Beispiel #1
0
void erts_check_memory(Process *p, Eterm *start, Eterm *end)
{
    Eterm *pos = start;

    while (pos < end) {
        Eterm hval = *pos++;

#ifdef DEBUG
        if (hval == DEBUG_BAD_WORD) {
            print_untagged_memory(start, end);
            erts_exit(ERTS_ERROR_EXIT, "Uninitialized HAlloc'ed memory found @ 0x%0*lx!\n",
                     PTR_SIZE,(unsigned long)(pos - 1));
        }
#endif

        if (is_thing(hval)) {
            pos += thing_arityval(hval);
            continue;
        }

        if (verify_eterm(p,hval))
            continue;

        erts_exit(ERTS_ERROR_EXIT, "Wild pointer found @ 0x%0*lx!\n",
                 PTR_SIZE,(unsigned long)(pos - 1));
    }
}
Beispiel #2
0
Datei: sys.c Projekt: weisslj/otp
static void *
signal_dispatcher_thread_func(void *unused)
{
#ifdef ERTS_ENABLE_LOCK_CHECK
    erts_lc_set_thread_name("signal_dispatcher");
#endif
    while (1) {
        union {int signum; char buf[4];} sb;
        Eterm signal;
	int res, i = 0;
	/* Block on read() waiting for a signal notification to arrive... */

        do {
            res = read(sig_notify_fds[0], (void *) &sb.buf[i], sizeof(int) - i);
            i += res > 0 ? res : 0;
        } while ((i < sizeof(int) && res >= 0) || (res < 0 && errno == EINTR));

	if (res < 0) {
	    erts_exit(ERTS_ABORT_EXIT,
		     "signal-dispatcher thread got unexpected error: %s (%d)\n",
		     erl_errno_id(errno),
		     errno);
	}
        /*
         * NOTE 1: The signal dispatcher thread should not do work
         *         that takes a substantial amount of time (except
         *         perhaps in test and debug builds). It needs to
         *         be responsive, i.e, it should only dispatch work
         *         to other threads.
         *
         * NOTE 2: The signal dispatcher thread is not a blockable
         *         thread (i.e., not a thread managed by the
         *         erl_thr_progress module). This is intentional.
         *         We want to be able to interrupt writing of a crash
         *         dump by hitting C-c twice. Since it isn't a
         *         blockable thread it is important that it doesn't
         *         change the state of any data that a blocking thread
         *         expects to have exclusive access to (unless the
         *         signal dispatcher itself explicitly is blocking all
         *         blockable threads).
         */
        switch (sb.signum) {
            case 0: continue;
            case SIGINT:
                break_requested();
                break;
            default:
                if ((signal = signum_to_signalterm(sb.signum)) == am_error) {
                    erts_exit(ERTS_ABORT_EXIT,
                            "signal-dispatcher thread received unknown "
                            "signal notification: '%d'\n",
                            sb.signum);
                }
                signal_notify_requested(signal);
        }
        ERTS_SMP_LC_ASSERT(!erts_thr_progress_is_blocking());
    }
    return NULL;
}
static Eterm
info_options(Allctr_t *allctr,
	     char *prefix,
	     fmtfn_t *print_to_p,
	     void *print_to_arg,
	     Uint **hpp,
	     Uint *szp)
{
    AOFFAllctr_t* alc = (AOFFAllctr_t*) allctr;
    Eterm res = THE_NON_VALUE;

    ASSERT(alc->crr_order >= 0 && alc->crr_order <= 1);
    ASSERT(alc->blk_order >= 1 && alc->blk_order <= 3);

    if (print_to_p) {
	erts_print(*print_to_p,
		   print_to_arg,
		   "%sas: %s\n",
		   prefix,
		   flavor_str[alc->crr_order][alc->blk_order-1]);
    }

    if (hpp || szp) {
	
	if (!atoms_initialized)
	    erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error: Atoms not initialized",
		     __FILE__, __LINE__);;

	res = NIL;
	add_2tup(hpp, szp, &res, am.as,
                 flavor_atoms[alc->crr_order][alc->blk_order-1]);
    }

    return res;
}
Beispiel #4
0
static Eterm
info_options(Allctr_t *allctr,
	     char *prefix,
	     fmtfn_t *print_to_p,
	     void *print_to_arg,
	     Uint **hpp,
	     Uint *szp)
{
    BFAllctr_t *bfallctr = (BFAllctr_t *) allctr;
    Eterm res = THE_NON_VALUE;

    if (print_to_p) {
	erts_print(*print_to_p,
		   print_to_arg,
		   "%sas: %s\n",
		   prefix,
		   bfallctr->address_order ? "aobf" : "bf");
    }

    if (hpp || szp) {
	
	if (!atoms_initialized)
	    erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error: Atoms not initialized",
		     __FILE__, __LINE__);;

	res = NIL;
	add_2tup(hpp, szp, &res,
		 am.as,
		 bfallctr->address_order ? am.aobf : am.bf);
    }

    return res;
}
Beispiel #5
0
static Eterm
info_options(Allctr_t *allctr,
	     char *prefix,
	     int *print_to_p,
	     void *print_to_arg,
	     Uint **hpp,
	     Uint *szp)
{
    Eterm res = THE_NON_VALUE;

    if (print_to_p) {
	erts_print(*print_to_p, print_to_arg, "%sas: af\n", prefix);
    }

    if (hpp || szp) {
	
	if (!atoms_initialized)
	    erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error: Atoms not initialized",
		     __FILE__, __LINE__);;

	res = NIL;
	add_2tup(hpp, szp, &res, am.as, am.af);
    }

    return res;
}
Beispiel #6
0
void erts_add_monitor(ErtsMonitor **root, Uint type, Eterm ref, Eterm pid, 
		      Eterm name)
{
    void *tstack[STACK_NEED];
    int tpos = 0;
    int dstack[STACK_NEED+1];
    int dpos = 1;
    int state = 0;
    ErtsMonitor **this = root;
    Sint c;
  
    dstack[0] = DIR_END;
    for (;;) {
	if (!*this) { /* Found our place */
	    state = 1;
	    *this = create_monitor(type,ref,pid,name);
	    break;
	} else if ((c = CMP_MON_REF(ref,(*this)->ref)) < 0) { 
	    /* go left */
	    dstack[dpos++] = DIR_LEFT;
	    tstack[tpos++] = this;
	    this = &((*this)->left);
	} else if (c > 0) { /* go right */
	    dstack[dpos++] = DIR_RIGHT;
	    tstack[tpos++] = this;
	    this = &((*this)->right);
	} else { /* Equal key is an error for monitors */
	    erts_exit(ERTS_ERROR_EXIT,"Insertion of already present monitor!");
	    break;
	}
    }
    insertion_rotation(dstack, dpos, tstack, tpos, state);
}
Beispiel #7
0
static Eterm http_bld_uri(struct packet_callback_args* pca,
			  Eterm** hpp, Uint* szp, const PacketHttpURI* uri)
{
    Eterm s1, s2;
    if (uri->type == URI_STAR) {
        return am_Times; /* '*' */
    }

    s1 = http_bld_string(pca, hpp, szp, uri->s1_ptr, uri->s1_len);

    switch (uri->type) {
    case URI_ABS_PATH:
        return erts_bld_tuple(hpp, szp, 2, am_abs_path, s1);
    case URI_HTTP:
    case URI_HTTPS:
        s2 = http_bld_string(pca, hpp, szp, uri->s2_ptr, uri->s2_len);
        return erts_bld_tuple
            (hpp, szp, 5, am_absoluteURI, 
             ((uri->type==URI_HTTP) ? am_http : am_https),
             s1, 
             ((uri->port==0) ? am_undefined : make_small(uri->port)),
             s2);
        
    case URI_STRING:
        return s1;
    case URI_SCHEME:
        s2 = http_bld_string(pca, hpp, szp, uri->s2_ptr, uri->s2_len);
        return erts_bld_tuple(hpp, szp, 3, am_scheme, s1, s2);
                              
    default:
        erts_exit(ERTS_ERROR_EXIT, "%s, line %d: type=%u\n", __FILE__, __LINE__, uri->type);
    }
}
Beispiel #8
0
Datei: sys.c Projekt: weisslj/otp
static void initialize_darwin_main_thread_pipes(void)
{
    if (pipe(erts_darwin_main_thread_pipe) < 0 ||
	pipe(erts_darwin_main_thread_result_pipe) < 0) {
	erts_exit(ERTS_ERROR_EXIT,"Fatal error initializing Darwin main thread stealing");
    }
}
static Eterm
info_options(Allctr_t *allctr,
	     char *prefix,
	     fmtfn_t *print_to_p,
	     void *print_to_arg,
	     Uint **hpp,
	     Uint *szp)
{
    GFAllctr_t *gfallctr = (GFAllctr_t *) allctr;
    Eterm res = THE_NON_VALUE;

    if (print_to_p) {
	erts_print(*print_to_p,
		   print_to_arg,
		   "%smbsd: %lu\n"
		   "%sas: gf\n",
		   prefix, gfallctr->max_blk_search,
		   prefix);
    }

    if (hpp || szp) {
	
	if (!atoms_initialized)
	    erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error: Atoms not initialized",
		     __FILE__, __LINE__);

	res = NIL;
	add_2tup(hpp, szp, &res, am.as, am.gf);
	add_2tup(hpp, szp, &res,
		 am.mbsd,
		 bld_uint(hpp, szp, gfallctr->max_blk_search));
    }

    return res;
}
Beispiel #10
0
void erts_check_stack(Process *p)
{
    Eterm *elemp;
    Eterm *stack_start = p->heap + p->heap_sz;
    Eterm *stack_end = p->htop;

    if (p->stop > stack_start)
	erts_exit(ERTS_ERROR_EXIT,
		 "<%lu.%lu.%lu>: Stack underflow\n",
		 internal_pid_channel_no(p->common.id),
		 internal_pid_number(p->common.id),
		 internal_pid_serial(p->common.id));

    if (p->stop < stack_end)
	erts_exit(ERTS_ERROR_EXIT,
		 "<%lu.%lu.%lu>: Stack overflow\n",
		 internal_pid_channel_no(p->common.id),
		 internal_pid_number(p->common.id),
		 internal_pid_serial(p->common.id));

    for (elemp = p->stop; elemp < stack_start; elemp++) {
	int in_mbuf = 0;
	Eterm *ptr;
	ErlHeapFragment* mbuf;
	switch (primary_tag(*elemp)) {
	case TAG_PRIMARY_LIST: ptr = list_val(*elemp); break;
	case TAG_PRIMARY_BOXED: ptr = boxed_val(*elemp); break;
	default: /* Immediate or cp */ continue;
	}
	if (IN_HEAP(p, ptr))
	    continue;
	for (mbuf = p->mbuf; mbuf; mbuf = mbuf->next)
	    if (WITHIN(ptr, &mbuf->mem[0], &mbuf->mem[0] + mbuf->used_size)) {
		in_mbuf = 1;
		break;
	    }
	if (in_mbuf)
	    continue;

	erts_exit(ERTS_ERROR_EXIT,
		 "<%lu.%lu.%lu>: Wild stack pointer\n",
		 internal_pid_channel_no(p->common.id),
		 internal_pid_number(p->common.id),
		 internal_pid_serial(p->common.id));
    }

}
Beispiel #11
0
BeamInstr *beam_catches_car(unsigned i)
{
    struct bc_pool* p = &bccix[erts_active_code_ix()];

    if (i >= p->tabsize ) {
	erts_exit(ERTS_ERROR_EXIT, "beam_catches_delmod: index %#x is out of range\r\n", i);
    }
    return p->beam_catches[i].cp;
}
Beispiel #12
0
static void
process_killer(void)
{
    int i, j, max = erts_ptab_max(&erts_proc);
    Process* rp;

    erts_printf("\n\nProcess Information\n\n");
    erts_printf("--------------------------------------------------\n");
    for (i = max-1; i >= 0; i--) {
	rp = erts_pix2proc(i);
	if (rp && rp->i != ENULL) {
	    int br;
	    print_process_info(ERTS_PRINT_STDOUT, NULL, rp);
	    erts_printf("(k)ill (n)ext (r)eturn:\n");
	    while(1) {
		if ((j = sys_get_key(0)) <= 0)
		    erts_exit(0, "");
		switch(j) {
		case 'k': {
		    ErtsProcLocks rp_locks = ERTS_PROC_LOCKS_XSIG_SEND;
		    erts_aint32_t state;
		    erts_proc_inc_refc(rp);
		    erts_smp_proc_lock(rp, rp_locks);
		    state = erts_smp_atomic32_read_acqb(&rp->state);
		    if (state & (ERTS_PSFLG_FREE
				 | ERTS_PSFLG_EXITING
				 | ERTS_PSFLG_ACTIVE
				 | ERTS_PSFLG_ACTIVE_SYS
				 | ERTS_PSFLG_IN_RUNQ
				 | ERTS_PSFLG_RUNNING
				 | ERTS_PSFLG_RUNNING_SYS
				 | ERTS_PSFLG_DIRTY_RUNNING
				 | ERTS_PSFLG_DIRTY_RUNNING_SYS)) {
			erts_printf("Can only kill WAITING processes this way\n");
		    }
		    else {
			(void) erts_send_exit_signal(NULL,
						     NIL,
						     rp,
						     &rp_locks,
						     am_kill,
						     NIL,
						     NULL,
						     0);
		    }
		    erts_smp_proc_unlock(rp, rp_locks);
		    erts_proc_dec_refc(rp);
		}
		case 'n': br = 1; break;
		case 'r': return;
		default: return;
		}
		if (br == 1) break;
	    }
	}
    }
}
Beispiel #13
0
static RegProc* reg_alloc(RegProc *tmpl)
{
    RegProc* obj = (RegProc*) erts_alloc(ERTS_ALC_T_REG_PROC, sizeof(RegProc));
    if (!obj) {
	erts_exit(ERTS_ERROR_EXIT, "Can't allocate %d bytes of memory\n", sizeof(RegProc));
    }
    obj->name = tmpl->name;
    obj->p = tmpl->p;
    obj->pt = tmpl->pt;
    return obj;
}
Beispiel #14
0
Datei: sys.c Projekt: weisslj/otp
static void
init_smp_sig_suspend(void) {
#ifdef ERTS_SYS_SUSPEND_SIGNAL
  if (pipe(sig_suspend_fds) < 0) {
    erts_exit(ERTS_ABORT_EXIT,
	     "Failed to create sig_suspend pipe: %s (%d)\n",
	     erl_errno_id(errno),
	     errno);
  }
#endif
}
Beispiel #15
0
void
erts_thr_progress_register_unmanaged_thread(ErtsThrPrgrCallbacks *callbacks)
{
    ErtsThrPrgrData *tpd = perhaps_thr_prgr_data(NULL);
    int is_blocking = 0;

    if (tpd) {
	if (!tpd->is_temporary)
	    erts_exit(ERTS_ABORT_EXIT,
		     "%s:%d:%s(): Double register of thread\n",
		     __FILE__, __LINE__, __func__);
	is_blocking = tpd->is_blocking;
	return_tmp_thr_prgr_data(tpd);
    }

    /*
     * We only allocate the part up to the leader field
     * which is the first field only used by managed threads
     */
    tpd = erts_alloc(ERTS_ALC_T_THR_PRGR_DATA,
		     offsetof(ErtsThrPrgrData, leader));
    tpd->id = (int) erts_atomic32_inc_read_nob(&intrnl->misc.data.unmanaged_id);
    tpd->is_managed = 0;
    tpd->is_blocking = is_blocking;
    tpd->is_temporary = 0;
#ifdef ERTS_ENABLE_LOCK_CHECK
    tpd->is_delaying = 0;
#endif
    ASSERT(tpd->id >= 0);
    if (tpd->id >= intrnl->unmanaged.no)
	erts_exit(ERTS_ABORT_EXIT,
		 "%s:%d:%s(): Too many unmanaged registered threads\n",
		 __FILE__, __LINE__, __func__);

    init_wakeup_request_array(&tpd->wakeup_request[0]);
    erts_tsd_set(erts_thr_prgr_data_key__, (void *) tpd);

    ASSERT(callbacks->wakeup);

    intrnl->unmanaged.callbacks[tpd->id] = *callbacks;
}
Beispiel #16
0
static void
fatal_error(int err, char *func)
{
    char *estr = strerror(err);
    if (!estr) {
	if (err == ENOTSUP)
	    estr = "Not supported";
	else
	    estr = "Unknown error";
    }
    erts_exit(ERTS_ABORT_EXIT, "Fatal error in %s: %s [%d]\n", func, estr, err);
}
Beispiel #17
0
static ERTS_INLINE void
break_requested(void)
{
  /*
   * just set a flag - checked for and handled by
   * scheduler threads erts_check_io() (not signal handler).
   */
  if (ERTS_BREAK_REQUESTED)
      erts_exit(ERTS_INTR_EXIT, "");

  ERTS_SET_BREAK_REQUESTED;
  /* Wake aux thread to get handle break */
  erts_aux_thread_poke();
}
Beispiel #18
0
void beam_catches_delmod(unsigned head, BeamInstr *code, unsigned code_bytes,
			 ErtsCodeIndex code_ix)
{
    struct bc_pool* p = &bccix[code_ix];
    unsigned i, cdr;

    ASSERT((code_ix == erts_active_code_ix()) != bccix[erts_staging_code_ix()].is_staging);
    for(i = head; i != (unsigned)-1;) {
	if (i >= p->tabsize) {
	    erts_exit(ERTS_ERROR_EXIT, "beam_catches_delmod: index %#x is out of range\r\n", i);
	}
	if( (char*)p->beam_catches[i].cp - (char*)code >= code_bytes ) {
	    erts_exit(ERTS_ERROR_EXIT,
		    "beam_catches_delmod: item %#x has cp %p which is not "
		    "in module's range [%p,%p[\r\n",
		    i, p->beam_catches[i].cp, code, ((char*)code + code_bytes));
	}
	p->beam_catches[i].cp = 0;
	cdr = p->beam_catches[i].cdr;
	p->beam_catches[i].cdr = p->free_list;
	p->free_list = i;
	i = cdr;
    }
}
Beispiel #19
0
/*
 * Utilities
 */
static Eterm notify_when_loaded(Process *p, Eterm name_term, char *name, ErtsProcLocks plocks)
{ 
    Eterm r = NIL;
    Eterm immediate_tag = NIL;
    Eterm immediate_type = NIL;
    erts_driver_t *drv;

    ERTS_LC_ASSERT(ERTS_PROC_LOCK_MAIN & plocks);
    lock_drv_list();
    if ((drv = lookup_driver(name)) == NULL) {
	immediate_tag = am_unloaded;
	immediate_type = am_DOWN;
	goto immediate;
    }
    if (drv->handle == NULL || drv->handle->status == ERL_DE_PERMANENT) {
	immediate_tag = am_permanent;
	immediate_type = am_UP;
	goto immediate;
    }	

    switch (drv->handle->status) {
    case ERL_DE_OK:
	immediate_tag = am_loaded;
	immediate_type = am_UP;
	goto immediate;
    case ERL_DE_UNLOAD:
    case ERL_DE_FORCE_UNLOAD:
	immediate_tag = am_load_cancelled;
	immediate_type = am_DOWN;
	goto immediate;
    case ERL_DE_RELOAD:
    case ERL_DE_FORCE_RELOAD:
	break;
    default:
	erts_exit(ERTS_ERROR_EXIT,"Internal error, unknown state %u in dynamic driver.", drv->handle->status);
    }
    p->flags |= F_USING_DDLL;
    r = add_monitor(p, drv->handle, ERL_DE_PROC_AWAIT_LOAD);
    unlock_drv_list();
    BIF_RET(r);
 immediate:
    r =  erts_make_ref(p);
    erts_proc_unlock(p, plocks);
    notify_proc(p, r, name_term, immediate_type, immediate_tag, 0);
    unlock_drv_list();
    erts_proc_lock(p, plocks);
    BIF_RET(r);
}
Beispiel #20
0
static ERTS_INLINE void
break_requested(void)
{
  /*
   * just set a flag - checked for and handled by
   * scheduler threads erts_check_io() (not signal handler).
   */
#ifdef DEBUG			
  fprintf(stderr,"break!\n");
#endif
  if (ERTS_BREAK_REQUESTED)
      erts_exit(ERTS_INTR_EXIT, "");

  ERTS_SET_BREAK_REQUESTED;
  ERTS_CHK_IO_AS_INTR(); /* Make sure we don't sleep in poll */
}
Beispiel #21
0
static void
insert_node(ErlNode *node, int type, Eterm id)
{
    int i;
    ReferredNode *rnp = NULL;
    for(i = 0; i < no_referred_nodes; i++) {
	if(node == referred_nodes[i].node) {
	    rnp = &referred_nodes[i];
	    break;
	}
    }

    if (!rnp)
	erts_exit(ERTS_ERROR_EXIT, "Reference to non-existing node table entry found!\n");

    insert_node_referrer(rnp, type, id);
}
Beispiel #22
0
BOOL WINAPI ctrl_handler_ignore_break(DWORD dwCtrlType)
{
    switch (dwCtrlType) {
    case CTRL_C_EVENT:
    case CTRL_BREAK_EVENT:
	return TRUE;
	break;
    case CTRL_LOGOFF_EVENT:
    case CTRL_SHUTDOWN_EVENT:
	if (nohup)
	    return TRUE;
	/* else pour through... */
    case CTRL_CLOSE_EVENT:
	erts_exit(0, "");
	break;
    }
    return TRUE;
}
Beispiel #23
0
static ERTS_INLINE int
has_reached_wakeup(ErtsThrPrgrVal wakeup)
{
    /*
     * Exactly the same as erts_thr_progress_has_reached(), but
     * also verify valid wakeup requests in debug mode.
     */
    ErtsThrPrgrVal current;

    current = read_acqb(&erts_thr_prgr__.current);

#if ERTS_THR_PRGR_DBG_CHK_WAKEUP_REQUEST_VALUE
    {
	ErtsThrPrgrVal limit;
	/*
	 * erts_thr_progress_later() returns values which are
	 * equal to 'current + 2', or 'current + 3'. That is, users
	 * should never get a hold of values larger than that.
	 *
	 * That is, valid values are values less than 'current + 4'.
	 *
	 * Values larger than this won't work with the wakeup
	 * algorithm.
	 */

	limit = current + 4;
	if (limit == ERTS_THR_PRGR_VAL_WAITING)
	    limit = 0;
	else if (limit < current) /* Wrapped */
	    limit += 1;

	if (!erts_thr_progress_has_passed__(limit, wakeup))
	    erts_exit(ERTS_ABORT_EXIT,
		     "Invalid wakeup request value found:"
		     " current=%b64u, wakeup=%b64u, limit=%b64u",
		     current, wakeup, limit);
    }
#endif

    if (current == wakeup)
	return 1;
    return erts_thr_progress_has_passed__(current, wakeup);
}
Beispiel #24
0
static void
insert_dist_entry(DistEntry *dist, int type, Eterm id, Uint creation)
{
    ReferredDist *rdp = NULL;
    int i;

    for(i = 0; i < no_referred_dists; i++) {
	if(dist == referred_dists[i].dist) {
	    rdp = &referred_dists[i];
	    break;
	}
    }

    if(!rdp)
	erts_exit(ERTS_ERROR_EXIT,
		 "Reference to non-existing distribution table entry found!\n");

    insert_dist_referrer(rdp, type, id, creation);
}
Beispiel #25
0
BOOL WINAPI ctrl_handler_replace_intr(DWORD dwCtrlType)
{
    switch (dwCtrlType) {
    case CTRL_C_EVENT:
	return FALSE;
    case CTRL_BREAK_EVENT:
	SetEvent(erts_sys_break_event);
	break;
    case CTRL_LOGOFF_EVENT:
	if (nohup)
	    return TRUE;
	/* else pour through... */
    case CTRL_CLOSE_EVENT:
    case CTRL_SHUTDOWN_EVENT:
	erts_exit(0, "");
	break;
    }
    return TRUE;
}
Beispiel #26
0
Datei: sys.c Projekt: weisslj/otp
static void
init_smp_sig_notify(void)
{
    erts_smp_thr_opts_t thr_opts = ERTS_SMP_THR_OPTS_DEFAULT_INITER;
    thr_opts.detached = 1;
    thr_opts.name = "sys_sig_dispatcher";

    if (pipe(sig_notify_fds) < 0) {
	erts_exit(ERTS_ABORT_EXIT,
		 "Failed to create signal-dispatcher pipe: %s (%d)\n",
		 erl_errno_id(errno),
		 errno);
    }

    /* Start signal handler thread */
    erts_smp_thr_create(&sig_dispatcher_tid,
			signal_dispatcher_thread_func,
			NULL,
			&thr_opts);
}
Beispiel #27
0
static ERTS_INLINE void
sigusr1_exit(void)
{
    char env[21]; /* enough to hold any 64-bit integer */
    size_t envsz;
    int i, secs = -1;

    /* We do this at interrupt level, since the main reason for
     * wanting to generate a crash dump in this way is that the emulator
     * is hung somewhere, so it won't be able to poll any flag we set here.
     */
    ERTS_SET_GOT_SIGUSR1;

    envsz = sizeof(env);
    if ((i = erts_sys_getenv_raw("ERL_CRASH_DUMP_SECONDS", env, &envsz)) >= 0) {
	secs = i != 0 ? 0 : atoi(env);
    }

    prepare_crash_dump(secs);
    erts_exit(ERTS_ERROR_EXIT, "Received SIGUSR1\n");
}
Beispiel #28
0
static void
quit_requested(void)
{
    erts_exit(ERTS_INTR_EXIT, "");
}
Beispiel #29
0
static int
print_op(fmtfn_t to, void *to_arg, int op, int size, BeamInstr* addr)
{
    int i;
    BeamInstr tag;
    char* sign;
    char* start_prog;		/* Start of program for packer. */
    char* prog;			/* Current position in packer program. */
    BeamInstr stack[8];		/* Stack for packer. */
    BeamInstr* sp = stack;		/* Points to next free position. */
    BeamInstr packed = 0;		/* Accumulator for packed operations. */
    BeamInstr args[8];		/* Arguments for this instruction. */
    BeamInstr* ap;			/* Pointer to arguments. */
    BeamInstr* unpacked;		/* Unpacked arguments */
    BeamInstr* first_arg;               /* First argument */

    start_prog = opc[op].pack;

    if (start_prog[0] == '\0') {
	/*
	 * There is no pack program.
	 * Avoid copying because instructions containing bignum operands
	 * are bigger than actually declared.
	 */
        addr++;
        ap = addr;
    } else {
#if defined(ARCH_64) && defined(CODE_MODEL_SMALL)
        BeamInstr instr_word = addr[0];
#endif
        addr++;

	/*
	 * Copy all arguments to a local buffer for the unpacking.
	 */

	ASSERT(size <= sizeof(args)/sizeof(args[0]));
	ap = args;
	for (i = 0; i < size; i++) {
	    *ap++ = addr[i];
	}

	/*
	 * Undo any packing done by the loader.  This is easily done by running
	 * the packing program backwards and in reverse.
	 */

	prog = start_prog + sys_strlen(start_prog);
	while (start_prog < prog) {
	    prog--;
	    switch (*prog) {
	    case 'f':
	    case 'g':
	    case 'q':
		*ap++ = *--sp;
		break;
#ifdef ARCH_64
	    case '1':		/* Tightest shift */
		*ap++ = (packed & BEAM_TIGHTEST_MASK) << 3;
		packed >>= BEAM_TIGHTEST_SHIFT;
		break;
#endif
	    case '2':		/* Tight shift */
		*ap++ = packed & BEAM_TIGHT_MASK;
		packed >>= BEAM_TIGHT_SHIFT;
		break;
	    case '3':		/* Loose shift */
		*ap++ = packed & BEAM_LOOSE_MASK;
		packed >>= BEAM_LOOSE_SHIFT;
		break;
#ifdef ARCH_64
	    case '4':		/* Shift 32 steps */
		*ap++ = packed & BEAM_WIDE_MASK;
		packed >>= BEAM_WIDE_SHIFT;
		break;
#endif
	    case 'p':
		*sp++ = *--ap;
		break;
	    case 'P':
		packed = *--sp;
		break;
#if defined(ARCH_64) && defined(CODE_MODEL_SMALL)
            case '#':       /* -1 */
            case '$':       /* -2 */
            case '%':       /* -3 */
            case '&':       /* -4 */
            case '\'':      /* -5 */
            case '(':       /* -6 */
                packed = (packed << BEAM_WIDE_SHIFT) | BeamExtraData(instr_word);
		break;
#endif
	    default:
                erts_exit(ERTS_ERROR_EXIT, "beam_debug: invalid packing op: %c\n", *prog);
	    }
	}
	ap = args;
    }

    first_arg = ap;

    /*
     * Print the name and all operands of the instructions.
     */
	
    erts_print(to, to_arg, "%s ", opc[op].name);
    sign = opc[op].sign;
    while (*sign) {
	switch (*sign) {
	case 'r':		/* x(0) */
	    erts_print(to, to_arg, "r(0)");
	    break;
	case 'x':		/* x(N) */
	    {
		Uint n = ap[0] / sizeof(Eterm);
		erts_print(to, to_arg, "x(%d)", n);
		ap++;
	    }
	    break;
	case 'y':		/* y(N) */
	    {
		Uint n = ap[0] / sizeof(Eterm) - CP_SIZE;
		erts_print(to, to_arg, "y(%d)", n);
		ap++;
	    }
	    break;
	case 'n':		/* Nil */
	    erts_print(to, to_arg, "[]");
	    break;
        case 'S':               /* Register */
            {
                Uint reg_type = (*ap & 1) ? 'y' : 'x';
                Uint n = ap[0] / sizeof(Eterm);
                erts_print(to, to_arg, "%c(%d)", reg_type, n);
		ap++;
                break;
            }
	case 's':		/* Any source (tagged constant or register) */
	    tag = loader_tag(*ap);
	    if (tag == LOADER_X_REG) {
		erts_print(to, to_arg, "x(%d)", loader_x_reg_index(*ap));
		ap++;
		break;
	    } else if (tag == LOADER_Y_REG) {
		erts_print(to, to_arg, "y(%d)", loader_y_reg_index(*ap) - CP_SIZE);
		ap++;
		break;
	    }
	    /*FALLTHROUGH*/
	case 'a':		/* Tagged atom */
	case 'i':		/* Tagged integer */
	case 'c':		/* Tagged constant */
	case 'q':		/* Tagged literal */
	    erts_print(to, to_arg, "%T", (Eterm) *ap);
	    ap++;
	    break;
	case 'A':
	    erts_print(to, to_arg, "%d", arityval( (Eterm) ap[0]));
	    ap++;
	    break;
	case 'd':		/* Destination (x(0), x(N), y(N)) */
	    if (*ap & 1) {
		erts_print(to, to_arg, "y(%d)",
			   *ap / sizeof(Eterm) - CP_SIZE);
	    } else {
		erts_print(to, to_arg, "x(%d)",
			   *ap / sizeof(Eterm));
	    }
	    ap++;
	    break;
	case 't':               /* Untagged integers */
	case 'I':
        case 'W':
	    switch (op) {
	    case op_i_gc_bif1_jWstd:
	    case op_i_gc_bif2_jWtssd:
	    case op_i_gc_bif3_jWtssd:
		{
		    const ErtsGcBif* p;
		    BifFunction gcf = (BifFunction) *ap;
		    for (p = erts_gc_bifs; p->bif != 0; p++) {
			if (p->gc_bif == gcf) {
			    print_bif_name(to, to_arg, p->bif);
			    break;
			}
		    }
		    if (p->bif == 0) {
			erts_print(to, to_arg, "%d", (Uint)gcf);
		    }
		    break;
		}
	    case op_i_make_fun_Wt:
                if (*sign == 'W') {
                    ErlFunEntry* fe = (ErlFunEntry *) *ap;
                    ErtsCodeMFA* cmfa = find_function_from_pc(fe->address);
		    erts_print(to, to_arg, "%T:%T/%bpu", cmfa->module,
                               cmfa->function, cmfa->arity);
                } else {
                    erts_print(to, to_arg, "%d", *ap);
                }
                break;
	    case op_i_bs_match_string_xfWW:
                if (ap - first_arg < 3) {
                    erts_print(to, to_arg, "%d", *ap);
                } else {
                    Uint bits = ap[-1];
                    Uint bytes = (bits+7)/8;
                    byte* str = (byte *) *ap;
                    print_byte_string(to, to_arg, str, bytes);
                }
                break;
	    case op_bs_put_string_WW:
                if (ap - first_arg == 0) {
                    erts_print(to, to_arg, "%d", *ap);
                } else {
                    Uint bytes = ap[-1];
                    byte* str = (byte *) ap[0];
                    print_byte_string(to, to_arg, str, bytes);
                }
                break;
	    default:
		erts_print(to, to_arg, "%d", *ap);
	    }
	    ap++;
	    break;
	case 'f':		/* Destination label */
            switch (op) {
            case op_catch_yf:
                erts_print(to, to_arg, "f(" HEXF ")", catch_pc((BeamInstr)*ap));
                break;
            default:
                {
                    BeamInstr* target = f_to_addr(addr, op, ap);
                    ErtsCodeMFA* cmfa = find_function_from_pc(target);
                    if (!cmfa || erts_codemfa_to_code(cmfa) != target) {
                        erts_print(to, to_arg, "f(" HEXF ")", target);
                    } else {
                        erts_print(to, to_arg, "%T:%T/%bpu", cmfa->module,
                                   cmfa->function, cmfa->arity);
                    }
                    ap++;
                }
                break;
            }
            break;
	case 'p':		/* Pointer (to label) */
	    {
                BeamInstr* target = f_to_addr(addr, op, ap);
                erts_print(to, to_arg, "p(" HEXF ")", target);
		ap++;
	    }
	    break;
	case 'j':		/* Pointer (to label) */
            if (*ap == 0) {
                erts_print(to, to_arg, "j(0)");
            } else {
                BeamInstr* target = f_to_addr(addr, op, ap);
                erts_print(to, to_arg, "j(" HEXF ")", target);
            }
	    ap++;
	    break;
	case 'e':		/* Export entry */
	    {
		Export* ex = (Export *) *ap;
		erts_print(to, to_arg,
			   "%T:%T/%bpu", (Eterm) ex->info.mfa.module,
                           (Eterm) ex->info.mfa.function,
                           ex->info.mfa.arity);
		ap++;
	    }
	    break;
	case 'F':		/* Function definition */
	    break;
	case 'b':
	    print_bif_name(to, to_arg, (BifFunction) *ap);
	    ap++;
	    break;
	case 'P':	/* Byte offset into tuple (see beam_load.c) */
	case 'Q':	/* Like 'P', but packable */
	    erts_print(to, to_arg, "%d", (*ap / sizeof(Eterm)) - 1);
	    ap++;
	    break;
	case 'l':		/* fr(N) */
	    erts_print(to, to_arg, "fr(%d)", loader_reg_index(ap[0]));
	    ap++;
	    break;
	default:
	    erts_print(to, to_arg, "???");
	    ap++;
	    break;
	}
	erts_print(to, to_arg, " ");
	sign++;
    }

    /*
     * Print more information about certain instructions.
     */

    unpacked = ap;
    ap = addr + size;

    /*
     * In the code below, never use ap[-1], ap[-2], ...
     * (will not work if the arguments have been packed).
     *
     * Instead use unpacked[-1], unpacked[-2], ...
     */
    switch (op) {
    case op_i_select_val_lins_xfI:
    case op_i_select_val_lins_yfI:
    case op_i_select_val_bins_xfI:
    case op_i_select_val_bins_yfI:
	{
	    int n = unpacked[-1];
	    int ix = n;
            Sint32* jump_tab = (Sint32 *)(ap + n);

	    while (ix--) {
		erts_print(to, to_arg, "%T ", (Eterm) ap[0]);
		ap++;
		size++;
	    }
	    ix = n;
	    while (ix--) {
                BeamInstr* target = f_to_addr_packed(addr, op, jump_tab);
		erts_print(to, to_arg, "f(" HEXF ") ", target);
                jump_tab++;
	    }
            size += (n+1) / 2;
	}
	break;
    case op_i_select_tuple_arity_xfI:
    case op_i_select_tuple_arity_yfI:
        {
            int n = unpacked[-1];
            int ix = n - 1; /* without sentinel */
            Sint32* jump_tab = (Sint32 *)(ap + n);

            while (ix--) {
                Uint arity = arityval(ap[0]);
                erts_print(to, to_arg, "{%d} ", arity, ap[1]);
                ap++;
                size++;
            }
            /* print sentinel */
            erts_print(to, to_arg, "{%T} ", ap[0], ap[1]);
            ap++;
            size++;
            ix = n;
            while (ix--) {
                BeamInstr* target = f_to_addr_packed(addr, op, jump_tab);
                erts_print(to, to_arg, "f(" HEXF ") ", target);
                jump_tab++;
            }
            size += (n+1) / 2;
        }
        break;
    case op_i_select_val2_xfcc:
    case op_i_select_val2_yfcc:
    case op_i_select_tuple_arity2_xfAA:
    case op_i_select_tuple_arity2_yfAA:
        {
            Sint32* jump_tab = (Sint32 *) ap;
            BeamInstr* target;
            int i;

            for (i = 0; i < 2; i++) {
                target = f_to_addr_packed(addr, op, jump_tab++);
                erts_print(to, to_arg, "f(" HEXF ") ", target);
            }
            size += 1;
        }
        break;
    case op_i_jump_on_val_xfIW:
    case op_i_jump_on_val_yfIW:
	{
	    int n = unpacked[-2];
            Sint32* jump_tab = (Sint32 *) ap;

            size += (n+1) / 2;
            while (n-- > 0) {
                BeamInstr* target = f_to_addr_packed(addr, op, jump_tab);
		erts_print(to, to_arg, "f(" HEXF ") ", target);
                jump_tab++;
	    }
	}
	break;
    case op_i_jump_on_val_zero_xfI:
    case op_i_jump_on_val_zero_yfI:
	{
	    int n = unpacked[-1];
            Sint32* jump_tab = (Sint32 *) ap;

            size += (n+1) / 2;
            while (n-- > 0) {
                BeamInstr* target = f_to_addr_packed(addr, op, jump_tab);
		erts_print(to, to_arg, "f(" HEXF ") ", target);
                jump_tab++;
	    }
	}
	break;
    case op_i_put_tuple_xI:
    case op_i_put_tuple_yI:
    case op_new_map_dtI:
    case op_update_map_assoc_sdtI:
    case op_update_map_exact_jsdtI:
	{
	    int n = unpacked[-1];

	    while (n > 0) {
		switch (loader_tag(ap[0])) {
		case LOADER_X_REG:
		    erts_print(to, to_arg, " x(%d)", loader_x_reg_index(ap[0]));
		    break;
		case LOADER_Y_REG:
		    erts_print(to, to_arg, " y(%d)", loader_y_reg_index(ap[0]) - CP_SIZE);
		    break;
		default:
		    erts_print(to, to_arg, " %T", (Eterm) ap[0]);
		    break;
		}
		ap++, size++, n--;
	    }
	}
	break;
    case op_i_new_small_map_lit_dtq:
        {
            Eterm *tp = tuple_val(unpacked[-1]);
            int n = arityval(*tp);

            while (n > 0) {
                switch (loader_tag(ap[0])) {
                case LOADER_X_REG:
                    erts_print(to, to_arg, " x(%d)", loader_x_reg_index(ap[0]));
                    break;
                case LOADER_Y_REG:
		    erts_print(to, to_arg, " y(%d)", loader_y_reg_index(ap[0]) - CP_SIZE);
		    break;
                default:
		    erts_print(to, to_arg, " %T", (Eterm) ap[0]);
		    break;
                }
                ap++, size++, n--;
            }
        }
        break;
    case op_i_get_map_elements_fsI:
	{
	    int n = unpacked[-1];

	    while (n > 0) {
		if (n % 3 == 1) {
		    erts_print(to, to_arg, " %X", ap[0]);
		} else {
		    switch (loader_tag(ap[0])) {
		    case LOADER_X_REG:
			erts_print(to, to_arg, " x(%d)", loader_x_reg_index(ap[0]));
			break;
		    case LOADER_Y_REG:
			erts_print(to, to_arg, " y(%d)", loader_y_reg_index(ap[0]) - CP_SIZE);
			break;
		    default:
			erts_print(to, to_arg, " %T", (Eterm) ap[0]);
			break;
		    }
		}
		ap++, size++, n--;
	    }
	}
	break;
    }
    erts_print(to, to_arg, "\n");

    return size;
}
Beispiel #30
0
static Port *
open_port(Process* p, Eterm name, Eterm settings, int *err_typep, int *err_nump)
{
    Sint i;
    Eterm option;
    Uint arity;
    Eterm* tp;
    Uint* nargs;
    erts_driver_t* driver;
    char* name_buf = NULL;
    SysDriverOpts opts;
    Sint linebuf;
    Eterm edir = NIL;
    byte dir[MAXPATHLEN];
    erts_aint32_t sflgs = 0;
    Port *port;

    /* These are the defaults */
    opts.packet_bytes = 0;
    opts.use_stdio = 1;
    opts.redir_stderr = 0;
    opts.read_write = 0;
    opts.hide_window = 0;
    opts.wd = NULL;
    opts.envir = NULL;
    opts.exit_status = 0;
    opts.overlapped_io = 0; 
    opts.spawn_type = ERTS_SPAWN_ANY; 
    opts.argv = NULL;
    opts.parallelism = erts_port_parallelism;
    linebuf = 0;

    *err_nump = 0;

    if (is_not_list(settings) && is_not_nil(settings)) {
	goto badarg;
    }
    /*
     * Parse the settings.
     */

    if (is_not_nil(settings)) {
	nargs = list_val(settings);
	while (1) {
	    if (is_tuple_arity(*nargs, 2)) {
		tp = tuple_val(*nargs);
		arity = *tp++;
		option = *tp++;
		if (option == am_packet) {
		    if (is_not_small(*tp)) {
			goto badarg;
		    }
		    opts.packet_bytes = signed_val(*tp);
		    switch (opts.packet_bytes) {
		    case 1:
		    case 2:
		    case 4:
			break;
		    default:
			goto badarg;
		   }
		} else if (option == am_line) {
		    if (is_not_small(*tp)) {
			goto badarg;
		    }
		    linebuf = signed_val(*tp);
		    if (linebuf <= 0) {
			goto badarg;
		    }
		} else if (option == am_env) {
		    byte* bytes;
		    if ((bytes = convert_environment(p, *tp)) == NULL) {
			goto badarg;
		    }
		    opts.envir = (char *) bytes;
		} else if (option == am_args) {
		    char **av;
		    char **oav = opts.argv;
		    if ((av = convert_args(*tp)) == NULL) {
			goto badarg;
		    }
		    opts.argv = av;
		    if (oav) {
			opts.argv[0] = oav[0];
			oav[0] = erts_default_arg0;
			free_args(oav);
		    }

		} else if (option == am_arg0) {
		    char *a0;

		    if ((a0 = erts_convert_filename_to_native(*tp, NULL, 0, ERTS_ALC_T_TMP, 1, 1, NULL)) == NULL) {
			goto badarg;
		    }
		    if (opts.argv == NULL) {
			opts.argv = erts_alloc(ERTS_ALC_T_TMP, 
					       2 * sizeof(char **));
			opts.argv[0] = a0;
			opts.argv[1] = NULL;
		    } else {
			if (opts.argv[0] != erts_default_arg0) {
			    erts_free(ERTS_ALC_T_TMP, opts.argv[0]);
			}
			opts.argv[0] = a0;
		    }
		} else if (option == am_cd) {
		    edir = *tp;
		} else if (option == am_parallelism) {
		    if (*tp == am_true)
			opts.parallelism = 1;
		    else if (*tp == am_false)
			opts.parallelism = 0;
		    else
			goto badarg;
		} else {
		    goto badarg;
		}
	    } else if (*nargs == am_stream) {
		opts.packet_bytes = 0;
	    } else if (*nargs == am_use_stdio) {
		opts.use_stdio = 1;
	    } else if (*nargs == am_stderr_to_stdout) {
		opts.redir_stderr = 1;
	    } else if (*nargs == am_line) {
		linebuf = 512;
	    } else if (*nargs == am_nouse_stdio) {
		opts.use_stdio = 0;
	    } else if (*nargs == am_binary) {
		sflgs |= ERTS_PORT_SFLG_BINARY_IO;
	    } else if (*nargs == am_in) {
		opts.read_write |= DO_READ;
	    } else if (*nargs == am_out) {
		opts.read_write |= DO_WRITE;
	    } else if (*nargs == am_eof) {
		sflgs |= ERTS_PORT_SFLG_SOFT_EOF;
	    } else if (*nargs == am_hide) {
		opts.hide_window = 1;
	    } else if (*nargs == am_exit_status) {
		opts.exit_status = 1;
	    } else if (*nargs == am_overlapped_io) {
		opts.overlapped_io = 1;
	    } else {
		goto badarg;
	    }
	    if (is_nil(*++nargs)) 
		break;
	    if (is_not_list(*nargs)) {
		goto badarg;
	    }
	    nargs = list_val(*nargs);
	}
    }
    if (opts.read_write == 0)	/* implement default */
	opts.read_write = DO_READ|DO_WRITE;

    /* Mutually exclusive arguments. */
    if((linebuf && opts.packet_bytes) || 
       (opts.redir_stderr && !opts.use_stdio)) {
	goto badarg;
    }

    /*
     * Parse the first argument and start the appropriate driver.
     */
    
    if (is_atom(name) || (i = is_string(name))) {
	/* a vanilla port */
	if (is_atom(name)) {
	    name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP,
					   atom_tab(atom_val(name))->len+1);
	    sys_memcpy((void *) name_buf,
		       (void *) atom_tab(atom_val(name))->name, 
		       atom_tab(atom_val(name))->len);
	    name_buf[atom_tab(atom_val(name))->len] = '\0';
	} else {
	    name_buf = (char *) erts_alloc(ERTS_ALC_T_TMP, i + 1);
	    if (intlist_to_buf(name, name_buf, i) != i)
		erts_exit(ERTS_ERROR_EXIT, "%s:%d: Internal error\n", __FILE__, __LINE__);
	    name_buf[i] = '\0';
	}
	driver = &vanilla_driver;
    } else {   
	if (is_not_tuple(name)) {
	    goto badarg;		/* Not a process or fd port */
	}
	tp = tuple_val(name);
	arity = *tp++;

	if (arity == make_arityval(0)) {
	    goto badarg;
	}
    
	if (*tp == am_spawn || *tp == am_spawn_driver || *tp == am_spawn_executable) {	/* A process port */
	    int encoding;
	    if (arity != make_arityval(2)) {
		goto badarg;
	    }
	    name = tp[1];
	    encoding = erts_get_native_filename_encoding();
	    /* Do not convert the command to utf-16le yet, do that in win32 specific code */
	    /* since the cmd is used for comparsion with drivers names and copied to port info */
	    if (encoding == ERL_FILENAME_WIN_WCHAR) {
		encoding = ERL_FILENAME_UTF8;
	    }
	    if ((name_buf = erts_convert_filename_to_encoding(name, NULL, 0, ERTS_ALC_T_TMP,0,1, encoding, NULL, 0))
		== NULL) {
		goto badarg;
	    }

	    if (*tp == am_spawn_driver) {
		opts.spawn_type = ERTS_SPAWN_DRIVER;
	    } else if (*tp == am_spawn_executable) {
		opts.spawn_type = ERTS_SPAWN_EXECUTABLE;
	    }

	    driver = &spawn_driver;
	} else if (*tp == am_fd) { /* An fd port */
	    int n;
	    struct Sint_buf sbuf;
	    char* p;

	    if (arity != make_arityval(3)) {
		goto badarg;
	    }
	    if (is_not_small(tp[1]) || is_not_small(tp[2])) {
		goto badarg;
	    }
	    opts.ifd = unsigned_val(tp[1]);
	    opts.ofd = unsigned_val(tp[2]);

	    /* Syntesize name from input and output descriptor. */
	    name_buf = erts_alloc(ERTS_ALC_T_TMP,
				  2*sizeof(struct Sint_buf) + 2); 
	    p = Sint_to_buf(opts.ifd, &sbuf);
	    n = sys_strlen(p);
	    sys_strncpy(name_buf, p, n);
	    name_buf[n] = '/';
	    p = Sint_to_buf(opts.ofd, &sbuf);
	    sys_strcpy(name_buf+n+1, p);

	    driver = &fd_driver;
	} else {
	    goto badarg;
	}
    }

    if ((driver != &spawn_driver && opts.argv != NULL) ||
	(driver == &spawn_driver && 
	 opts.spawn_type != ERTS_SPAWN_EXECUTABLE && 
	 opts.argv != NULL)) {
	/* Argument vector only if explicit spawn_executable */
	goto badarg;
    }

    if (edir != NIL) {
	if ((opts.wd = erts_convert_filename_to_native(edir, NULL, 0, ERTS_ALC_T_TMP,0,1,NULL)) == NULL) {
	    goto badarg;
	}
    }

    if (driver != &spawn_driver && opts.exit_status) {
	goto badarg;
    }
    
    if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) {
        trace_sched(p, ERTS_PROC_LOCK_MAIN, am_out);
    }
    

    erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN);

    port = erts_open_driver(driver, p->common.id, name_buf, &opts, err_typep, err_nump);
#ifdef USE_VM_PROBES
    if (port && DTRACE_ENABLED(port_open)) {
        DTRACE_CHARBUF(process_str, DTRACE_TERM_BUF_SIZE);
        DTRACE_CHARBUF(port_str, DTRACE_TERM_BUF_SIZE);

        dtrace_proc_str(p, process_str);
        erts_snprintf(port_str, sizeof(DTRACE_CHARBUF_NAME(port_str)), "%T", port->common.id);
        DTRACE3(port_open, process_str, name_buf, port_str);
    }
#endif

    if (port && IS_TRACED_FL(port, F_TRACE_PORTS))
        trace_port(port, am_getting_linked, p->common.id);

    erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN);

    if (IS_TRACED_FL(p, F_TRACE_SCHED_PROCS)) {
        trace_sched(p, ERTS_PROC_LOCK_MAIN, am_in);
    }

    if (!port) {
	DEBUGF(("open_driver returned (%d:%d)\n",
		err_typep ? *err_typep : 4711,
		err_nump ? *err_nump : 4711));
	goto do_return;
    }

    if (linebuf && port->linebuf == NULL){
	port->linebuf = allocate_linebuf(linebuf);
	sflgs |= ERTS_PORT_SFLG_LINEBUF_IO;
    }

    if (sflgs)
	erts_atomic32_read_bor_relb(&port->state, sflgs);
 
 do_return:
    if (name_buf)
	erts_free(ERTS_ALC_T_TMP, (void *) name_buf);
    if (opts.argv) {
	free_args(opts.argv);
    }
    if (opts.wd && opts.wd != ((char *)dir)) {
	erts_free(ERTS_ALC_T_TMP, (void *) opts.wd);
    }
    return port;
    
 badarg:
    if (err_typep)
	*err_typep = -3;
    if (err_nump)
	*err_nump = BADARG;
    port = NULL;
    goto do_return;
}