Beispiel #1
0
void ChatCore::tryconnect(const QString& nickname,
                                      const QString& ip, const QString& port)
{

    auto thread = new QThread(this);

    if (server != nullptr)
    {
        server->destroy_connection();
        delete server;
    }
    server = new Server(nickname.toStdString(), ip.toStdString(), port.toInt());
//    server->moveToThread(thread);
    connect(thread, SIGNAL(started()), server, SLOT(establish_connection()));

    connect(server, SIGNAL(connected()), this, SLOT(connection_established()));

    connect(server, SIGNAL(readyRead()), this, SLOT(message_received()));

    connect(server, SIGNAL(error(QAbstractSocket::SocketError)), this,
            SLOT(connection_failed(QAbstractSocket::SocketError)));

    connect(server, SIGNAL(stop_thread()), thread, SLOT(quit()));
    thread->start();
}
Beispiel #2
0
void send_message(const char* hostname, const char* port, char message)
{
    /* Connect to ssh-tunneld and deliver the message
     * to either open or close a connection.
     * Expect ssh-tunneld to be listening on port 1081.
     */
    int sock_fd = establish_connection(hostname, port);
    if (sock_fd == -1)
    {
        fprintf(stderr, "Could not connect to ssh-tunneld running on %s:%s\n", hostname, port);
        exit(EXIT_FAILURE);
    }
    /* now send a message to the ssh-tunneld */
    if (send(sock_fd, &message, sizeof(message), 0) != 1)
    {
        perror("send");
        exit(EXIT_FAILURE);
    }
    /* read the response that tells us when the tunnel is active (or that our disconnect request
     * was acknowledge)
     */
    char buffer[1];
    if (recv(sock_fd, &buffer, sizeof(buffer), 0) != 1)
    {
        perror("recv");
        exit(EXIT_FAILURE);
    }
    if (buffer[0] != message)
    {
        fprintf(stderr, "Received incorrect response from ssh-tunneld. Exiting.\n");
        exit(EXIT_FAILURE);
    }
    /* finally close the socket */
    close(sock_fd);
}
Beispiel #3
0
/*
 *  Ensure that the environment is sane.  
 *    This involves checking the Postgresql version, and if in network mode
 *      also establishing a connection to a receiver.
*/
int ensure_valid_environment(void) {
  StringInfoData buf;
  int     retval;
	char* pgversion;
	
  SPITupleTable *coltuptable;
 
  SetCurrentStatementStartTimestamp();
  StartTransactionCommand();
  SPI_connect();
  PushActiveSnapshot(GetTransactionSnapshot());
  
  /* Ensure compatible version */
  pgstat_report_activity(STATE_RUNNING, "verifying compatible postgres version");

  initStringInfo(&buf);
  appendStringInfo(&buf, 
    "select version();"
  );
  retval = SPI_execute(buf.data, false, 0);
  if (retval != SPI_OK_SELECT) {
    elog(FATAL, "Unable to query postgres version %d", retval);
    SPI_finish();
		PopActiveSnapshot();
		CommitTransactionCommand();
  	return 1;  
  }
  
	coltuptable = SPI_tuptable;
	pgversion = SPI_getvalue(coltuptable->vals[0], coltuptable->tupdesc, 1);
	
  if(strstr(pgversion, "PostgreSQL 9.3") == NULL) {
    elog(FATAL, "Unsupported Postgresql version");
    SPI_finish();
		PopActiveSnapshot();
		CommitTransactionCommand();
  	return 1;
	}
  
	SPI_finish();
	PopActiveSnapshot();
	CommitTransactionCommand();
  
  /*
   * Attempt to establish a connection if the output mode is network.
   */
  if (strcmp(output_mode, "network") == 0) {
		retval = establish_connection();
		if (retval == 2) {
			elog(LOG, "Error : Failed to connect to antenna please check domain is available from host.");
		}
	}
	
	//TODO verify logging directory is accessible when csv mode.
	
  elog(LOG, "Pgsampler Initialized");
  return 0;
}
Beispiel #4
0
int main (int argc, char **argv)
{
  int n, port;
  char buffer[BUFLEN]={ 0 }, *router=0;
  pthread_attr_t reader_thread_attr;
  pthread_t reader_thread;

  if (argc != 5)
    {
      fprintf(stderr, "Usage: %s <selfid> <router hostname> <router port> <dest-id>\n",argv[0]);
      exit(1);
    }
  
  selfid = atoi (argv[1]);
  router=argv[2];
  port=atoi(argv[3]);
  destination = atoi (argv[4]);
  
  establish_connection (router, port);
  handshake ();

  pthread_attr_init(&reader_thread_attr);
  pthread_attr_setdetachstate(&reader_thread_attr,PTHREAD_CREATE_DETACHED);
  pthread_create(&reader_thread,&reader_thread_attr,reader,0);

  n = 0;
  while(1)
  {
      fgets (buffer, BUFLEN,stdin);
      //sscanf ("%s",buffer);
      if(strstr(buffer,"quit"))
      {
        fprintf(stderr,"Quitting..\n");
        break;
      }
      
      if(strstr(buffer,"send"))
      {
        //while (1)
        if (0 != send_packet (n++))
            break;
      }
  }

  pthread_cancel(reader_thread);
  pthread_attr_destroy(&reader_thread_attr);
  
  printf("Connection closed.\n");
  close(sd);
  return 0;

}
Beispiel #5
0
int
main(int argc, char *argv[]) {

  int temp;
  int loops = 0;
  int did_work;
  socklen_t addrlen = sizeof(struct sockaddr_storage);
  uber_state_t *uber_state;
  event_state_select_t *mumble;
  connection_t *connection_list;

  connection_t *temp_connection;

  uber_state = (uber_state_t *)malloc(sizeof(uber_state_t));
  uber_state->connection_list = NULL;
  uber_state->event_state = init_event_state();
  mumble = uber_state->event_state;
  uber_state->rdwr_since_accept = 0;

  fprintf(stderr,"Hello there, let's generate some transactions. Uberstate %p connection_list %p event_state %p\n", uber_state,uber_state->connection_list,uber_state->event_state);

  for (loops = 0; loops < atoi(argv[3]); loops++) {
    temp = establish_connection(argv[1],argv[2],AF_INET,&addrlen);

    /* initialize our event_state minfd */
    /* mumble->minfd = temp; */

    temp_connection = add_new_connection(uber_state,
					 temp,
					 CONNECTION_WRITING,
					 128);

    fprintf(stderr,"temp_connection is at %p\n",temp_connection);
  }

  do {
    loops++;
    if (debug > 1) {
      fprintf(stderr,"\nabout to walk loop %d\n",loops);
    }
    did_work = walk_connection_list(uber_state);
    if (!did_work) {
      if (debug) {
	fprintf(stderr,
		"walk_connection_list did no work, time to wait\n");
      }
      did_work = wait_for_events_and_walk(uber_state);
    }
  } while (1);

}
Beispiel #6
0
static void JNICALL dumperThreadMain(__UNUSED__ jvmtiEnv* jvmti, JNIEnv* jni_env, __UNUSED__ void* arg)
{
	char* internalLeaksString;

    if (JNI_FALSE != __sync_lock_test_and_set(&gdata->dumpInProgress, JNI_TRUE))
    {
    	alert("Another dump is already in progress");
    	return;
    }
	gdata->numberOfLeaks = 0;
	initThreadData(jni_env);

	if (gdata->run_gc)
	{
		jvmtiError err;
    	debug("jleaker: Running garbage collection\n");
    	err = (*jvmti)->ForceGarbageCollection(jvmti);
    	if (err) alert("jleaker: Failed to run GC\n");
	}

    establish_connection(gdata->tcp_port);

    begin_xml_output();
    open_xml_element("memory-leaks", NULL);

	startTimer(&getThreadData()->timer, 0);

	tagAllMapsAndCollections();
	findLeaksInTaggedObjects();

	close_xml_element("memory-leaks");

	close_connection();

	stopTimer(&getThreadData()->timer, "Finished leak detection");
    releaseThreadData();
    
	internalLeaksString = findInternalMallocsLeaks();
    if (NULL != internalLeaksString)
    {
		alert("Internal jleaker error: %s\n", internalLeaksString);
		free(internalLeaksString);
    }
    if (gdata->self_check)
    {
    	selfCheck();
    }
	gdata->dumpInProgress = JNI_FALSE;
}
Beispiel #7
0
/** Cria, envia e armazena a comunicacao entre o cliente e o host.
 *
 *  Essa e a funcao principal desse modulo. @n
 *  Nela estao as chamadas para todas as funcoes secundarias, cada uma
 *  lidando com seus proprios erros, dentro de seus escopos. @n
 *  Pode-se dizer que aqui esta a logica de todo esse mo'dulo.
 *
 *  @see tex_parse_uri()
 *  @see create_talking_socket()
 *  @see establish_socket_address()
 *  @see establish_connection()
 *  @see send_data()
 *  @see receive_data()
 */
void net_communicate ()
{
  int                 local_socket;
  struct sockaddr_in  socket_address;


  tex_parse_uri ();

  local_socket = create_talking_socket();

  establish_socket_address(&socket_address);

  establish_connection(&local_socket, &socket_address);

  send_data(&local_socket);

  receive_data(&local_socket);
}
Beispiel #8
0
/*
 *   Main
 * ---------------------------------------------------------------------
 *  - just a wrapper over the inpotrant functions, as ussual
 */
int main (int argc, char * argv[])
{
  struct keep_data data;
  if (parse_arguments(argc, argv, &data) != EXIT_SUCCESS)
    return EXIT_FAILURE;

  int sock;
  if (establish_connection(&data, &sock) != EXIT_SUCCESS)
    return EXIT_FAILURE;

  if (send_data(&data.msg, &sock) != EXIT_SUCCESS)
    return EXIT_FAILURE;

  char * buffer = NULL;
  if (get_respose(&sock, &buffer) != EXIT_SUCCESS)
    return EXIT_FAILURE;

  print_result(buffer);

  close(sock);
  return EXIT_SUCCESS;
}
Beispiel #9
0
int main(int argc, char **argv)
{
	int ret;
	int session_id;

	plan_tests(NUM_TESTS);

	diag("Live unit tests");

	ret = connect_viewer("localhost");
	ok(ret == 0, "Connect viewer to relayd");

	ret = establish_connection();
	ok(ret == 0, "Established connection and version check with %d.%d",
			VERSION_MAJOR, VERSION_MINOR);

	ret = list_sessions(&session_id);
	ok(ret > 0, "List sessions : %d session(s)", ret);

	ret = attach_session(session_id);
	ok(ret > 0, "Attach to session, %d streams received", ret);

	ret = get_metadata();
	ok(ret > 0, "Get metadata, received %d bytes", ret);

	ret = get_next_index();
	ok(ret == 0, "Get one index per stream");

	ret = get_data_packet(first_packet_stream_id, first_packet_offset,
			first_packet_len);
	ok(ret == first_packet_len,
			"Get one data packet for stream %d, offset %d, len %d",
			first_packet_stream_id, first_packet_offset,
			first_packet_len);

	return exit_status();
}
Beispiel #10
0
int main(int argc, char *argv[])
{
	int                        ret_parser,i = 0;
	struct ibv_device	   *ib_dev = NULL;
	struct pingpong_context    ctx;
	struct pingpong_dest       *my_dest = NULL;
	struct pingpong_dest       *rem_dest = NULL;
	struct perftest_parameters user_param;
	struct perftest_comm	   user_comm;
	struct bw_report_data      my_bw_rep, rem_bw_rep;

	/* init default values to user's parameters */
	memset(&ctx,0,sizeof(struct pingpong_context));
	memset(&user_param , 0 , sizeof(struct perftest_parameters));
	memset(&user_comm,0,sizeof(struct perftest_comm));

	user_param.verb    = READ;
	user_param.tst     = BW;
	strncpy(user_param.version, VERSION, sizeof(user_param.version));

	ret_parser = parser(&user_param,argv,argc);
	if (ret_parser) {
		if (ret_parser != VERSION_EXIT && ret_parser != HELP_EXIT)
			fprintf(stderr," Parser function exited with Error\n");
		return 1;
	}

	if((user_param.connection_type == DC || user_param.use_xrc) && user_param.duplex) {
		user_param.num_of_qps *= 2;
	}

	ib_dev =ctx_find_dev(user_param.ib_devname);
	if (!ib_dev)
		return 7;

	/* Getting the relevant context from the device */
	ctx.context = ibv_open_device(ib_dev);
	if (!ctx.context) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return 1;
	}

	/* See if MTU and link type are valid and supported. */
	if (check_link(ctx.context,&user_param)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	/* copy the relevant user parameters to the comm struct + creating rdma_cm resources. */
	if (create_comm_struct(&user_comm,&user_param)) {
		fprintf(stderr," Unable to create RDMA_CM resources\n");
		return 1;
	}

	if (user_param.output == FULL_VERBOSITY && user_param.machine == SERVER) {
		printf("\n************************************\n");
		printf("* Waiting for client to connect... *\n");
		printf("************************************\n");
	}

	/* Initialize the connection and print the local data. */
	if (establish_connection(&user_comm)) {
		fprintf(stderr," Unable to init the socket connection\n");
		return FAILURE;
	}

	exchange_versions(&user_comm, &user_param);

	check_sys_data(&user_comm, &user_param);

	/* See if MTU and link type are valid and supported. */
	if (check_mtu(ctx.context,&user_param, &user_comm)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	/* Print basic test information. */
	ctx_print_test_info(&user_param);

	ALLOCATE(my_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(my_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);
	ALLOCATE(rem_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(rem_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);

	/* Allocating arrays needed for the test. */
	alloc_ctx(&ctx,&user_param);

	/* Create (if nessacery) the rdma_cm ids and channel. */
	if (user_param.work_rdma_cm == ON) {

		if (user_param.machine == CLIENT) {
			if (retry_rdma_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}

		} else {
			if (create_rdma_resources(&ctx,&user_param)) {
				fprintf(stderr," Unable to create the rdma_resources\n");
				return FAILURE;
			}
			if (rdma_server_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		}

	} else {
		/* create all the basic IB resources. */
		if (ctx_init(&ctx,&user_param)) {
			fprintf(stderr, " Couldn't create IB resources\n");
			return FAILURE;
		}
	}

	/* Set up the Connection. */
	if (set_up_connection(&ctx,&user_param,my_dest)) {
		fprintf(stderr," Unable to set up socket connection\n");
		return FAILURE;
	}

	/* Print this machine QP information */
	for (i=0; i < user_param.num_of_qps; i++)
		ctx_print_pingpong_data(&my_dest[i],&user_comm);

	user_comm.rdma_params->side = REMOTE;

	for (i=0; i < user_param.num_of_qps; i++) {

		/* shaking hands and gather the other side info. */
		if (ctx_hand_shake(&user_comm,&my_dest[i],&rem_dest[i])) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}
		ctx_print_pingpong_data(&rem_dest[i],&user_comm);
	}

	if (user_param.work_rdma_cm == OFF) {
		if (ctx_check_gid_compatibility(&my_dest[0], &rem_dest[0])) {
			fprintf(stderr,"\n Found Incompatibility issue with GID types.\n");
			fprintf(stderr," Please Try to use a different IP version.\n\n");
			return 1;
		}
	}

	if (user_param.work_rdma_cm == OFF) {

		if (ctx_connect(&ctx,rem_dest,&user_param,my_dest)) {
			fprintf(stderr," Unable to Connect the HCA's through the link\n");
			return 1;
		}
	}

	/* An additional handshake is required after moving qp to RTR. */
	if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
		fprintf(stderr,"Failed to exchange data between server and clients\n");
		return 1;
	}

	if (user_param.output == FULL_VERBOSITY) {
		if (user_param.report_per_port) {
			printf(RESULT_LINE_PER_PORT);
			printf((user_param.report_fmt == MBS ? RESULT_FMT_PER_PORT : RESULT_FMT_G_PER_PORT));
		}
		else {
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
		}
		printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
	}

	/* For half duplex tests, server just waits for client to exit */
	if (user_param.machine == SERVER && !user_param.duplex) {

		if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr," Failed to exchange data between server and clients\n");
			return FAILURE;
		}

		xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
		print_full_bw_report(&user_param, &rem_bw_rep, NULL);

		if (ctx_close_connection(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr,"Failed to close connection between server and client\n");
			return 1;
		}
		if (user_param.output == FULL_VERBOSITY) {
			if (user_param.report_per_port)
				printf(RESULT_LINE_PER_PORT);
			else
				printf(RESULT_LINE);
		}

		if (user_param.work_rdma_cm == ON) {
			if (destroy_ctx(&ctx,&user_param)) {
				fprintf(stderr, "Failed to destroy resources\n");
				return 1;
			}
			user_comm.rdma_params->work_rdma_cm = ON;
			return destroy_ctx(user_comm.rdma_ctx,user_comm.rdma_params);
		}

		return destroy_ctx(&ctx,&user_param);

	}

	if (user_param.use_event) {
		if (ibv_req_notify_cq(ctx.send_cq, 0)) {
			fprintf(stderr, "Couldn't request CQ notification\n");
			return 1;
		}
	}

	if (user_param.test_method == RUN_ALL) {

		for (i = 1; i < 24 ; ++i) {

			user_param.size = (uint64_t)1 << i;
			ctx_set_send_wqes(&ctx,&user_param,rem_dest);

			if(perform_warm_up(&ctx,&user_param)) {
				fprintf(stderr,"Problems with warm up\n");
				return 1;
			}

			if(user_param.duplex) {
				if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
					fprintf(stderr,"Failed to sync between server and client between different msg sizes\n");
					return 1;
				}
			}

			if(run_iter_bw(&ctx,&user_param))
				return 17;

			if (user_param.duplex && (atof(user_param.version) >= 4.6)) {
				if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
					fprintf(stderr,"Failed to sync between server and client between different msg sizes\n");
					return 1;
				}
			}

			print_report_bw(&user_param,&my_bw_rep);

			if (user_param.duplex) {
				xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
				print_full_bw_report(&user_param, &my_bw_rep, &rem_bw_rep);
			}
		}

	} else if (user_param.test_method == RUN_REGULAR) {

		ctx_set_send_wqes(&ctx,&user_param,rem_dest);

		if(perform_warm_up(&ctx,&user_param)) {
			fprintf(stderr,"Problems with warm up\n");
			return 1;
		}

		if(user_param.duplex) {
			if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
				fprintf(stderr,"Failed to sync between server and client between different msg sizes\n");
				return 1;
			}
		}

		if(run_iter_bw(&ctx,&user_param)) {
			fprintf(stderr," Failed to complete run_iter_bw function successfully\n");
			return 1;
		}

		print_report_bw(&user_param,&my_bw_rep);

		if (user_param.duplex) {
			xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
			print_full_bw_report(&user_param, &my_bw_rep, &rem_bw_rep);
		}

		if (user_param.report_both && user_param.duplex) {
			printf(RESULT_LINE);
			printf("\n Local results: \n");
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
			printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
			print_full_bw_report(&user_param, &my_bw_rep, NULL);
			printf(RESULT_LINE);

			printf("\n Remote results: \n");
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
			printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
			print_full_bw_report(&user_param, &rem_bw_rep, NULL);
		}
	} else if (user_param.test_method == RUN_INFINITELY) {

		ctx_set_send_wqes(&ctx,&user_param,rem_dest);

		if(run_iter_bw_infinitely(&ctx,&user_param)) {
			fprintf(stderr," Error occured while running! aborting ...\n");
			return 1;
		}
	}

	if (user_param.output == FULL_VERBOSITY) {
		if (user_param.report_per_port)
			printf(RESULT_LINE_PER_PORT);
		else
			printf(RESULT_LINE);
	}

	/* For half duplex tests, server just waits for client to exit */
	if (user_param.machine == CLIENT && !user_param.duplex) {

		if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr," Failed to exchange data between server and clients\n");
			return FAILURE;
		}

		xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
	}

	if (ctx_close_connection(&user_comm,&my_dest[0],&rem_dest[0])) {
		fprintf(stderr,"Failed to close connection between server and client\n");
		return 1;
	}

	if (!user_param.is_bw_limit_passed && (user_param.is_limit_bw == ON ) ) {
		fprintf(stderr,"Error: BW result is below bw limit\n");
		return 1;
	}

	if (!user_param.is_msgrate_limit_passed && (user_param.is_limit_bw == ON )) {
		fprintf(stderr,"Error: Msg rate  is below msg_rate limit\n");
		return 1;
	}

	if (user_param.work_rdma_cm == ON) {
		if (destroy_ctx(&ctx,&user_param)) {
			fprintf(stderr, "Failed to destroy resources\n");
			return 1;
		}
		user_comm.rdma_params->work_rdma_cm = ON;
		return destroy_ctx(user_comm.rdma_ctx,user_comm.rdma_params);
	}

	return destroy_ctx(&ctx,&user_param);
}
Beispiel #11
0
/*---------------------------------------------------------------------------*/
int run_server_test(struct perf_parameters *user_param)
{
	struct server_data	server_data;
	struct perf_command	command;
	int			i, len, retval;
	int			max_cpus;
	uint64_t		cpusmask;
	int			cpusnr;
	int			cpu;

	xio_init();

	max_cpus = sysconf(_SC_NPROCESSORS_ONLN);

	i = intf_name_best_cpus(user_param->intf_name, &cpusmask, &cpusnr);
	if (i == 0) {
		printf("best cpus [%d] %s\n", cpusnr,
		       intf_cpusmask_str(cpusmask, cpusnr, user_param->intf_name));
	}

	server_data.my_test_param.machine_type	= user_param->machine_type;
	server_data.my_test_param.test_type	= user_param->test_type;
	server_data.my_test_param.verb		= user_param->verb;
	server_data.my_test_param.data_len	= 0;


	server_data.tdata = calloc(user_param->threads_num,
				   sizeof(*server_data.tdata));

	/* spawn portals */
	for (i = 0, cpu = 0; i < user_param->threads_num; i++, cpu++) {
		while (1) {
			if (cpusmask_test_bit(cpu, &cpusmask))
				break;
			if (++cpu == max_cpus)
				cpu = 0;
		}
		server_data.tdata[i].affinity = cpu;

		server_data.tdata[i].portal_index =
					(i % user_param->portals_arr_len);
		server_data.tdata[i].user_param = user_param;

		pthread_create(&server_data.tdata[i].thread_id, NULL,
			       portal_server_cb, &server_data.tdata[i]);
	}

	server_data.user_param = user_param;
	pthread_create(&server_data.thread_id, NULL,
		       balancer_server_cb, &server_data);

	server_data.comm = create_comm_struct(user_param);
	if (establish_connection(server_data.comm)) {
		fprintf(stderr, "failed to establish connection\n");
		goto cleanup;
	}


	printf("%s", RESULT_FMT);
	printf("%s", RESULT_LINE);

	while (1) {
		/* sync test parameters */
		retval = ctx_read_data(server_data.comm, &command,
				       sizeof(command), &len);
		if (retval) {	/* disconnection */
			fprintf(stderr, "program aborted\n");
			break;
		}

		if (len == 0) { /* handshake */
			ctx_write_data(server_data.comm, NULL, 0);
			break;
		}
		switch (command.command) {
		case GetTestResults:
			on_test_results(&command.results);
			ctx_write_data(server_data.comm, NULL, 0);
			break;
		case  GetTestParams:
			break;
		default:
			fprintf(stderr, "unknown command %d\n", len);
			exit(0);
			break;
		};
	}
	if (retval == 0)
		printf("%s", RESULT_LINE);

	/* normal exit phase */
	ctx_close_connection(server_data.comm);

cleanup:
	for (i = 0; i < user_param->threads_num; i++)
		xio_context_stop_loop(server_data.tdata[i].ctx, 0);

	destroy_comm_struct(server_data.comm);

	/* join the threads */
	for (i = 0; i < user_param->threads_num; i++)
		pthread_join(server_data.tdata[i].thread_id, NULL);

	if (server_data.running)
		xio_context_stop_loop(server_data.ctx, 0);

	pthread_join(server_data.thread_id, NULL);

	free(server_data.tdata);

	xio_shutdown();

	return 0;
}
Beispiel #12
0
int main(int argc, char **argv)
{
_comm_header *comm;
_tag_detail *tag;
_path *path;
_rack *rack;
_services *services;
//_backplane_data *backplane;
int result,x,debug=0;

result = 0;

  while ((x = getopt(argc, argv, "dh?")) != -1)
  {
    switch (x)
    {
    case 'd':
      debug++;
      break;
    case 'h':
    case '?':
      helpme();
      exit(1);
    }
  }


	
// Note that this is quick and dirty - no error checking...

tag = malloc(sizeof(_tag_detail));
memset(tag,0,sizeof(_tag_detail));

rack = malloc(sizeof(_rack));
memset (rack,0,sizeof(_rack));

//backplane = malloc(sizeof(_backplane_data));
//memset (backplane,0,sizeof(_backplane_data));

path = malloc(sizeof(_path));
memset (path,0,sizeof(_path));

services = malloc(sizeof(_services));
memset (services,0,sizeof(_services));

comm = malloc(sizeof(_comm_header));
memset (comm,0,sizeof(_comm_header));

dprint (DEBUG_TRACE,"setting plc name %d %s.\n",strlen(argv[1]), argv[1]);
comm->hostname = argv[1];
dprint (DEBUG_TRACE,"attaching to plc\n");

establish_connection (comm, services, 0);
if (comm->error != 0)
	{
	printf ("Could not attach to %s\n",argv[1]);
	exit(-1);
	}
path->device1 = -1;
path->device2 = -1;
path->device3 = -1;
path->device4 = -1;
path->device5 = -1;
path->device6 = -1;
path->device7 = -1;
path->device8 = -1;

//get_backplane_data(comm, backplane, rack, path, 0);
dprint (DEBUG_TRACE,"polling PLC rack layout\n");
who(comm, rack, NULL, 0);
path->device1 =1;
path->device2 = rack->cpulocation;
dprint (DEBUG_TRACE,"reading tag\n");
if (argc == 3)
	result = read_tag(comm, path, NULL, argv[2], tag, 0);
if (argc == 4)
	result = read_tag(comm, path, argv[3], argv[2], tag, 0);

if (result != 0)
	{
	printf ("reading tag %s failed - does it exist?\n\n",argv[2]);
	exit(-1);
	}
for (x=0; x<tag->datalen; x++)
	printf ("%02X ",tag->data[x]);
printf ("\n\n");
exit(0);
}
Beispiel #13
0
int main(int argc, char *argv[]) {

	int                        i = 0;
	int                        size_max_pow = 24;
	int						   ret_val;
	struct report_options      report;
	struct pingpong_context    ctx;
	struct pingpong_dest	   *my_dest  = NULL;
	struct pingpong_dest	   *rem_dest = NULL;
	struct mcast_parameters	   mcg_params;
	struct ibv_device          *ib_dev = NULL;
	struct perftest_parameters user_param;
	struct perftest_comm	   user_comm;

	/* init default values to user's parameters */
	memset(&ctx,		0, sizeof(struct pingpong_context));
	memset(&user_param, 0, sizeof(struct perftest_parameters));
	memset(&user_comm , 0, sizeof(struct perftest_comm));
	memset(&mcg_params, 0, sizeof(struct mcast_parameters));

	user_param.verb    = SEND;
	user_param.tst     = LAT;
	strncpy(user_param.version, VERSION, sizeof(user_param.version));
	user_param.r_flag  = &report;

	// Configure the parameters values according to user arguments or defalut values.
	ret_val = parser(&user_param,argv,argc);
	if (ret_val) {
		if (ret_val != VERSION_EXIT && ret_val != HELP_EXIT)
			fprintf(stderr," Parser function exited with Error\n");
		return 1;
	}

	if(user_param.use_xrc || user_param.connection_type == DC) {
		user_param.num_of_qps *= 2;
	}

	//Checking that the user did not run with RawEth. for this we have raw_etherent_bw test.
	if (user_param.connection_type == RawEth) {
        fprintf(stderr," This test cannot run Raw Ethernet QPs (you have chosen RawEth as connection type\n");
        return FAILURE;
    }

	// Finding the IB device selected (or defalut if no selected).
	ib_dev = ctx_find_dev(user_param.ib_devname);
	if (!ib_dev) {
		fprintf(stderr," Unable to find the Infiniband/RoCE device\n");
		return 1;
	}

	if (user_param.use_mcg)
		GET_STRING(mcg_params.ib_devname,ibv_get_device_name(ib_dev));

	// Getting the relevant context from the device
	ctx.context = ibv_open_device(ib_dev);
	if (!ctx.context) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return 1;
	}

	// See if MTU and link type are valid and supported.
	if (check_link(ctx.context,&user_param)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	// copy the relevant user parameters to the comm struct + creating rdma_cm resources.
	if (create_comm_struct(&user_comm,&user_param)) {
		fprintf(stderr," Unable to create RDMA_CM resources\n");
		return 1;
	}

	if (user_param.output == FULL_VERBOSITY && user_param.machine == SERVER) {
		printf("\n************************************\n");
		printf("* Waiting for client to connect... *\n");
		printf("************************************\n");
	}

	// Initialize the connection and print the local data.
	if (establish_connection(&user_comm)) {
		fprintf(stderr," Unable to init the socket connection\n");
		return FAILURE;
	}

	exchange_versions(&user_comm, &user_param);

	check_sys_data(&user_comm, &user_param);

	// See if MTU and link type are valid and supported.
	if (check_mtu(ctx.context,&user_param, &user_comm)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	// Print basic test information.
	ctx_print_test_info(&user_param);

	ALLOCATE(my_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(my_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);
	ALLOCATE(rem_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(rem_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);

	// Allocating arrays needed for the test.
	alloc_ctx(&ctx,&user_param);

	// Create (if nessacery) the rdma_cm ids and channel.
	if (user_param.work_rdma_cm == ON) {

	    if (user_param.machine == CLIENT) {
			if (retry_rdma_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}

		} else {
    		if (create_rdma_resources(&ctx,&user_param)) {
				fprintf(stderr," Unable to create the rdma_resources\n");
				return FAILURE;
    		}
			if (rdma_server_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		}

	} else {

		 // create all the basic IB resources (data buffer, PD, MR, CQ and events channel)
	    if (ctx_init(&ctx,&user_param)) {
			fprintf(stderr, " Couldn't create IB resources\n");
			return FAILURE;
	    }
	}

	// Set up the Connection.
	if (send_set_up_connection(&ctx,&user_param,my_dest,&mcg_params,&user_comm)) {
		fprintf(stderr," Unable to set up socket connection\n");
		return 1;
	}

	for (i=0; i < user_param.num_of_qps; i++)
		ctx_print_pingpong_data(&my_dest[i],&user_comm);

	user_comm.rdma_params->side = REMOTE;
	for (i=0; i < user_param.num_of_qps; i++) {

		// shaking hands and gather the other side info.
		if (ctx_hand_shake(&user_comm,&my_dest[i],&rem_dest[i])) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}

		ctx_print_pingpong_data(&rem_dest[i],&user_comm);
	}

        if (user_param.work_rdma_cm == OFF)
        {
                if (ctx_check_gid_compatibility(&my_dest[0], &rem_dest[0]))
                {
                        fprintf(stderr,"\n Found Incompatibility issue with GID types.\n");
                        fprintf(stderr," Please Try to use a different IP version.\n\n");
                        return 1;
                }
        }

	if (user_param.use_mcg) {

		memcpy(mcg_params.base_mgid.raw,mcg_params.mgid.raw,16);
		memcpy(mcg_params.mgid.raw,rem_dest[0].gid.raw,16);
		mcg_params.base_mlid = mcg_params.mlid;
		mcg_params.is_2nd_mgid_used = ON;
		if (!strcmp(link_layer_str(user_param.link_type),"IB")) {
			// Request for Mcast group create registery in SM.
			if (join_multicast_group(SUBN_ADM_METHOD_SET,&mcg_params)) {
				fprintf(stderr," Failed to Join Mcast request\n");
				return 1;
			}
		}

		/*
		 * The next stall in code (50 ms sleep) is a work around for fixing the
		 * the bug this test had in Multicast for the past 1 year.
		 * It appears, that when a switch involved, it takes ~ 10 ms for the join
		 * request to propogate on the IB fabric, thus we need to wait for it.
		 * what happened before this fix was  reaching the post_send
		 * code segment in about 350 ns from here, and the switch(es) dropped
		 * the packet because join request wasn't finished.
		 */
		usleep(50000);
	}

	if (user_param.work_rdma_cm == OFF) {

		// Prepare IB resources for rtr/rts.
		if (ctx_connect(&ctx,rem_dest,&user_param,my_dest)) {
			fprintf(stderr," Unable to Connect the HCA's through the link\n");
			return 1;
		}
	}

	// shaking hands and gather the other side info.
	if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
		fprintf(stderr,"Failed to exchange data between server and clients\n");
		return 1;
	}

    if (user_param.use_event) {

		if (ibv_req_notify_cq(ctx.send_cq, 0)) {
			fprintf(stderr, "Couldn't request RCQ notification\n");
			return 1;
		}

		if (ibv_req_notify_cq(ctx.recv_cq, 0)) {
			fprintf(stderr, "Couldn't request RCQ notification\n");
			return 1;
		}
    }
	if (user_param.output == FULL_VERBOSITY) {
		printf(RESULT_LINE);
		printf("%s",(user_param.test_type == ITERATIONS) ? RESULT_FMT_LAT : RESULT_FMT_LAT_DUR);
		printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
	}

	ctx_set_send_wqes(&ctx,&user_param,rem_dest);

	if (user_param.test_method == RUN_ALL) {

		if (user_param.connection_type == UD)
			size_max_pow =  (int)UD_MSG_2_EXP(MTU_SIZE(user_param.curr_mtu)) + 1;

		for (i = 1; i < size_max_pow ; ++i) {

			user_param.size = (uint64_t)1 << i;

			// Post recevie recv_wqes fo current message size
			if (ctx_set_recv_wqes(&ctx,&user_param)) {
				fprintf(stderr," Failed to post receive recv_wqes\n");
				return 1;
			}

			// Sync between the client and server so the client won't send packets
			// Before the server has posted his receive wqes (in UC/UD it will result in a deadlock).
			if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
				fprintf(stderr,"Failed to exchange data between server and clients\n");
				return 1;
			}

			if(run_iter_lat_send(&ctx, &user_param))
				return 17;

			user_param.test_type == ITERATIONS ? print_report_lat(&user_param) : print_report_lat_duration(&user_param);
		}

	} else {

		// Post recevie recv_wqes fo current message size
		if (ctx_set_recv_wqes(&ctx,&user_param)) {
			fprintf(stderr," Failed to post receive recv_wqes\n");
			return 1;
		}

		// Sync between the client and server so the client won't send packets
		// Before the server has posted his receive wqes (in UC/UD it will result in a deadlock).
		if (ctx_hand_shake(&user_comm,my_dest,rem_dest)) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}

		if(run_iter_lat_send(&ctx, &user_param))
			return 17;

		user_param.test_type == ITERATIONS ? print_report_lat(&user_param) : print_report_lat_duration(&user_param);
	}

	if (user_param.output == FULL_VERBOSITY) {
		printf(RESULT_LINE);
	}

	if (ctx_close_connection(&user_comm,my_dest,rem_dest)) {
		fprintf(stderr,"Failed to close connection between server and client\n");
		fprintf(stderr," Trying to close this side resources\n");
	}

	return send_destroy_ctx(&ctx,&user_param,&mcg_params);
}
Beispiel #14
0
int main(int argc, char *argv[])
{
/*
    //www.fileserve.com/file/u8xEmG8/how.i.met.your.mother.s06e12.hdtv.xvid-fqm.avi
    char *path = "/file/u8xEmG8/how.i.met.your.mother.s06e12.hdtv.xvid-fqm.avi";
    char *domain = "www.fileserve.com";
    char *port = "80";
    
    char *remote, *request;
    char buffer[BUF_SIZE];
    struct addrinfo hints, *ai, *ai0;
    int fd, i;

    // Resolve the domain name
    memset(&hints, 0, sizeof(hints));
    hints.ai_family = PF_UNSPEC;
    hints.ai_socktype = SOCK_STREAM;

    // Create the request with respect to the presence of a proxy
    //request = malloc(strlen("GET  HTTP/1.1\r\nHost: \r\n\r\n") + strlen(path) + strlen(domain) + 1);
    request = "POST /login.php HTTP/1.1\r\n"
        "Host: www.fileserve.com\r\n"
        "Content-Length: 164\r\n"
        "Content-Type: application/x-www-form-urlencoded\r\n\r\n"
        "loginUserName=adraen&loginUserPassword=N3YL9RL5&autoLogin=on&recaptcha_response_field=&recaptcha_challenge_field=&recaptcha_shortencode_field=&loginFormSubmit=Login";
    remote = domain;
    port = port;
    //sprintf(request, "GET %s HTTP/1.1\r\nHost: %s\r\n\r\n", path, domain);

    // try to resolve the dns
    if ((i = getaddrinfo(remote, port, &hints, &ai0)) != 0)
    {
        //free(request);
        return EXIT_FAILURE;
    }

    // Loop through the linked list of addressinfo returned by getaddrinfo
    for (ai = ai0; ai != NULL; ai = ai->ai_next)
    {
        // create the socket
        fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
        // check if it has been properly created or try next addrinfo
        if (fd == -1)
            continue;

        // try to connect or try next addrinfo
        if (connect(fd, ai->ai_addr, ai->ai_addrlen) == -1)
        {
            close(fd);
            continue;
        }

        // Send the request
        if(write(fd, request, strlen(request)) == -1)
        {
            return 0;
        }
        //free(request);

        // Read the header from the socket
        ssize_t rcount = 0;
        char *eoh; // End of Header
        do
        {
            rcount = read(fd, buffer + rcount, BUF_SIZE - rcount);
            if (rcount == -1)
            {
                return EXIT_FAILURE;
            }
        } while (((eoh = strstr(buffer, "\r\n\r\n")) == NULL) && (rcount != 0));
        printf(buffer);
        
        //retrieve the cookie from the header
        char *socookie = strstr(buffer, "Set-Cookie: ") + 12;
        socookie = strstr(socookie, "Set-Cookie: ") + 12;
        char *eocookie = strstr(socookie, "\r\n");
        int len = eocookie - socookie;
        char *cookie = malloc(len + 1);
        strncpy(cookie, socookie, len);
        cookie[len] = 0;
        
        printf("\n%s\n", cookie);
        
        // purge the read
        do
        {
            rcount = read(fd, buffer, BUF_SIZE);
        } while (rcount > 0);

        // write the get request
        request = malloc(strlen("GET  HTTP/1.1\r\nHost: \r\nCookie: \r\n\r\n") + strlen(path) + strlen(domain) + strlen(cookie) + 1);
        sprintf(request, "GET %s HTTP/1.1\r\nHost: %s\r\nCookie: %s\r\n\r\n", path, domain, cookie);
        write(fd, request, strlen(request));
        
        read(fd, buffer, BUF_SIZE);
        printf(buffer);

        close(fd);
        return EXIT_SUCCESS;
    }

    // At this point the connection has been unsuccesfull
    return EXIT_FAILURE;
    */
    char *addr = "http://www.fileserve.com/login.php";
    URL_t url;
    int fd;
    
    // Parse the input url
    if (url_parse(addr, &url) != 0)
    {
        fprintf(stderr, "Unable to connect to <url>");
        return EXIT_FAILURE;
    }
    
    if ((fd = establish_connection(url)) == -1)
    {
        fprintf(stderr, "Unable to connect to <url>");
        return EXIT_FAILURE;
    }
        
    return EXIT_SUCCESS;
}
Beispiel #15
0
int main(int argc, char *argv[]) {

	int                         i = 0;
	struct report_options       report = {};
	struct pingpong_context     ctx;
	struct ibv_device           *ib_dev;
	struct perftest_parameters  user_param;
	struct pingpong_dest	    my_dest,rem_dest;
	struct perftest_comm		user_comm;
	
	/* init default values to user's parameters */
	memset(&ctx,0,sizeof(struct pingpong_context));
	memset(&user_param,0,sizeof(struct perftest_parameters));
	memset(&user_comm,0,sizeof(struct perftest_comm));
	memset(&my_dest,0,sizeof(struct pingpong_dest));
	memset(&rem_dest,0,sizeof(struct pingpong_dest));

	user_param.verb    = READ;
	user_param.tst     = LAT;
	user_param.r_flag  = &report;
	user_param.version = VERSION;

	// Configure the parameters values according to user arguments or defalut values.
	if (parser(&user_param,argv,argc)) {
		fprintf(stderr," Parser function exited with Error\n");
		return FAILURE;
	}

	// Finding the IB device selected (or defalut if no selected).
	ib_dev = ctx_find_dev(user_param.ib_devname);
	if (!ib_dev) {
		fprintf(stderr," Unable to find the Infiniband/RoCE deivce\n");
		return FAILURE;
	}

	// Getting the relevant context from the device
	ctx.context = ibv_open_device(ib_dev);
	if (!ctx.context) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return 1;
	}

	// See if MTU and link type are valid and supported.
	if (check_link_and_mtu(ctx.context,&user_param)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	// Print basic test information.
	ctx_print_test_info(&user_param);

	// copy the rellevant user parameters to the comm struct + creating rdma_cm resources.
	if (create_comm_struct(&user_comm,&user_param)) { 
		fprintf(stderr," Unable to create RDMA_CM resources\n");
		return 1;
	}

	// Create (if nessacery) the rdma_cm ids and channel.
	if (user_param.work_rdma_cm == ON) {

		if (create_rdma_resources(&ctx,&user_param)) {
			fprintf(stderr," Unable to create the rdma_resources\n");
			return FAILURE;
		}

		if (user_param.machine == CLIENT) {

			if (rdma_client_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		
		} else {

			if (rdma_server_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		}

	} else {

		// create all the basic IB resources (data buffer, PD, MR, CQ and events channel)
	    if (ctx_init(&ctx,&user_param)) {
			fprintf(stderr, " Couldn't create IB resources\n");
			return FAILURE;
	    }
	}

	// Set up the Connection.
	if (set_up_connection(&ctx,&user_param,&my_dest)) {
		fprintf(stderr," Unable to set up socket connection\n");
		return 1;
	} 

	ctx_print_pingpong_data(&my_dest,&user_comm);

	// Init the connection and print the local data.
	if (establish_connection(&user_comm)) {
		fprintf(stderr," Unable to init the socket connection\n");
		return 1;
	}	

	//  shaking hands and gather the other side info.
	if (ctx_hand_shake(&user_comm,&my_dest,&rem_dest)) {
		fprintf(stderr,"Failed to exchange date between server and clients\n");
		return 1;
	}

	user_comm.rdma_params->side = REMOTE;
	ctx_print_pingpong_data(&rem_dest,&user_comm);

	if (user_param.work_rdma_cm == OFF) {

		if (pp_connect_ctx(&ctx,my_dest.psn,&rem_dest,my_dest.out_reads,&user_param)) {
			fprintf(stderr," Unable to Connect the HCA's through the link\n");
			return 1;
		}
	}

	// An additional handshake is required after moving qp to RTR.
	if (ctx_hand_shake(&user_comm,&my_dest,&rem_dest)) {
       fprintf(stderr,"Failed to exchange date between server and clients\n");
       return 1;
    }

	ALLOCATE(tstamp,cycles_t,user_param.iters);

	// Only Client post read request. 
	if (user_param.machine == SERVER) {

		if (ctx_close_connection(&user_comm,&my_dest,&rem_dest)) {
		 	fprintf(stderr,"Failed to close connection between server and client\n");
		 	return 1;
		}
		printf(RESULT_LINE);
		return 0; // destroy_ctx(&ctx,&user_param);

	} 

	if (user_param.use_event) {
		if (ibv_req_notify_cq(ctx.send_cq, 0)) {
			fprintf(stderr, "Couldn't request CQ notification\n");
			return 1;
		} 
	}

	printf(RESULT_LINE);
	printf(RESULT_FMT_LAT);

	if (user_param.all == ON) {
		for (i = 1; i < 24 ; ++i) {
			user_param.size = 1 << i;
			if(run_iter(&ctx,&user_param,&rem_dest))
				return 17;
	    	
			print_report(&user_param);
		}
	} else {
		if(run_iter(&ctx,&user_param,&rem_dest))
			return 18;
		
		print_report(&user_param);
	}

	if (ctx_close_connection(&user_comm,&my_dest,&rem_dest)) {
	 	fprintf(stderr,"Failed to close connection between server and client\n");
	 	return 1;
	}

	printf(RESULT_LINE);

	return 0; // destroy_ctx(&ctx,&user_param);
}
Beispiel #16
0
int main(int argc, char **argv)
{
  _comm_header *comm;
  _path *path;
  _services *services;
  _backplane_data *backplane;
  _rack *rack;
  _tag_data *configtags, *detailtags;
  _tag_data *program_tags[64];
  _tag_list *list;
  _prog_list *progs;
  _struct_list *structs;
  int x, y, z, debug, program_count, quiet, result;
  int c1 = 0, c68 = 0, c69 = 0;
#ifdef WIN32
  int optind = 1;
  debug = DEBUG_DATA;
#endif

#ifndef WIN32
  debug = 0;
#endif

  program_count = 0;
  quiet = FALSE;
  if (argc == 1)
  {
    helpme();
    exit(1);
  }
#ifndef WIN32
  while ((x = getopt(argc, argv, "dhq?")) != -1)
  {
    switch (x)
    {
    case 'd':
      debug++;
      break;
    case 'q':
      quiet = TRUE;
      break;
    case 'h':
    case '?':
      helpme();
      exit(1);
    }
  }

#endif

  if (argv[optind] == NULL)
  {
    printf("Can not connect - need a host name to connect to.\n");
    exit(-1);
  }

  rack = malloc(sizeof(_rack));
  if (rack == NULL)
  {
    printf("Could not allocate memory for rack structure.\n");
    exit(-1);
  }

  comm = malloc(sizeof(_comm_header));
  if (comm == NULL)
  {
    printf("Could not allocate memory for comm header.\n");
    exit(-1);
  }
  services = malloc(sizeof(_services));
  if (services == NULL)
  {
    printf("Could not allocate memory for services structure.\n");
    free(comm);
    exit(-1);
  }

  backplane = malloc(sizeof(_backplane_data));
  if (backplane == NULL)
  {
    printf("Could not allocate memory for backplane structure.\n");
    free(comm);
    free(services);
    exit(-1);
  }
  path = malloc(sizeof(_path));
  if (path == NULL)
  {
    printf("Could not allocate memory for path structure.\n");
    free(backplane);
    free(comm);
    free(services);
    exit(-1);
  }
  configtags = malloc(sizeof(_tag_data));
  if (configtags == NULL)
  {
    printf("Could not allocate memory for configtags structure.\n");
    free(path);
    free(backplane);
    free(comm);
    free(services);
    exit(-1);
  }
  detailtags = malloc(sizeof(_tag_data));
  if (detailtags == NULL)
  {
    printf("Could not allocate memory for detailtags structure.\n");
    free(path);
    free(backplane);
    free(comm);
    free(services);
    exit(-1);
  }
  progs = malloc(sizeof(_prog_list));
  if (progs == NULL)
  {
    printf("Could not allocate memory for program list structure.\n");
    free(detailtags);
    free(path);
    free(backplane);
    free(comm);
    free(services);
    exit(-1);
  }
  structs = malloc(sizeof(_struct_list));
  if (structs == NULL)
  {
    printf("Could not allocate memory for structure list.\n");
    exit(-1);
  }
  list = malloc(sizeof(_tag_list));
  if (list == NULL)
  {
    printf ("Could not allocate memory for tag list.\n");
    exit(-1);
  }



  memset(services, 0, sizeof(_services));
  memset(comm, 0, sizeof(_comm_header));
  memset(backplane, 0, sizeof(_backplane_data));
  memset(rack, 0, sizeof(_rack));
  memset(configtags, 0, sizeof(_tag_data));
  memset(detailtags, 0, sizeof(_tag_data));
  memset(progs, 0, sizeof(_prog_list));
  memset(structs, 0, sizeof(_struct_list));
  memset(list, 0, sizeof(_tag_list));

  comm->hostname = argv[optind];
  if (quiet == FALSE)
    printf("Connecting to host %s\n", comm->hostname);
  establish_connection(comm, services, debug);
  if (comm->error != OK)
  {
    printf("An Error occured while connecting to host %s.\n", comm->hostname);
    exit(-1);
  }

  path->device1 = -1;
  path->device2 = -1;
  path->device3 = -1;
  path->device4 = -1;
  path->device5 = -1;
  path->device6 = -1;
  path->device7 = -1;
  path->device8 = -1;

  if (quiet == FALSE)
    printf("Got Session_ID = %ld\n", comm->session_id);
  get_backplane_data(comm, backplane, rack, path, debug);
  if (debug != DEBUG_NIL)
  {
    dprint(DEBUG_VALUES, "RX_Bad_m :%02X     ", backplane->rx_bad_m);
    dprint(DEBUG_VALUES, "ERR+Threshold: %02X     ",
	   backplane->err_threshold);
    dprint(DEBUG_VALUES, "RX_Bad_CRC :%02X    ", backplane->rx_bad_crc);
    dprint(DEBUG_VALUES, "RX_Bus_Timeout :%02X\n", backplane->rx_bus_timeout);
    dprint(DEBUG_VALUES, "TX_Bad_CRC :%02X   ", backplane->tx_bad_crc);
    dprint(DEBUG_VALUES, "TX_Bus_Timeout :%02X   ",
	   backplane->tx_bus_timeout);
    dprint(DEBUG_VALUES, "TX_Retry :%02X\n", backplane->tx_retry);
    dprint(DEBUG_VALUES, "Status :%02X    ", backplane->status);
    dprint(DEBUG_VALUES, "Address :%04X\n", backplane->address);
    dprint(DEBUG_VALUES, "Major Rev :%02X  ", backplane->rev_major);
    dprint(DEBUG_VALUES, "Minor Rev :%02X  ", backplane->rev_minor);
    dprint(DEBUG_VALUES, "Serial Number :%08lX  ", backplane->serial_number);
    dprint(DEBUG_VALUES, "Backplane size :%d\n", backplane->rack_size);
  }
  who(comm, rack, NULL, debug);
  path->device1 = 1;
  path->device2 = rack->cpulocation;
  path->device3 = -1;
  path->device4 = -1;
  path->device5 = -1;
  path->device6 = -1;
  path->device7 = -1;
  path->device8 = -1;

  get_object_config_list(comm, path, 0, configtags, debug);
  get_object_details_list(comm, path, 0, detailtags, debug);
  get_program_list(comm, path, progs, debug);
/*  get_struct_list(comm, path, structs, debug);


printf ("Got %d structs in the program.\n",structs->count);
for (x=0;x<structs->count; x++)
	{
	printf ("Struct #%02d, type id = %08lX\n",x,structs->base[x]->base);
	get_struct_config (comm, path, structs->base[x], debug);
	get_struct_details (comm, path, structs->base[x], debug);
	printf ("Element count = %d    Detail size = %d\n",structs->base[x]->count, structs->base[x]->detailsize);
	printf ("Element link-id = %04X\n",structs->base[x]->linkid);
	printf ("Structure base name = %s\n",structs->base[x]->name);
	for (y=0;y<structs->base[x]->count;y++)
		{
		printf ("Element #%d, type = %04X, arraysize = %d name = %s\n",y,structs->base[x]->data[y]->type, structs->base[x]->data[y]->arraysize, structs->base[x]->data[y]->name);
		}
	printf ("----------------------------------------\n");
	}

exit;
*/

  y = detailtags->count;
  if (configtags->count > y)
    y = configtags->count;

  printf("Reading tags from ControlLogix...\n");
  for (z = 0; z < y; z++)
  {
    if (z < detailtags->count)
      get_object_details(comm, path, detailtags->tag[z], debug);
    if (z < configtags->count)
      get_object_config(comm, path, configtags->tag[z], debug);
    printf
      ("%08lX - %08lX - %08lX - %08lX - %04X - %04X - %04X - %s - %ld - %ld - %ld - %ld\n",
       detailtags->tag[z]->topbase, detailtags->tag[z]->base,
       detailtags->tag[z]->id, detailtags->tag[z]->linkid,
       detailtags->tag[z]->size, detailtags->tag[z]->type,
       detailtags->tag[z]->alias_type, detailtags->tag[z]->name,
       detailtags->tag[z]->alias_linkid - detailtags->tag[z]->linkid,
       detailtags->tag[z]->arraysize1, detailtags->tag[z]->arraysize2,
       detailtags->tag[z]->arraysize3);

  }
  printf("Checking for aliases...\n");

  for (z = 0; z < detailtags->count; z++)
    aliascheck(detailtags->tag[z], NULL, detailtags, DEBUG_VALUES);

  for (z = 0; z < y; z++)
  {
    if (z < detailtags->count)
    {
    switch (detailtags->tag[z]->type & 255)
      {
      case 0x68:
      case 0x69:
	break;
      default:
	read_object_value(comm, path, detailtags->tag[z], debug);
      }

      if (detailtags->tag[z]->topbase != 0)
	c1++;
      if (z < detailtags->count)
      {
	printf
	  ("%08lX - %08lX - %08lX - %08lX - %08lX - %08lX - %04lX - %04X - %04X - %s - %ld - %ld - %ld - %ld\n",
	   detailtags->tag[z]->topbase, detailtags->tag[z]->base,
	   detailtags->tag[z]->id, detailtags->tag[z]->linkid,
	   detailtags->tag[z]->alias_topbase, detailtags->tag[z]->alias_base,
	   detailtags->tag[z]->alias_id, detailtags->tag[z]->type,
	   detailtags->tag[z]->alias_type, detailtags->tag[z]->name,
	   detailtags->tag[z]->alias_linkid - detailtags->tag[z]->linkid,
	   detailtags->tag[z]->arraysize1, detailtags->tag[z]->arraysize2,
	   detailtags->tag[z]->arraysize3);
      }
      if (z < configtags->count)
      {
	printf("%08lX - %08lX - %04X\n", configtags->tag[z]->topbase,
	       configtags->tag[z]->linkid, configtags->tag[z]->type);
      }

/*

		if (strncmp ( detailtags->tag[z]->name, "IntArray",strlen(detailtags->tag[z]->name)))
			{
			read_object_value(comm, path, detailtags->tag[z], debug);
			printf ("Old:\n");
			for (x=0;x<detailtags->tag[z]->datalen;x++)
				printf ("%02X ",detailtags->tag[z]->data[x]);
			printf ("\n"); 
			for (x=0;x<detailtags->tag[z]->datalen; x++)
				detailtags->tag[z]->data[x]++;
			write_object_value(comm, path, detailtags->tag[z], 4);
			read_object_value(comm, path, detailtags->tag[z], debug);
			printf ("New:\n");
			for (x=0;x<detailtags->tag[z]->datalen;x++)
				printf ("%02X ",detailtags->tag[z]->data[x]);
			printf ("\n"); 
			}			
*/

    }
  }
/*
  for (z = 0; z < y; z+=5)
  {
    if (z < detailtags->count)
    {
    switch (detailtags->tag[z]->type & 255)
      {
      case 0x68:
      case 0x69:
	break;
      default:
	list->count = 1;
	list->tag[0] = detailtags->tag[z];
	if (z+1 < y)
		list->tag[list->count++] = detailtags->tag[z+1];
	if (z+2 < y)
		list->tag[list->count++] = detailtags->tag[z+2];
	if (z+3 < y)
		list->tag[list->count++] = detailtags->tag[z+3];
	if (z+4 < y)
		list->tag[list->count++] = detailtags->tag[z+4];
	read_multi_object_value(comm, path, list, debug);
      }

    }
  }

*/
for (z=0; z<detailtags->count; z++)
	{
	printf ("%s : ",detailtags->tag[z]->name);
	for (x=0;x<detailtags->tag[z]->datalen;x++)
		printf ("%02X ",detailtags->tag[z]->data[x]);
	printf ("\n"); 
	}


//exit(0);
  printf("%d objects with topbase != 0.\n", c1);
  printf("%d objects type 0x68, %d objects type 0x69.\n", c68, c69);
  printf("configtags count = %d    detailtags count = %d\n",
	 configtags->count, detailtags->count);
  printf("Got %d programs...\n", progs->count);

  for (x = 0; x < progs->count; x++)
  {
    program_tags[x] = malloc(sizeof(_tag_data));



    if (program_tags[x] == NULL)
    {
      printf("Could not allocate memory for program tag structure.\n");
      exit(-1);
    }

    get_program_details(comm, path, progs->prog[x], debug);
    for (y = 0; y < detailtags->count; y++)
    {
      if (detailtags->tag[y]->linkid == progs->prog[x]->linkid)
      {
	strcpy(progs->prog[x]->name, detailtags->tag[y]->name);
      }
    }
    printf("id for program #%d is %08lX   link ID = %08lX - %s\n", x,
	   progs->prog[x]->base, progs->prog[x]->linkid,
	   progs->prog[x]->name);
  }




  for (x = 0; x < progs->count; x++)
  {
    if (quiet == FALSE)
      printf("Tag list for %s\n", progs->prog[x]->name);
    get_object_details_list(comm, path, progs->prog[x]->base, program_tags[x],
			    debug);
    printf("tag count = %d\n\n", program_tags[x]->count);

    for (y = 0; y < program_tags[x]->count; y++)
    {
      get_object_details(comm, path, program_tags[x]->tag[y], debug);
/*      aliascheck(program_tags[x]->tag[y], program_tags[x], detailtags,
		 DEBUG_VALUES);
      if (quiet == FALSE)
	printf("%08lX  %08lX  %08lX  %08lX   ",
	       program_tags[x]->tag[y]->topbase,
	       program_tags[x]->tag[y]->base, program_tags[x]->tag[y]->id,
	       program_tags[x]->tag[y]->linkid);
      if (quiet == FALSE)
      {
	printf("type = %04X   Name = %s\n", program_tags[x]->tag[y]->type,
	       program_tags[x]->tag[y]->name);
	printf("arraysize1 = %ld    arraysize2 = %ld    arraysize3 = %ld\n",
	       program_tags[x]->tag[y]->arraysize1,
	       program_tags[x]->tag[y]->arraysize2,
	       program_tags[x]->tag[y]->arraysize3);
      }
*/
    }
    if (quiet == FALSE)
      printf("-----------------------------------\n");
  }

  for (x = 0; x < detailtags->count; x++)
  {
    if ((detailtags->tag[x]->size != 0)
	|| (detailtags->tag[x]->alias_size != 0))
    {
      result = read_object_value(comm, path, detailtags->tag[x], debug);
      if (result != 0)
      {
	printf("Got non-zero return from read_object_value - %02X\n", result);
	printf
	  ("%08lX - %08lX - %08lX - %08lX - %08lX - %08lX - %08lX - %04X - %s - %ld - %ld - %ld\n",
	   detailtags->tag[x]->topbase, detailtags->tag[x]->base,
	   detailtags->tag[x]->id, detailtags->tag[x]->linkid,
	   detailtags->tag[x]->alias_topbase, detailtags->tag[x]->alias_base,
	   detailtags->tag[x]->alias_id, detailtags->tag[x]->type,
	   detailtags->tag[x]->name, detailtags->tag[x]->arraysize1,
	   detailtags->tag[x]->arraysize2, detailtags->tag[x]->arraysize3);
      }

      if (quiet == FALSE)
      {
	printf("Value(s) for %s: ", detailtags->tag[x]->name);
	for (y = 0; y < detailtags->tag[x]->size; y++)
	  printf("%02X ", detailtags->tag[x]->data[y]);
	printf("\n");
      }

    }
  }

  for (x = 0; x < progs->count; x++)
  {
    if (quiet == FALSE)
      printf("Reading %d Data Values for program %s tags...\n",
	     program_tags[x]->count, progs->prog[x]->name);
    for (y = 0; y < program_tags[x]->count; y++)
    {
      if ((program_tags[x]->tag[y]->type & 255) > 0xbf)
      {
	read_object_value(comm, path, program_tags[x]->tag[y], debug);
	if (quiet == FALSE)
	{
	  printf("Value(s) for %s: ", program_tags[x]->tag[y]->name);
	  for (z = 0; z < program_tags[x]->tag[y]->datalen; z++)
	    printf("%02X ", program_tags[x]->tag[y]->data[z]);
	  printf("\n");
	}
      }
      if (quiet == FALSE)
	printf("---------------------------------\n");
    }
  }
  closesocket(comm->file_handle);
  exit(0);
}
Beispiel #17
0
//void main_function(cyg_addrword_t data) {
void * main_function(void * data) {

    
    int tmp = 1;

    region_information = (int *) malloc (4 * sizeof(int));

     // create particles
    create_particle_filter(100, 10); 

    /*slots = (int *) malloc (6 * sizeof(int));
    slots[0] = 0;
    slots[1] = 1;
    slots[2] = 2;
    slots[3] = 3;
    slots[4] = 4;
    slots[5] = 5;
    set_importance_hw_static(1, &slots[0]);*/

    /*rthread_attr_init(&hwthread_sorter_attr);
    rthread_attr_setslotnum(&hwthread_sorter_attr, 0);
    rthread_attr_setresources(&hwthread_sorter_attr, hwthread_sorter_resources, 3);
    reconos_hwthread_create( 15,                                               // priority
                             &hwthread_sorter_attr,                             // hardware thread attributes
                             0,                                                // entry data (not needed)
                             "MT_HW_SORT",                                     // thread name
                             hwthread_sorter_stack,                            // stack
                             STACK_SIZE,                                       // stack size
                             &hwthread_sorter_handle,                          // thread handle
                             &hwthread_sorter                                  // thread object
    );
    cyg_thread_resume( hwthread_sorter_handle );*/
    
    //cyg_thread_delay(50);

#ifndef NO_ETHERNET
    init_all_network_interfaces();
    if(!eth0_up){
		printf("failed to initialize eth0\naborting\n");
		return NULL;
    }
    else{
		printf(" eth0 up\n");
    }

    diag_printf( "initializing ECAP interface..." );
    ecap_init();
    diag_printf( "done\n" );

    // establish connection
    while (tmp == 1){
         tmp = establish_connection(6666, region_information);
    }
#endif


    // start read_new_frame 
    cyg_semaphore_post(sem_read_new_frame_start);

    srand(1);

    // set region information for equal time measurements

   #define VIDEO 1
    
   printf("\n#################################################");
   printf("\n#################################################");
      #ifdef VIDEO    
      #if VIDEO==1
       printf("\n##########  S O C C E R   V I D E O  ############");
       region_information[0] = 286;
       region_information[1] = 247;
       region_information[2] = 117;
       region_information[3] = 171;
      #else
      #if VIDEO==2
       printf("\n########  F O O T B A L L   V I D E O  ##########");
       region_information[0] = 255;
       region_information[1] = 252;
       region_information[2] =  23;
       region_information[3] =  41;
      #else
      #if VIDEO==3
       printf("\n##########  H O C K E Y   V I D E O  ############");
       region_information[0] = 152;
       region_information[1] =  95;
       region_information[2] =  19;
       region_information[3] =  39;
      #else
      #if VIDEO==4
       printf("\n##########  H O C K E Y   V I D E O (FULL PICTURE) ############");
       region_information[0] = 159;
       region_information[1] = 119;
       region_information[2] = 320;
       region_information[3] = 240;
      #endif
      #endif
      #endif
      #endif
      #else
       printf("\n######  N O   V I D E O   D E F I N E D  ########");

      #endif
    printf("\n#################################################");
    printf("\n#################################################\n");
    
    // init particles
    init_particles(region_information, 4);


    // Output Object Region
    printf("\n\nx0 = %d\ny0 = %d\nwidth = %d\nheight = %d\n\n", region_information[0], region_information[1], region_information[2], region_information[3]);
    
    particle p;
    p.x = region_information[0]*PF_GRANULARITY;
    p.y = region_information[1]*PF_GRANULARITY;
    p.x0 = p.x;
    p.y0 = p.y;
    p.xp = p.x;
    p.yp = p.y;
    p.s = PF_GRANULARITY;
    p.sp = p.s;
    p.width = region_information[2];
    p.height = region_information[3]; 

    // get reference data
    get_reference_data(&p, &reference_data);

    init_reference_data (&reference_data);

    print_histogram(&reference_data);
    //print_histogram2(&reference_data);

#ifdef STORE_VIDEO
    int i;
    printf("\n\nThe first %d Frames will be stored into Main Memory. Again this will take some time.\n", (int)MAX_FRAMES);

    
    // load first frames
    for(i=0; i<MAX_FRAMES-1; i++){

	  //switch_framebuffer();
	    read_frame();
    }

    printf("\nFinished: The first %d Frames are stored in the Main Memory.\n", (int)MAX_FRAMES);
#endif

       
    parameter_s = (int *) malloc (5 * sizeof(int));
    parameter_s[0] = SIZE_X;
    parameter_s[1] = SIZE_Y;
    parameter_s[2] = 16384; // GRANULARITY / TRANS_STD_X
    parameter_s[3] = 8192;  // GRANULARITY / TRANS_STD_Y
    parameter_s[4] = 16;    // GRANULARITY / TRANS_STD_S

    parameter_o = (int *) malloc (2 * sizeof(int));
    parameter_o[0] = SIZE_X;
    parameter_o[1] = SIZE_Y;

    slots = (int *) malloc (6 * sizeof(int));
    slots[0] = 0;
    slots[1] = 1;
    slots[2] = 2;
    slots[3] = 3;
    slots[4] = 4;
    slots[5] = 5;


    // create sampling, importance, resampling thread

   printf("\n#################################################");
   printf("\n#################################################");
   #ifdef PARTITIONING
    #if PARTITIONING==1
    printf("\n######   P A R T I T I O N I N G    S W   #######");
    set_sample_sw(1);
    set_observe_sw(1);
    set_importance_sw(1);
    set_resample_sw(1);
    #else
    #if PARTITIONING==2
    printf("\n####   P A R T I T I O N I N G    H W  I   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_importance_sw(1);
    set_importance_hw_static(1, &slots[2]);
    set_resample_sw(1);   
    #else
    #if PARTITIONING==3
    printf("\n####   P A R T I T I O N I N G    H W   II   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_importance_sw(1);
    set_importance_hw_static(2, &slots[2]);
    set_resample_sw(1); 
   #else
   #if PARTITIONING==4
    printf("\n####   P A R T I T I O N I N G    H W   O   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(1, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_resample_sw(1);
   #else
   #if PARTITIONING==5
    printf("\n####   P A R T I T I O N I N G    H W   OO   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(1, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_resample_sw(1);
   #else
   #if PARTITIONING==6
    printf("\n####   P A R T I T I O N I N G    H W   IO   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(1, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_importance_hw_static(1, &slots[2]);
    set_resample_sw(1);
   #else
   #if PARTITIONING==7
    printf("\n####   P A R T I T I O N I N G    H W   IIO   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(2, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_importance_hw_static(1, &slots[2]);
    set_resample_sw(1);
   #else
   #if PARTITIONING==8
    printf("\n####   P A R T I T I O N I N G    H W   IOO   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(1, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_importance_hw_static(2, &slots[2]);
    set_resample_sw(1);
   #else
   #if PARTITIONING==9
    printf("\n####   P A R T I T I O N I N G    H W   IIOO   #####");
    set_sample_sw(1);
    set_observe_sw(1);
    set_observe_hw_static(2, &slots[0], parameter_o, 2);
    set_importance_sw(1);
    set_importance_hw_static(2, &slots[2]);
    set_resample_sw(1);
   #endif
   #endif
   #endif
   #endif
   #endif
   #endif
   #endif
   #endif
   #endif
   #else
    //printf("\n#  N O  P A R T I T I O N I N G   D E F I N E D #");
    printf("\n####   P A R T I T I O N I N G    S W   O   #####");
    reconf_mode_observation_on = TRUE;
    reconf_mode_observation_last_slot_on = FALSE;

    // I. SAMPLING ////////////////////////////////////////
    set_sample_sw(1);
    //set_sample_hw_dynamic(1, &hw_thread_s_circuit, parameter_s, 5);

    // II. OBSERVATION ////////////////////////////////////
    //set_observe_sw(1);
    set_observe_hw_dynamic(2, &hw_thread_o_circuit, parameter_o, 2);
    //set_observe_hw_dynamic(2, &hw_thread_o_circuit, parameter_o, 2);
    //set_observe_hw_static(1, &slots[2], parameter_o, 2);

    // III. IMPORTANCE ////////////////////////////////////
    set_importance_sw(1);
    //set_importance_hw_dynamic(1, &hw_thread_i_circuit);
    //set_importance_hw_dynamic(2, &hw_thread_i_circuit);
    set_importance_hw_static(1, &slots[2]); //[2]

    // IV. RESAMPLING /////////////////////////////////////
    set_resample_sw(1);
   #endif
   printf("\n#################################################");
   printf("\n#################################################\n");
   /*
   // create and start sorting thread
    init_all_network_interfaces();
    if(!eth0_up){
        printf("failed to initialize eth0\naborting\n");
        return NULL;
    }
    else{
        printf(" eth0 up\n");
    }  
   diag_printf( "initializing ECAP interface..." );
   ecap_init();
   diag_printf( "done\n" );*/
   //create_particle_filter(100, 10); 
   //set_observe_hw_dynamic(2, &hw_thread_o_circuit, 0, 0);
   //sw_test_thread = (cyg_thread *) malloc (sizeof(cyg_thread));
   //sw_test_thread_stack = (char *) malloc (sizeof(char) * STACK_SIZE);
   //sw_test_thread_handle = (cyg_handle_t *) malloc(sizeof(cyg_handle_t));
   /*cyg_thread_create(PRIO,                       // scheduling info (eg pri)  
                      test_thread,               // entry point function   
                      0,                         // entry data                
                      "TEST",                    // optional thread name      
                      //sw_test_thread_stack,      // stack base          
                      sw_measurement_thread_4_stack,    // stack base          
                      STACK_SIZE,                // stack size,       
                      //sw_test_thread_handle,     // returned thread handle 
                      &sw_measurement_thread_4_handle,  // returned thread handle  
                      //sw_test_thread             // put thread here 
                      &sw_measurement_thread_4          // put thread here 
          
     );

    // resume thread
    cyg_thread_resume(sw_measurement_thread_4_handle);*/
    //cyg_thread_resume(*sw_test_thread_handle);
   /*cyg_thread_create(PRIO,                             // scheduling info (eg pri)  
                      test_thread,               // entry point function     
                      0,                                // entry data                
                      "READ_MEASUREMENTS_4",            // optional thread name      
                      sw_measurement_thread_4_stack,    // stack base                
                      STACK_SIZE,                       // stack size,       
                      &sw_measurement_thread_4_handle,  // returned thread handle    
                      &sw_measurement_thread_4          // put thread here           
     );

    // resume thread
    cyg_thread_resume(sw_measurement_thread_4_handle);*/

   //cyg_thread_delay(1000);
   //diag_printf( "Reconfigure!\n" );
   /*old_number_of_sortings = 0;
   start_sorting();
   set_sort8k_hw_dynamicB(2);
   set_sort8k_hw_dynamic(2);
   cyg_thread_delay(1000);*/

   start_particle_filter();

   printf("\nstart particle filter");
   return NULL;
  }
/*---------------------------------------------------------------------------*/
int run_client_test(struct perf_parameters *user_param)
{
	struct session_data	sess_data;
	struct perf_comm	*comm;
	struct thread_data	*tdata;
	char			url[256];
	int			i = 0;
	int			max_cpus;
	pthread_t		statistics_thread_id;
	struct perf_command	command;
	int			size_log2;
	int			max_size_log2 = 24;


	/* client session attributes */
	struct xio_session_attr attr = {
		&ses_ops,
		NULL,
		0
	};
	xio_init();

	g_mhz		= get_cpu_mhz(0);
	max_cpus	= sysconf(_SC_NPROCESSORS_ONLN);
	threads_iter	= 1;
	size_log2	= 0;

	tdata = calloc(user_param->threads_num, sizeof(*tdata));
	if (tdata == NULL) {
		fprintf(fd, "malloc failed\n");
		return -1;
	}

	comm = create_comm_struct(user_param);
	if (establish_connection(comm)) {
		fprintf(stderr, "failed to establish connection\n");
		free(tdata);
		destroy_comm_struct(comm);
		return -1;
	}

	if (user_param->output_file) {
		fd = fopen(user_param->output_file, "w");
		if (fd == NULL) {
			fprintf(fd, "file open failed. %s\n",
				user_param->output_file);
			free(sess_data.tdata);
			destroy_comm_struct(comm);
			return -1;
		}
		fprintf(fd, "size, threads, tps, bw[Mbps], lat[usec]\n");
		fflush(fd);
	}


	printf("%s", RESULT_FMT);
	printf("%s", RESULT_LINE);


	while (threads_iter <= user_param->threads_num)  {
		data_len	= (uint64_t)1 << size_log2;

		memset(&sess_data, 0, sizeof(sess_data));
		memset(tdata, 0, user_param->threads_num*sizeof(*tdata));
		sess_data.tdata = tdata;

		command.test_param.machine_type	= user_param->machine_type;
		command.test_param.test_type	= user_param->test_type;
		command.test_param.verb		= user_param->verb;
		command.test_param.data_len	= data_len;
		command.command			= GetTestParams;

		ctx_write_data(comm, &command, sizeof(command));

		sprintf(url, "rdma://%s:%d", user_param->server_addr,
			user_param->server_port);
		sess_data.session = xio_session_create(XIO_SESSION_CLIENT,
				&attr, url, 0, 0, &sess_data);
		if (sess_data.session == NULL) {
			int error = xio_errno();
			fprintf(stderr,
				"session creation failed. reason %d - (%s)\n",
				error, xio_strerror(error));
			goto cleanup;
		}

		pthread_create(&statistics_thread_id, NULL,
			       statistics_thread_cb, &sess_data);

		/* spawn threads to handle connection */
		for (i = 0; i < threads_iter; i++) {
			sess_data.tdata[i].affinity		=
				((user_param->cpu + i) % max_cpus);
			sess_data.tdata[i].cid			= i;
			sess_data.tdata[i].sdata		= &sess_data;
			sess_data.tdata[i].user_param		= user_param;
			sess_data.tdata[i].data_len		= data_len;

			/* all threads are working on the same session */
			sess_data.tdata[i].session	= sess_data.session;
			pthread_create(&sess_data.tdata[i].thread_id, NULL,
				       worker_thread, &sess_data.tdata[i]);
		}

		pthread_join(statistics_thread_id, NULL);

		/* join the threads */
		for (i = 0; i < threads_iter; i++)
			pthread_join(sess_data.tdata[i].thread_id, NULL);

		/* close the session */
		xio_session_destroy(sess_data.session);

		if (sess_data.abort) {
			fprintf(stderr, "program aborted\n");
			goto cleanup;
		}

		/* send result to server */
		command.results.bytes		= data_len;
		command.results.threads		= threads_iter;
		command.results.tps		= sess_data.tps;
		command.results.avg_bw		= sess_data.avg_bw;
		command.results.avg_lat		= sess_data.avg_lat_us;
		command.results.min_lat		= sess_data.min_lat_us;
		command.results.max_lat		= sess_data.max_lat_us;
		command.command			= GetTestResults;

		/* sync point */
		ctx_write_data(comm, &command, sizeof(command));

		printf(REPORT_FMT,
		       data_len,
		       threads_iter,
		       sess_data.tps,
		       sess_data.avg_bw,
		       sess_data.avg_lat_us,
		       sess_data.min_lat_us,
		       sess_data.max_lat_us);
		if (fd)
			fprintf(fd, "%lu, %d, %lu, %.2lf, %.2lf\n",
				data_len,
				threads_iter,
				sess_data.tps,
				sess_data.avg_bw,
				sess_data.avg_lat_us);
		fflush(fd);

		/* sync point */
		ctx_read_data(comm, NULL, 0, NULL);

		if (++size_log2 < max_size_log2)
			continue;

		threads_iter++;
		size_log2 = 0;
	}

	printf("%s", RESULT_LINE);

cleanup:
	if (fd)
		fclose(fd);

	ctx_hand_shake(comm);

	ctx_close_connection(comm);

	destroy_comm_struct(comm);

	free(tdata);

	xio_shutdown();

	return 0;
}
Beispiel #19
0
/*
 * Send the current request, after encrypting it.  Returns 0 on success,
 * or -1 on failure.
 */
static int
send_msg(struct tac_handle *h)
{
	struct timeval deadline;
	struct tac_msg *msg;
	char *ptr;
	int len;

	if (h->last_seq_no & 1) {
		generr(h, "Attempt to send message out of sequence");
		return -1;
	}

	if (establish_connection(h) == -1)
		return -1;

	msg = &h->request;
	msg->seq_no = ++h->last_seq_no;
	if (msg->seq_no == 1)
		gen_session_id(msg);
	crypt_msg(h, msg);

	if (h->single_connect)
		msg->flags |= TAC_SINGLE_CONNECT;
	else
		msg->flags &= ~TAC_SINGLE_CONNECT;
	gettimeofday(&deadline, NULL);
	deadline.tv_sec += h->servers[h->cur_server].timeout;
	len = HDRSIZE + ntohl(msg->length);
	ptr = (char *)msg;
	while (len > 0) {
		int n;

		n = write(h->fd, ptr, len);
		if (n == -1) {
			struct timeval tv;
			int nfds;

			if (errno != EAGAIN) {
				generr(h, "Network write error: %s",
				    strerror(errno));
				return -1;
			}

			/* Wait until we can write more data. */
			gettimeofday(&tv, NULL);
			timersub(&deadline, &tv, &tv);
			if (tv.tv_sec >= 0) {
				fd_set wfds;

				FD_ZERO(&wfds);
				FD_SET(h->fd, &wfds);
				nfds =
				    select(h->fd + 1, NULL, &wfds, NULL, &tv);
				if (nfds == -1) {
					generr(h, "select: %s",
					    strerror(errno));
					return -1;
				}
			} else
				nfds = 0;
			if (nfds == 0) {
				generr(h, "Network write timed out");
				return -1;
			}
		} else {
			ptr += n;
			len -= n;
		}
	}
	return 0;
}
int main(int argc, char *argv[]) {

	struct ibv_device	       *ib_dev;
	struct pingpong_context    ctx;
	struct pingpong_dest       *my_dest,*rem_dest;
	struct perftest_parameters user_param;
	struct perftest_comm	   user_comm;
	int                        i = 0;

	memset(&ctx,0,sizeof(struct pingpong_context));
	memset(&user_param, 0, sizeof(struct perftest_parameters));
	memset(&user_comm,0,sizeof(struct perftest_comm));

	user_param.verb    = WRITE;
	user_param.tst     = BW;
	user_param.spec    = PL;
	user_param.version = VERSION;

	// Configure the parameters values according to user arguments or defalut values.
	if (parser(&user_param,argv,argc)) {
		fprintf(stderr," Parser function exited with Error\n");
		return 1;
	}

	// Finding the IB device selected (or defalut if no selected).
	ib_dev = ctx_find_dev(user_param.ib_devname);
	if (!ib_dev) {
		fprintf(stderr," Unable to find the Infiniband/RoCE deivce\n");
		return 1;
	}

	// Getting the relevant context from the device
	ctx.context = ibv_open_device(ib_dev);
	if (!ctx.context) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return 1;
	}

	// See if MTU and link type are valid and supported.
	if (check_link_and_mtu(ctx.context,&user_param)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	// Print basic test information.
	ctx_print_test_info(&user_param);

	ALLOCATE(my_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(my_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);
	ALLOCATE(rem_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(rem_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);

	// copy the rellevant user parameters to the comm struct + creating rdma_cm resources.
	if (create_comm_struct(&user_comm,&user_param)) { 
		fprintf(stderr," Unable to create RDMA_CM resources\n");
		return 1;
	}

	// Create (if nessacery) the rdma_cm ids and channel.
	if (user_param.work_rdma_cm == ON) {

	    if (create_rdma_resources(&ctx,&user_param)) {
			fprintf(stderr," Unable to create the rdma_resources\n");
			return FAILURE;
	    }
		
  	    if (user_param.machine == CLIENT) {

			if (rdma_client_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		
		} else {

			if (rdma_server_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		}
					
	} else {
    
	    // create all the basic IB resources (data buffer, PD, MR, CQ and events channel)
	    if (ctx_init(&ctx,&user_param)) {
			fprintf(stderr, " Couldn't create IB resources\n");
			return FAILURE;
	    }
	}

	// Set up the Connection.
	if (set_up_connection(&ctx,&user_param,my_dest)) {
		fprintf(stderr," Unable to set up socket connection\n");
		return FAILURE;
	}

	// Print this machine QP information
	for (i=0; i < user_param.num_of_qps; i++) 
		ctx_print_pingpong_data(&my_dest[i],&user_comm);

	// Init the connection and print the local data.
	if (establish_connection(&user_comm)) {
		fprintf(stderr," Unable to init the socket connection\n");
		return FAILURE;
	}

	// shaking hands and gather the other side info.
	for (i=0; i < user_param.num_of_qps; i++) {

			if (ctx_hand_shake(&user_comm,&my_dest[i],&rem_dest[i])) {
				fprintf(stderr," Failed to exchange date between server and clients\n");
				return 1;   
			}

			// Print remote machine QP information
			user_comm.rdma_params->side = REMOTE;
			ctx_print_pingpong_data(&rem_dest[i],&user_comm);

			if (user_param.work_rdma_cm == OFF) {

				if (pp_connect_ctx(&ctx,my_dest[i].psn,&rem_dest[i],&user_param,i)) {
					fprintf(stderr," Unable to Connect the HCA's through the link\n");
					return FAILURE;
				}
			}

			// An additional handshake is required after moving qp to RTR.
			if (ctx_hand_shake(&user_comm,&my_dest[i],&rem_dest[i])) {
				fprintf(stderr," Failed to exchange date between server and clients\n");
				return FAILURE; 
			}
	}	

	printf(RESULT_LINE);
	printf(RESULT_FMT);

	// For half duplex tests, server just waits for client to exit 
	if (user_param.machine == SERVER && !user_param.duplex) {
		
		if (ctx_close_connection(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr,"Failed to close connection between server and client\n");
			return 1;
		}
		printf(RESULT_LINE);
		return 0;
	}

	ALLOCATE(tposted,cycles_t,user_param.iters*user_param.num_of_qps);
	ALLOCATE(tcompleted,cycles_t,user_param.iters*user_param.num_of_qps);

	if (user_param.all == ON) {

		for (i = 1; i < 24 ; ++i) {
			user_param.size = 1 << i;
			if(run_iter(&ctx,&user_param,rem_dest))
				return 17;
			print_report(&user_param);
		}

	} else {

		if(run_iter(&ctx,&user_param,rem_dest))
			return 18;
		print_report(&user_param);
	}

	free(tposted);
	free(tcompleted);

	// Closing connection.
	if (ctx_close_connection(&user_comm,&my_dest[0],&rem_dest[0])) {
	 	fprintf(stderr,"Failed to close connection between server and client\n");
		return 1;
	}

	free(my_dest);
	free(rem_dest);
	printf(RESULT_LINE);
	return 0;
}
Beispiel #21
0
int main(int argc, char *argv[])
{
	struct ibv_device		*ib_dev = NULL;
	struct pingpong_context  	ctx;
	struct pingpong_dest	 	*my_dest  = NULL;
	struct pingpong_dest		*rem_dest = NULL;
	struct perftest_parameters  	user_param;
	struct perftest_comm		user_comm;
	struct mcast_parameters     	mcg_params;
	struct bw_report_data		my_bw_rep, rem_bw_rep;
	int                      	ret_parser,i = 0;
	int                      	size_max_pow = 24;

	/* init default values to user's parameters */
	memset(&ctx, 0,sizeof(struct pingpong_context));
	memset(&user_param, 0 , sizeof(struct perftest_parameters));
	memset(&mcg_params, 0 , sizeof(struct mcast_parameters));
	memset(&user_comm, 0,sizeof(struct perftest_comm));

	user_param.verb    = SEND;
	user_param.tst     = BW;
	strncpy(user_param.version, VERSION, sizeof(user_param.version));

	/* Configure the parameters values according to user arguments or defalut values. */
	ret_parser = parser(&user_param,argv,argc);
	if (ret_parser) {
		if (ret_parser != VERSION_EXIT && ret_parser != HELP_EXIT)
			fprintf(stderr," Parser function exited with Error\n");
		return 1;
	}
	if((user_param.connection_type == DC || user_param.use_xrc) && user_param.duplex) {
		user_param.num_of_qps *= 2;
	}
	/* Checking that the user did not run with RawEth. for this we have raw_etherent_bw test. */
	if (user_param.connection_type == RawEth) {
		fprintf(stderr," This test cannot run Raw Ethernet QPs (you have chosen RawEth as connection type\n");
		fprintf(stderr," For this we have raw_ethernet_bw test in this package.\n");
		return FAILURE;
	}

	/* Finding the IB device selected (or defalut if no selected). */
	ib_dev = ctx_find_dev(user_param.ib_devname);
	if (!ib_dev) {
		fprintf(stderr," Unable to find the Infiniband/RoCE device\n");
		return 1;
	}

	if (user_param.use_mcg)
		GET_STRING(mcg_params.ib_devname,ibv_get_device_name(ib_dev));

	/* Getting the relevant context from the device */
	ctx.context = ibv_open_device(ib_dev);
	if (!ctx.context) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return 1;
	}


	/* See if MTU and link type are valid and supported. */
	if (check_link(ctx.context,&user_param)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	/* copy the relevant user parameters to the comm struct + creating rdma_cm resources. */
	if (create_comm_struct(&user_comm,&user_param)) {
		fprintf(stderr," Unable to create RDMA_CM resources\n");
		return 1;
	}

	if (user_param.output == FULL_VERBOSITY && user_param.machine == SERVER) {
		printf("\n************************************\n");
		printf("* Waiting for client to connect... *\n");
		printf("************************************\n");
	}

	/* Initialize the connection and print the local data. */
	if (establish_connection(&user_comm)) {
		fprintf(stderr," Unable to init the socket connection\n");
		return FAILURE;
	}

	exchange_versions(&user_comm, &user_param);

	check_sys_data(&user_comm, &user_param);

	/* See if MTU and link type are valid and supported. */
	if (check_mtu(ctx.context,&user_param, &user_comm)) {
		fprintf(stderr, " Couldn't get context for the device\n");
		return FAILURE;
	}

	/* Print basic test information. */
	ctx_print_test_info(&user_param);

	ALLOCATE(my_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(my_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);
	ALLOCATE(rem_dest , struct pingpong_dest , user_param.num_of_qps);
	memset(rem_dest, 0, sizeof(struct pingpong_dest)*user_param.num_of_qps);

	if (user_param.transport_type == IBV_TRANSPORT_IWARP)
		ctx.send_rcredit = 1;

	/* Allocating arrays needed for the test. */
	alloc_ctx(&ctx,&user_param);

	/* Create (if nessacery) the rdma_cm ids and channel. */
	if (user_param.work_rdma_cm == ON) {

		if (user_param.machine == CLIENT) {
			if (retry_rdma_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}

		} else {
			if (create_rdma_resources(&ctx,&user_param)) {
				fprintf(stderr," Unable to create the rdma_resources\n");
				return FAILURE;
			}
			if (rdma_server_connect(&ctx,&user_param)) {
				fprintf(stderr,"Unable to perform rdma_client function\n");
				return FAILURE;
			}
		}

	} else {

		/* create all the basic IB resources (data buffer, PD, MR, CQ and events channel) */
		if (ctx_init(&ctx,&user_param)) {
			fprintf(stderr, " Couldn't create IB resources\n");
			return FAILURE;
		}
	}

	/* Set up the Connection. */
	if (send_set_up_connection(&ctx,&user_param,my_dest,&mcg_params,&user_comm)) {
		fprintf(stderr," Unable to set up socket connection\n");
		return 1;
	}

	if (ctx.send_rcredit)
		ctx_alloc_credit(&ctx,&user_param,my_dest);

	for (i=0; i < user_param.num_of_qps; i++)
		ctx_print_pingpong_data(&my_dest[i],&user_comm);

	user_comm.rdma_params->side = REMOTE;
	for (i=0; i < user_param.num_of_qps; i++) {

		/* shaking hands and gather the other side info. */
		if (ctx_hand_shake(&user_comm,&my_dest[i],&rem_dest[i])) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}

		ctx_print_pingpong_data(&rem_dest[i],&user_comm);
	}

	if (user_param.work_rdma_cm == OFF) {
		if (ctx_check_gid_compatibility(&my_dest[0], &rem_dest[0])) {
			fprintf(stderr,"\n Found Incompatibility issue with GID types.\n");
			fprintf(stderr," Please Try to use a different IP version.\n\n");
			return 1;
		}
	}

	/* If credit for available recieve buffers is necessary,
	 * the credit sending is done via RDMA WRITE ops and the ctx_hand_shake above
	 * is used to exchange the rkeys and buf addresses for the RDMA WRITEs
	 */
	if (ctx.send_rcredit)
		ctx_set_credit_wqes(&ctx,&user_param,rem_dest);

	/* Joining the Send side port the Mcast gid */
	if (user_param.use_mcg && (user_param.machine == CLIENT || user_param.duplex)) {

		memcpy(mcg_params.mgid.raw, rem_dest[0].gid.raw, 16);
		if (set_mcast_group(&ctx,&user_param,&mcg_params)) {
			fprintf(stderr," Unable to Join Sender to Mcast gid\n");
			return 1;
		}
		/*
		 * The next stall in code (50 ms sleep) is a work around for fixing the
		 * the bug this test had in Multicast for the past 1 year.
		 * It appears, that when a switch involved, it takes ~ 10 ms for the join
		 * request to propogate on the IB fabric, thus we need to wait for it.
		 * what happened before this fix was client reaching the post_send
		 * code segment in about 350 ns from here, and the switch(es) dropped
		 * the packet because join request wasn't finished.
		 */
		usleep(50000);
	}

	if (user_param.work_rdma_cm == OFF) {

		/* Prepare IB resources for rtr/rts. */
		if (ctx_connect(&ctx,rem_dest,&user_param,my_dest)) {
			fprintf(stderr," Unable to Connect the HCA's through the link\n");
			return 1;
		}
	}

	/* shaking hands and gather the other side info. */
	if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
		fprintf(stderr,"Failed to exchange data between server and clients\n");
		return 1;
	}

	if (user_param.use_event) {

		if (ibv_req_notify_cq(ctx.send_cq, 0)) {
			fprintf(stderr, " Couldn't request CQ notification\n");
			return 1;
		}

		if (ibv_req_notify_cq(ctx.recv_cq, 0)) {
			fprintf(stderr, " Couldn't request CQ notification\n");
			return 1;
		}
	}

	if (user_param.output == FULL_VERBOSITY) {
		if (user_param.report_per_port) {
			printf(RESULT_LINE_PER_PORT);
			printf((user_param.report_fmt == MBS ? RESULT_FMT_PER_PORT : RESULT_FMT_G_PER_PORT));
		}
		else {
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
		}
		printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
	}

	if (user_param.test_method == RUN_ALL) {

		if (user_param.connection_type == UD)
			size_max_pow =  (int)UD_MSG_2_EXP(MTU_SIZE(user_param.curr_mtu)) + 1;

		for (i = 1; i < size_max_pow ; ++i) {

			user_param.size = (uint64_t)1 << i;

			if (user_param.machine == CLIENT || user_param.duplex)
				ctx_set_send_wqes(&ctx,&user_param,rem_dest);

			if (user_param.machine == SERVER || user_param.duplex) {
				if (ctx_set_recv_wqes(&ctx,&user_param)) {
					fprintf(stderr," Failed to post receive recv_wqes\n");
					return 1;
				}
			}

			if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
				fprintf(stderr,"Failed to exchange data between server and clients\n");
				return 1;
			}

			if (ctx.send_rcredit) {
				int j;
				for (j = 0; j < user_param.num_of_qps; j++)
					ctx.credit_buf[j] = 0;
			}

			if (user_param.duplex) {
				if(run_iter_bi(&ctx,&user_param))
					return 17;

			} else if (user_param.machine == CLIENT) {

				if(run_iter_bw(&ctx,&user_param)) {
					return 17;
				}

			} else	{

				if(run_iter_bw_server(&ctx,&user_param)) {
					return 17;
				}
			}

			print_report_bw(&user_param,&my_bw_rep);

			if (user_param.duplex && user_param.test_type != DURATION) {
				xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
				print_full_bw_report(&user_param, &my_bw_rep, &rem_bw_rep);
			}
			if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
				fprintf(stderr,"Failed to exchange data between server and clients\n");
				return 1;
			}

			/* Check if last iteration ended well in UC/UD */
			if (user_param.check_alive_exited) {
				break;
			}
		}

	} else if (user_param.test_method == RUN_REGULAR) {

		if (user_param.machine == CLIENT || user_param.duplex)
			ctx_set_send_wqes(&ctx,&user_param,rem_dest);

		if (user_param.machine == SERVER || user_param.duplex) {
			if (ctx_set_recv_wqes(&ctx,&user_param)) {
				fprintf(stderr," Failed to post receive recv_wqes\n");
				return 1;
			}
		}

		if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}

		if (user_param.duplex) {

			if(run_iter_bi(&ctx,&user_param))
				return 17;

		} else if (user_param.machine == CLIENT) {

			if(run_iter_bw(&ctx,&user_param)) {
				return 17;
			}

		} else if(run_iter_bw_server(&ctx,&user_param)) {

			return 17;
		}

		print_report_bw(&user_param,&my_bw_rep);

		if (user_param.duplex && user_param.test_type != DURATION) {
			xchg_bw_reports(&user_comm, &my_bw_rep,&rem_bw_rep,atof(user_param.rem_version));
			print_full_bw_report(&user_param, &my_bw_rep, &rem_bw_rep);
		}

		if (user_param.report_both && user_param.duplex) {
			printf(RESULT_LINE);
			printf("\n Local results: \n");
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
			printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
			print_full_bw_report(&user_param, &my_bw_rep, NULL);
			printf(RESULT_LINE);

			printf("\n Remote results: \n");
			printf(RESULT_LINE);
			printf((user_param.report_fmt == MBS ? RESULT_FMT : RESULT_FMT_G));
			printf((user_param.cpu_util_data.enable ? RESULT_EXT_CPU_UTIL : RESULT_EXT));
			print_full_bw_report(&user_param, &rem_bw_rep, NULL);
		}
	} else if (user_param.test_method == RUN_INFINITELY) {

		if (user_param.machine == CLIENT)
			ctx_set_send_wqes(&ctx,&user_param,rem_dest);

		else if (user_param.machine == SERVER) {

			if (ctx_set_recv_wqes(&ctx,&user_param)) {
				fprintf(stderr," Failed to post receive recv_wqes\n");
				return 1;
			}
		}

		if (ctx_hand_shake(&user_comm,&my_dest[0],&rem_dest[0])) {
			fprintf(stderr,"Failed to exchange data between server and clients\n");
			return 1;
		}

		if (user_param.machine == CLIENT) {

			if(run_iter_bw_infinitely(&ctx,&user_param)) {
				fprintf(stderr," Error occured while running infinitely! aborting ...\n");
				return 1;
			}

		} else if (user_param.machine == SERVER) {

			if(run_iter_bw_infinitely_server(&ctx,&user_param)) {
				fprintf(stderr," Error occured while running infinitely on server! aborting ...\n");
				return 1;
			}
		}
	}

	if (user_param.output == FULL_VERBOSITY) {
		if (user_param.report_per_port)
			printf(RESULT_LINE_PER_PORT);
		else
			printf(RESULT_LINE);
	}

	if (ctx_close_connection(&user_comm,&my_dest[0],&rem_dest[0])) {
		fprintf(stderr," Failed to close connection between server and client\n");
		fprintf(stderr," Trying to close this side resources\n");
	}

	/* Destory all test resources, including Mcast if exists */
	if (send_destroy_ctx(&ctx,&user_param,&mcg_params)) {
		fprintf(stderr,"Couldn't Destory all SEND resources\n");
		return FAILURE;
	}
	if (user_param.work_rdma_cm == ON) {
		user_comm.rdma_params->work_rdma_cm = ON;
		if (destroy_ctx(user_comm.rdma_ctx,user_comm.rdma_params)) {
			fprintf(stderr,"Failed to destroy resources\n");
			return 1;
		}
	}

	if (!user_param.is_bw_limit_passed && (user_param.is_limit_bw == ON ) ) {
		fprintf(stderr,"Error: BW result is below bw limit\n");
		return 1;
	}

	if (!user_param.is_msgrate_limit_passed && (user_param.is_limit_bw == ON )) {
		fprintf(stderr,"Error: Msg rate  is below msg_rate limit\n");
		return 1;
	}

	return 0;
}