": Cannot start array: %s\n",
			    strerror(errno));
		}
		
	}
	return 0;
}