void ep2_mul_pre_nafwi(ep2_t *t, ep2_t p) { int l; bn_t n; bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); l = bn_bits(n) + 1; l = ((l % EP_DEPTH) == 0 ? (l / EP_DEPTH) : (l / EP_DEPTH) + 1); ep2_copy(t[0], p); for (int i = 1; i < l; i++) { ep2_dbl(t[i], t[i - 1]); for (int j = 1; j < EP_DEPTH; j++) { ep2_dbl(t[i], t[i]); } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
void ep2_mul_pre_combd(ep2_t *t, ep2_t p) { int i, j, d, e; bn_t n; bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); d = bn_bits(n); d = ((d % EP_DEPTH) == 0 ? (d / EP_DEPTH) : (d / EP_DEPTH) + 1); e = (d % 2 == 0 ? (d / 2) : (d / 2) + 1); ep2_set_infty(t[0]); ep2_copy(t[1], p); for (j = 1; j < EP_DEPTH; j++) { ep2_dbl(t[1 << j], t[1 << (j - 1)]); for (i = 1; i < d; i++) { ep2_dbl(t[1 << j], t[1 << j]); } #if defined(EP_MIXED) ep2_norm(t[1 << j], t[1 << j]); #endif for (i = 1; i < (1 << j); i++) { ep2_add(t[(1 << j) + i], t[i], t[1 << j]); } } ep2_set_infty(t[1 << EP_DEPTH]); for (j = 1; j < (1 << EP_DEPTH); j++) { ep2_dbl(t[(1 << EP_DEPTH) + j], t[j]); for (i = 1; i < e; i++) { ep2_dbl(t[(1 << EP_DEPTH) + j], t[(1 << EP_DEPTH) + j]); } } #if defined(EP_MIXED) for (i = 1; i < RELIC_EP_TABLE_COMBD; i++) { ep2_norm(t[i], t[i]); } #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
void ep2_mul(ep2_t r, ep2_t p, bn_t k) { int i, l; ep2_t t; ep2_null(t); TRY { ep2_new(t); l = bn_bits(k); if (bn_get_bit(k, l - 1)) { ep2_copy(t, p); } else { ep2_set_infty(t); } for (i = l - 2; i >= 0; i--) { ep2_dbl(t, t); if (bn_get_bit(k, i)) { ep2_add(t, t, p); } } ep2_copy(r, t); ep2_norm(r, r); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ep2_free(t); } }
/** * Multiplies a binary elliptic curve point by an integer using the w-NAF * method. * * @param[out] r - the result. * @param[in] p - the point to multiply. * @param[in] k - the integer. */ static void ep2_mul_fix_ordin(ep2_t r, ep2_t *table, bn_t k) { int len, i, n; int8_t naf[2 * RLC_FP_BITS + 1], *t; if (bn_is_zero(k)) { ep2_set_infty(r); return; } /* Compute the w-TNAF representation of k. */ len = 2 * RLC_FP_BITS + 1; bn_rec_naf(naf, &len, k, EP_DEPTH); t = naf + len - 1; ep2_set_infty(r); for (i = len - 1; i >= 0; i--, t--) { ep2_dbl(r, r); n = *t; if (n > 0) { ep2_add(r, r, table[n / 2]); } if (n < 0) { ep2_sub(r, r, table[-n / 2]); } } /* Convert r to affine coordinates. */ ep2_norm(r, r); if (bn_sign(k) == RLC_NEG) { ep2_neg(r, r); } }
void ep2_mul_dig(ep2_t r, ep2_t p, dig_t k) { int i, l; ep2_t t; ep2_null(t); if (k == 0) { ep2_set_infty(r); return; } TRY { ep2_new(t); l = util_bits_dig(k); ep2_copy(t, p); for (i = l - 2; i >= 0; i--) { ep2_dbl(t, t); if (k & ((dig_t)1 << i)) { ep2_add(t, t, p); } } ep2_norm(r, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ep2_free(t); } }
void ep2_mul_sim_joint(ep2_t r, ep2_t p, bn_t k, ep2_t q, bn_t l) { ep2_t t[5]; int u_i, len, offset; int8_t jsf[4 * (FP_BITS + 1)]; int i; ep2_null(t[0]); ep2_null(t[1]); ep2_null(t[2]); ep2_null(t[3]); ep2_null(t[4]); TRY { for (i = 0; i < 5; i++) { ep2_new(t[i]); } ep2_set_infty(t[0]); ep2_copy(t[1], q); ep2_copy(t[2], p); ep2_add(t[3], p, q); ep2_sub(t[4], p, q); len = 4 * (FP_BITS + 1); bn_rec_jsf(jsf, &len, k, l); ep2_set_infty(r); i = bn_bits(k); offset = MAX(i, bn_bits(l)) + 1; for (i = len - 1; i >= 0; i--) { ep2_dbl(r, r); if (jsf[i] != 0 && jsf[i] == -jsf[i + offset]) { u_i = jsf[i] * 2 + jsf[i + offset]; if (u_i < 0) { ep2_sub(r, r, t[4]); } else { ep2_add(r, r, t[4]); } } else { u_i = jsf[i] * 2 + jsf[i + offset]; if (u_i < 0) { ep2_sub(r, r, t[-u_i]); } else { ep2_add(r, r, t[u_i]); } } } ep2_norm(r, r); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { for (i = 0; i < 5; i++) { ep2_free(t[i]); } } }
void ep2_mul_fix_combd(ep2_t r, ep2_t *t, bn_t k) { int i, j, d, e, w0, w1, n0, p0, p1; bn_t n; if (bn_is_zero(k)) { ep2_set_infty(r); return; } bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); d = bn_bits(n); d = ((d % EP_DEPTH) == 0 ? (d / EP_DEPTH) : (d / EP_DEPTH) + 1); e = (d % 2 == 0 ? (d / 2) : (d / 2) + 1); ep2_set_infty(r); n0 = bn_bits(k); p1 = (e - 1) + (EP_DEPTH - 1) * d; for (i = e - 1; i >= 0; i--) { ep2_dbl(r, r); w0 = 0; p0 = p1; for (j = EP_DEPTH - 1; j >= 0; j--, p0 -= d) { w0 = w0 << 1; if (p0 < n0 && bn_get_bit(k, p0)) { w0 = w0 | 1; } } w1 = 0; p0 = p1-- + e; for (j = EP_DEPTH - 1; j >= 0; j--, p0 -= d) { w1 = w1 << 1; if (i + e < d && p0 < n0 && bn_get_bit(k, p0)) { w1 = w1 | 1; } } ep2_add(r, r, t[w0]); ep2_add(r, r, t[(1 << EP_DEPTH) + w1]); } ep2_norm(r, r); if (bn_sign(k) == RLC_NEG) { ep2_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
void ep2_mul_fix_combs(ep2_t r, ep2_t *t, bn_t k) { int i, j, l, w, n0, p0, p1; bn_t n; if (bn_is_zero(k)) { ep2_set_infty(r); return; } bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); l = bn_bits(n); l = ((l % EP_DEPTH) == 0 ? (l / EP_DEPTH) : (l / EP_DEPTH) + 1); n0 = bn_bits(k); p0 = (EP_DEPTH) * l - 1; w = 0; p1 = p0--; for (j = EP_DEPTH - 1; j >= 0; j--, p1 -= l) { w = w << 1; if (p1 < n0 && bn_get_bit(k, p1)) { w = w | 1; } } ep2_copy(r, t[w]); for (i = l - 2; i >= 0; i--) { ep2_dbl(r, r); w = 0; p1 = p0--; for (j = EP_DEPTH - 1; j >= 0; j--, p1 -= l) { w = w << 1; if (p1 < n0 && bn_get_bit(k, p1)) { w = w | 1; } } if (w > 0) { ep2_add(r, r, t[w]); } } ep2_norm(r, r); if (bn_sign(k) == RLC_NEG) { ep2_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
/** * Multiplies a point on a Barreto-Lynn-Soctt curve by the cofactor. * * @param[out] r - the result. * @param[in] p - the point to multiply. */ void ep2_mul_cof_b12(ep2_t r, ep2_t p) { bn_t x; ep2_t t0, t1, t2, t3; ep2_null(t0); ep2_null(t1); ep2_null(t2); ep2_null(t3); bn_null(x); TRY { ep2_new(t0); ep2_new(t1); ep2_new(t2); ep2_new(t3); bn_new(x); fp_param_get_var(x); /* Compute t0 = xP. */ ep2_mul(t0, p, x); if (bn_sign(x) == BN_NEG) { ep2_neg(t0, t0); } /* Compute t1 = [x^2]P. */ ep2_mul(t1, t0, x); if (bn_sign(x) == BN_NEG) { ep2_neg(t1, t1); } /* t2 = (x^2 - x - 1)P = x^2P - x*P - P. */ ep2_sub(t2, t1, t0); ep2_sub(t2, t2, p); /* t3 = \psi(x - 1)P. */ ep2_sub(t3, t0, p); ep2_norm(t3, t3); ep2_frb(t3, t3, 1); ep2_add(t2, t2, t3); /* t3 = \psi^2(2P). */ ep2_dbl(t3, p); ep2_norm(t3, t3); ep2_frb(t3, t3, 2); ep2_add(t2, t2, t3); ep2_norm(r, t2); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ep2_free(t0); ep2_free(t1); ep2_free(t2); ep2_free(t3); bn_free(x); } }
void ep2_mul_pre_combs(ep2_t *t, ep2_t p) { int i, j, l; bn_t n; bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); l = bn_bits(n); l = ((l % EP_DEPTH) == 0 ? (l / EP_DEPTH) : (l / EP_DEPTH) + 1); ep2_set_infty(t[0]); ep2_copy(t[1], p); for (j = 1; j < EP_DEPTH; j++) { ep2_dbl(t[1 << j], t[1 << (j - 1)]); for (i = 1; i < l; i++) { ep2_dbl(t[1 << j], t[1 << j]); } #if defined(EP_MIXED) ep2_norm(t[1 << j], t[1 << j]); #endif for (i = 1; i < (1 << j); i++) { ep2_add(t[(1 << j) + i], t[i], t[1 << j]); } } #if defined(EP_MIXED) for (i = 1; i < RLC_EP_TABLE_COMBS; i++) { ep2_norm(t[i], t[i]); } #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
/** * Multiplies a point on a Barreto-Naehrig curve by the cofactor. * * @param[out] r - the result. * @param[in] p - the point to multiply. */ void ep2_mul_cof_bn(ep2_t r, ep2_t p) { bn_t x; ep2_t t0, t1, t2; ep2_null(t0); ep2_null(t1); ep2_null(t2); bn_null(x); TRY { ep2_new(t0); ep2_new(t1); ep2_new(t2); bn_new(x); fp_param_get_var(x); /* Compute t0 = xP. */ ep2_mul(t0, p, x); if (bn_sign(x) == BN_NEG) { ep2_neg(t0, t0); } /* Compute t1 = \psi(3xP). */ ep2_dbl(t1, t0); ep2_add(t1, t1, t0); ep2_norm(t1, t1); ep2_frb(t1, t1, 1); /* Compute t2 = \psi^3(P) + t0 + t1 + \psi^2(xP). */ ep2_frb(t2, p, 2); ep2_frb(t2, t2, 1); ep2_add(t2, t2, t0); ep2_add(t2, t2, t1); ep2_frb(t1, t0, 2); ep2_add(t2, t2, t1); ep2_norm(r, t2); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ep2_free(t0); ep2_free(t1); ep2_free(t2); bn_free(x); } }
void ep2_tab(ep2_t * t, ep2_t p, int w) { if (w > 2) { ep2_dbl(t[0], p); #if defined(EP_MIXED) ep2_norm(t[0], t[0]); #endif ep2_add(t[1], t[0], p); for (int i = 2; i < (1 << (w - 2)); i++) { ep2_add(t[i], t[i - 1], t[0]); } #if defined(EP_MIXED) for (int i = 1; i < (1 << (EP_WIDTH - 2)); i++) { ep2_norm(t[i], t[i]); } #endif } ep2_copy(t[0], p); }
void ep2_add_projc(ep2_t r, ep2_t p, ep2_t q) { if (ep2_is_infty(p)) { ep2_copy(r, q); return; } if (ep2_is_infty(q)) { ep2_copy(r, p); return; } if (p == q) { /* TODO: This is a quick hack. Should we fix this? */ ep2_dbl(r, p); return; } ep2_add_projc_imp(r, p, q); }
void ep2_mul_pre_basic(ep2_t *t, ep2_t p) { bn_t n; bn_null(n); TRY { bn_new(n); ep2_curve_get_ord(n); ep2_copy(t[0], p); for (int i = 1; i < bn_bits(n); i++) { ep2_dbl(t[i], t[i - 1]); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); } }
/** * Precomputes a table for a point multiplication on an ordinary curve. * * @param[out] t - the destination table. * @param[in] p - the point to multiply. */ static void ep2_mul_pre_ordin(ep2_t *t, ep2_t p) { int i; ep2_dbl(t[0], p); #if defined(EP_MIXED) ep2_norm(t[0], t[0]); #endif #if EP_DEPTH > 2 ep2_add(t[1], t[0], p); for (i = 2; i < (1 << (EP_DEPTH - 2)); i++) { ep2_add(t[i], t[i - 1], t[0]); } #if defined(EP_MIXED) for (i = 1; i < (1 << (EP_DEPTH - 2)); i++) { ep2_norm(t[i], t[i]); } #endif #endif ep2_copy(t[0], p); }
static void ep2_mul_sim_ordin(ep2_t r, ep2_t p, bn_t k, ep2_t q, bn_t l, int gen) { int len, l0, l1, i, n0, n1, w; signed char naf0[FP_BITS + 1], naf1[FP_BITS + 1], *t0, *t1; ep2_t table0[1 << (EP_WIDTH - 2)]; ep2_t table1[1 << (EP_WIDTH - 2)]; ep2_t *t = NULL; for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_null(table0[i]); ep2_null(table1[i]); } if (gen) { #if defined(EP_PRECO) t = ep2_curve_get_tab(); #endif } else { for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_new(table0[i]); } ep2_tab(table0, p, EP_WIDTH); t = table0; } /* Prepare the precomputation table. */ for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_new(table1[i]); } /* Compute the precomputation table. */ ep2_tab(table1, q, EP_WIDTH); /* Compute the w-TNAF representation of k. */ if (gen) { w = EP_DEPTH; } else { w = EP_WIDTH; } l0 = l1 = FP_BITS + 1; bn_rec_naf(naf0, &l0, k, w); bn_rec_naf(naf1, &l1, l, EP_WIDTH); len = MAX(l0, l1); t0 = naf0 + len - 1; t1 = naf1 + len - 1; for (i = l0; i < len; i++) naf0[i] = 0; for (i = l1; i < len; i++) naf1[i] = 0; ep2_set_infty(r); for (i = len - 1; i >= 0; i--, t0--, t1--) { ep2_dbl(r, r); n0 = *t0; n1 = *t1; if (n0 > 0) { ep2_add(r, r, t[n0 / 2]); } if (n0 < 0) { ep2_sub(r, r, t[-n0 / 2]); } if (n1 > 0) { ep2_add(r, r, table1[n1 / 2]); } if (n1 < 0) { ep2_sub(r, r, table1[-n1 / 2]); } } /* Convert r to affine coordinates. */ ep2_norm(r, r); /* Free the precomputation table. */ for (i = 0; i < 1 << (EP_WIDTH - 2); i++) { ep2_free(table0[i]); ep2_free(table1[i]); } }
void ep2_mul_sim_trick(ep2_t r, ep2_t p, bn_t k, ep2_t q, bn_t l) { ep2_t t0[1 << (EP_WIDTH / 2)]; ep2_t t1[1 << (EP_WIDTH / 2)]; ep2_t t[1 << EP_WIDTH]; bn_t n; int l0, l1, w = EP_WIDTH / 2; uint8_t w0[CEIL(2 * FP_BITS, w)], w1[CEIL(2 * FP_BITS, w)]; bn_null(n); for (int i = 0; i < 1 << EP_WIDTH; i++) { ep2_null(t[i]); } for (int i = 0; i < 1 << (EP_WIDTH / 2); i++) { ep2_null(t0[i]); ep2_null(t1[i]); } TRY { bn_new(n); ep2_curve_get_ord(n); for (int i = 0; i < (1 << w); i++) { ep2_new(t0[i]); ep2_new(t1[i]); } for (int i = 0; i < (1 << EP_WIDTH); i++) { ep2_new(t[i]); } ep2_set_infty(t0[0]); for (int i = 1; i < (1 << w); i++) { ep2_add(t0[i], t0[i - 1], p); } ep2_set_infty(t1[0]); for (int i = 1; i < (1 << w); i++) { ep2_add(t1[i], t1[i - 1], q); } for (int i = 0; i < (1 << w); i++) { for (int j = 0; j < (1 << w); j++) { ep2_add(t[(i << w) + j], t0[i], t1[j]); } } l0 = l1 = CEIL(2 * FP_BITS, w); bn_rec_win(w0, &l0, k, w); bn_rec_win(w1, &l1, l, w); for (int i = l0; i < l1; i++) { w0[i] = 0; } for (int i = l1; i < l0; i++) { w1[i] = 0; } ep2_set_infty(r); for (int i = MAX(l0, l1) - 1; i >= 0; i--) { for (int j = 0; j < w; j++) { ep2_dbl(r, r); } ep2_add(r, r, t[(w0[i] << w) + w1[i]]); } ep2_norm(r, r); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); for (int i = 0; i < (1 << w); i++) { ep2_free(t0[i]); ep2_free(t1[i]); } for (int i = 0; i < (1 << EP_WIDTH); i++) { ep2_free(t[i]); } } }
static void ep2_mul_sim_plain(ep2_t r, ep2_t p, bn_t k, ep2_t q, bn_t l, ep2_t *t) { int len, l0, l1, i, n0, n1, w, gen; int8_t naf0[2 * FP_BITS + 1], naf1[2 * FP_BITS + 1], *_k, *_m; ep2_t t0[1 << (EP_WIDTH - 2)]; ep2_t t1[1 << (EP_WIDTH - 2)]; for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_null(t0[i]); ep2_null(t1[i]); } TRY { gen = (t == NULL ? 0 : 1); if (!gen) { for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_new(t0[i]); } ep2_tab(t0, p, EP_WIDTH); t = (ep2_t *)t0; } /* Prepare the precomputation table. */ for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_new(t1[i]); } /* Compute the precomputation table. */ ep2_tab(t1, q, EP_WIDTH); /* Compute the w-TNAF representation of k. */ if (gen) { w = EP_DEPTH; } else { w = EP_WIDTH; } l0 = l1 = 2 * FP_BITS + 1; bn_rec_naf(naf0, &l0, k, w); bn_rec_naf(naf1, &l1, l, EP_WIDTH); len = MAX(l0, l1); _k = naf0 + len - 1; _m = naf1 + len - 1; for (i = l0; i < len; i++) naf0[i] = 0; for (i = l1; i < len; i++) naf1[i] = 0; ep2_set_infty(r); for (i = len - 1; i >= 0; i--, _k--, _m--) { ep2_dbl(r, r); n0 = *_k; n1 = *_m; if (n0 > 0) { ep2_add(r, r, t[n0 / 2]); } if (n0 < 0) { ep2_sub(r, r, t[-n0 / 2]); } if (n1 > 0) { ep2_add(r, r, t1[n1 / 2]); } if (n1 < 0) { ep2_sub(r, r, t1[-n1 / 2]); } } /* Convert r to affine coordinates. */ ep2_norm(r, r); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { /* Free the precomputation tables. */ if (!gen) { for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_free(t0[i]); } } for (i = 0; i < (1 << (EP_WIDTH - 2)); i++) { ep2_free(t1[i]); } } }