Beispiel #1
0
void signal_action (struct ev_loop *loop,ev_signal *signal_w,int e)
{
    puts("in signal cb \n");

    ev_signal_stop(loop,signal_w);
    ev_break (loop,EVBREAK_ALL);
}
Beispiel #2
0
static void
libev_ctx_del(void *ctx, const verto_ev *ev, void *evpriv)
{
    switch (verto_get_type(ev)) {
        case VERTO_EV_TYPE_IO:
            ev_io_stop(ctx, evpriv);
            break;
        case VERTO_EV_TYPE_TIMEOUT:
            ev_timer_stop(ctx, evpriv);
            break;
        case VERTO_EV_TYPE_IDLE:
            ev_idle_stop(ctx, evpriv);
            break;
        case VERTO_EV_TYPE_SIGNAL:
            ev_signal_stop(ctx, evpriv);
            break;
        case VERTO_EV_TYPE_CHILD:
            ev_child_stop(ctx, evpriv);
            break;
        default:
            break;
    }

    free(evpriv);
}
static void
foreign_event_loop_cleanup_libev(void)
{
	/* cleanup the foreign loop assets */

	ev_timer_stop(loop_ev, &timer_outer_ev);
	ev_signal_stop(loop_ev, &sighandler_ev);

	ev_run(loop_ev, UV_RUN_DEFAULT);
	ev_loop_destroy(loop_ev);
}
Beispiel #4
0
static void
signal_cb(EV_P_ ev_signal *w, int revents)
{
    if (revents & EV_SIGNAL) {
        switch (w->signum) {
        case SIGCHLD:
            if (!is_plugin_running())
                LOGE("plugin service exit unexpectedly");
            else
                return;
        case SIGINT:
        case SIGTERM:
            ev_signal_stop(EV_DEFAULT, &sigint_watcher);
            ev_signal_stop(EV_DEFAULT, &sigterm_watcher);
            ev_signal_stop(EV_DEFAULT, &sigchld_watcher);
            keep_resolving = 0;
            ev_unloop(EV_A_ EVUNLOOP_ALL);
        }
    }
}
Beispiel #5
0
static void
ev_signal_on_sigint(struct ev_loop* mainloop, ev_signal* watcher, const int events)
{
  /* Clean up and shut down this thread.
   * (Shuts down the Python interpreter if this is the main thread) */
  ev_cleanup* cleanup_watcher = malloc(sizeof(ev_cleanup));
  ev_cleanup_init(cleanup_watcher, pyerr_set_interrupt);
  ev_cleanup_start(mainloop, cleanup_watcher);

  ev_io_stop(mainloop, &((ThreadInfo*)ev_userdata(mainloop))->accept_watcher);
  ev_signal_stop(mainloop, watcher);
}
Beispiel #6
0
void
lws_libev_destroyloop(struct lws_context *context, int tsi)
{
	struct lws_context_per_thread *pt = &context->pt[tsi];

	if (!(context->options & LWS_SERVER_OPTION_LIBEV))
		return;

	ev_io_stop(pt->io_loop_ev, &pt->w_accept.ev_watcher);
	if (context->use_ev_sigint)
		ev_signal_stop(pt->io_loop_ev,
		       &pt->w_sigint.ev_watcher);
	if (!pt->ev_loop_foreign)
		ev_loop_destroy(pt->io_loop_ev);
}
Beispiel #7
0
int event_del (struct event *ev)
{
  dLOOPev;

  if (ev->ev_events & EV_SIGNAL)
    ev_signal_stop (EV_A_ &ev->iosig.sig);
  else if (ev->ev_events & (EV_READ | EV_WRITE))
    ev_io_stop (EV_A_ &ev->iosig.io);

  if (ev_is_active (&ev->to))
    ev_timer_stop (EV_A_ &ev->to);

  ev->ev_flags = EVLIST_INIT;

  return 0;
}
Beispiel #8
0
Datei: core.c Projekt: ifzz/lem
static int
signal_os_unwatch(lua_State *T, int sig)
{
	struct sigwatcher **prevp;
	struct sigwatcher *s;

	for (prevp = &signal_watchers, s = signal_watchers;
			s != NULL;
			prevp = &s->next, s = s->next) {
		if (s->w.signum == sig)
			break;
	}
	if (s != NULL) {
		ev_ref(LEM);
		ev_signal_stop(LEM_ &s->w);

		sigdelset(&signal_sigset, sig);

		*prevp = s->next;
		free(s);
	}
	lua_pushboolean(T, 1);
	return 1;
}
Beispiel #9
0
template<> void event_watcher<ev_signal>::stop() {
    /* TODO event shall be removed from signal_watchers */
    ev_signal_stop(this->self->loop, &this->watcher);
}
Beispiel #10
0
int main(int argc, char **argv)
{

    int i, c;
    int pid_flags = 0;
    char *user = NULL;
    char *local_port = NULL;
    char *local_addr = NULL;
    char *password = NULL;
    char *timeout = NULL;
    char *method = NULL;
    char *pid_path = NULL;
    char *conf_path = NULL;
    char *iface = NULL;

    srand(time(NULL));

    int remote_num = 0;
    ss_addr_t remote_addr[MAX_REMOTE_NUM];
    char *remote_port = NULL;

    int option_index = 0;
    static struct option long_options[] =
    {
        { "fast-open", no_argument,             0,
          0 },
        { "acl",       required_argument,       0,
          0 },
        { 0,           0,                       0,
          0 }
    };

    opterr = 0;

    while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uv",
                            long_options, &option_index)) != -1) {
        switch (c) {
        case 0:
            if (option_index == 0) {
                fast_open = 1;
            } else if (option_index == 1) {
                LOGD("initialize acl...");
                acl = !init_acl(optarg);
            }
            break;
        case 's':
            remote_addr[remote_num].host = optarg;
            remote_addr[remote_num++].port = NULL;
            break;
        case 'p':
            remote_port = optarg;
            break;
        case 'l':
            local_port = optarg;
            break;
        case 'k':
            password = optarg;
            break;
        case 'f':
            pid_flags = 1;
            pid_path = optarg;
            break;
        case 't':
            timeout = optarg;
            break;
        case 'm':
            method = optarg;
            break;
        case 'c':
            conf_path = optarg;
            break;
        case 'i':
            iface = optarg;
            break;
        case 'b':
            local_addr = optarg;
            break;
        case 'a':
            user = optarg;
            break;
        case 'u':
            udprelay = 1;
            break;
        case 'v':
            verbose = 1;
            break;
        }
    }

    if (opterr) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (conf_path != NULL) {
        jconf_t *conf = read_jconf(conf_path);
        if (remote_num == 0) {
            remote_num = conf->remote_num;
            for (i = 0; i < remote_num; i++) {
                remote_addr[i] = conf->remote_addr[i];
            }
        }
        if (remote_port == NULL) {
            remote_port = conf->remote_port;
        }
        if (local_addr == NULL) {
            local_addr = conf->local_addr;
        }
        if (local_port == NULL) {
            local_port = conf->local_port;
        }
        if (password == NULL) {
            password = conf->password;
        }
        if (method == NULL) {
            method = conf->method;
        }
        if (timeout == NULL) {
            timeout = conf->timeout;
        }
        if (fast_open == 0) {
            fast_open = conf->fast_open;
        }
#ifdef HAVE_SETRLIMIT
        if (nofile == 0) {
            nofile = conf->nofile;
        }
        /*
         * no need to check the return value here since we will show
         * the user an error message if setrlimit(2) fails
         */
        if (nofile) {
            if (verbose) {
                LOGD("setting NOFILE to %d", nofile);
            }
            set_nofile(nofile);
        }
#endif
    }

    if (remote_num == 0 || remote_port == NULL ||
        local_port == NULL || password == NULL) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (timeout == NULL) {
        timeout = "10";
    }

    if (local_addr == NULL) {
        local_addr = "0.0.0.0";
    }

    if (pid_flags) {
        USE_SYSLOG(argv[0]);
        daemonize(pid_path);
    }

    if (fast_open == 1) {
#ifdef TCP_FASTOPEN
        LOGD("using tcp fast open");
#else
        LOGE("tcp fast open is not supported by this environment");
#endif
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // Setup keys
    LOGD("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    // Setup socket
    int listenfd;
    listenfd = create_and_bind(local_addr, local_port);
    if (listenfd < 0) {
        FATAL("bind() error..");
    }
    if (listen(listenfd, SOMAXCONN) == -1) {
        FATAL("listen() error.");
    }
    setnonblocking(listenfd);
    LOGD("server listening at port %s.", local_port);

    // Setup proxy context
    struct listen_ctx listen_ctx;
    listen_ctx.remote_num = remote_num;
    listen_ctx.remote_addr = malloc(sizeof(ss_addr_t) * remote_num);
    while (remote_num > 0) {
        int index = --remote_num;
        if (remote_addr[index].port == NULL) {
            remote_addr[index].port = remote_port;
        }
        listen_ctx.remote_addr[index] = remote_addr[index];
    }
    listen_ctx.timeout = atoi(timeout);
    listen_ctx.fd = listenfd;
    listen_ctx.iface = iface;
    listen_ctx.method = m;

    struct ev_loop *loop = EV_DEFAULT;
    if (!loop) {
        FATAL("ev_loop error.");
    }
    ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
    ev_io_start(loop, &listen_ctx.io);

    // Setup UDP
    if (udprelay) {
        LOGD("udprelay enabled.");
        init_udprelay(local_addr, local_port, remote_addr[0].host,
                      remote_addr[0].port, m, listen_ctx.timeout, iface);
    }

    // setuid
    if (user != NULL) {
        run_as(user);
    }

    // Init connections
    cork_dllist_init(&connections);

    // Enter the loop
    ev_run(loop, 0);

    if (verbose) {
        LOGD("closed nicely.");
    }

    // Clean up
    free_connections(loop);
    free_udprelay();

    ev_io_stop(loop, &listen_ctx.io);
    free(listen_ctx.remote_addr);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    return 0;
}
Beispiel #11
0
int start_ss_local_server(profile_t profile)
{
    srand(time(NULL));

    char *remote_host = profile.remote_host;
    char *local_addr = profile.local_addr;
    char *method = profile.method;
    char *password = profile.password;
    char *log = profile.log;
    int remote_port = profile.remote_port;
    int local_port = profile.local_port;
    int timeout = profile.timeout;

    udprelay = profile.udp_relay;
    fast_open = profile.fast_open;
    verbose = profile.verbose;

    char local_port_str[16];
    char remote_port_str[16];
    sprintf(local_port_str, "%d", local_port);
    sprintf(remote_port_str, "%d", remote_port);

    USE_LOGFILE(log);

    if (profile.acl != NULL) {
        acl = !init_acl(profile.acl);
    }

    if (local_addr == NULL) {
        local_addr = "0.0.0.0";
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // Setup keys
    LOGD("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    // Setup socket
    int listenfd;
    listenfd = create_and_bind(local_addr, local_port_str);
    if (listenfd < 0) {
        FATAL("bind()");
    }
    if (listen(listenfd, SOMAXCONN) == -1) {
        FATAL("listen()");
    }
    setnonblocking(listenfd);
    LOGD("server listening at port %s.", local_port_str);

    // Setup proxy context
    struct listen_ctx listen_ctx;

    listen_ctx.remote_num = 1;
    listen_ctx.remote_addr = malloc(sizeof(ss_addr_t));
    listen_ctx.remote_addr[0].host = remote_host;
    listen_ctx.remote_addr[0].port = remote_port_str;
    listen_ctx.timeout = timeout;
    listen_ctx.fd = listenfd;
    listen_ctx.method = m;
    listen_ctx.iface = NULL;

    struct ev_loop *loop = EV_DEFAULT;
    if (!loop) {
        FATAL("ev_loop error.");
    }
    ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
    ev_io_start(loop, &listen_ctx.io);

    // Setup UDP
    if (udprelay) {
        LOGD("udprelay enabled.");
        init_udprelay(local_addr, local_port_str, remote_host, remote_port_str,
                      m, listen_ctx.timeout, NULL);
    }

    // Init connections
    cork_dllist_init(&connections);

    // Enter the loop
    ev_run(loop, 0);

    if (verbose) {
        LOGD("closed nicely.");
    }

    // Clean up
    free_connections(loop);
    if (udprelay) {
        free_udprelay();
    }

    ev_io_stop(loop, &listen_ctx.io);
    free(listen_ctx.remote_addr);
    close(listen_ctx.fd);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    // cannot reach here
    return 0;
}
Beispiel #12
0
int main(int argc, char **argv)
{

    int i, c;
    int pid_flags = 0;
    char *user = NULL;
    char *local_port = NULL;
    char *local_addr = NULL;
    char *password = NULL;
    char *timeout = NULL;
    char *method = NULL;
    char *pid_path = NULL;
    char *conf_path = NULL;
    char *iface = NULL;

    srand(time(NULL));

    int remote_num = 0;
    ss_addr_t remote_addr[MAX_REMOTE_NUM];
    char *remote_port = NULL;

    int option_index = 0;
    static struct option long_options[] =
    {
        { "fast-open", no_argument,       0, 0 },
        { "acl",       required_argument, 0, 0 },
        { 0,           0,                 0, 0 }
    };

    opterr = 0;

    USE_TTY();

#ifdef ANDROID
    while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uvVA",
                            long_options, &option_index)) != -1) {
#else
    while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uvA",
                            long_options, &option_index)) != -1) {
#endif
        switch (c) {
        case 0:
            if (option_index == 0) {
                fast_open = 1;
            } else if (option_index == 1) {
                LOGI("initialize acl...");
                acl = !init_acl(optarg);
            }
            break;
        case 's':
            if (remote_num < MAX_REMOTE_NUM) {
                remote_addr[remote_num].host = optarg;
                remote_addr[remote_num++].port = NULL;
            }
            break;
        case 'p':
            remote_port = optarg;
            break;
        case 'l':
            local_port = optarg;
            break;
        case 'k':
            password = optarg;
            break;
        case 'f':
            pid_flags = 1;
            pid_path = optarg;
            break;
        case 't':
            timeout = optarg;
            break;
        case 'm':
            method = optarg;
            break;
        case 'c':
            conf_path = optarg;
            break;
        case 'i':
            iface = optarg;
            break;
        case 'b':
            local_addr = optarg;
            break;
        case 'a':
            user = optarg;
            break;
        case 'u':
            mode = TCP_AND_UDP;
            break;
        case 'v':
            verbose = 1;
            break;
        case 'A':
            auth = 1;
            break;
#ifdef ANDROID
        case 'V':
            vpn = 1;
            break;
#endif
        }
    }

    if (opterr) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (argc == 1) {
        if (conf_path == NULL) {
            conf_path = DEFAULT_CONF_PATH;
        }
    }
    if (conf_path != NULL) {
        jconf_t *conf = read_jconf(conf_path);
        if (remote_num == 0) {
            remote_num = conf->remote_num;
            for (i = 0; i < remote_num; i++) {
                remote_addr[i] = conf->remote_addr[i];
            }
        }
        if (remote_port == NULL) {
            remote_port = conf->remote_port;
        }
        if (local_addr == NULL) {
            local_addr = conf->local_addr;
        }
        if (local_port == NULL) {
            local_port = conf->local_port;
        }
        if (password == NULL) {
            password = conf->password;
        }
        if (method == NULL) {
            method = conf->method;
        }
        if (timeout == NULL) {
            timeout = conf->timeout;
        }
        if (fast_open == 0) {
            fast_open = conf->fast_open;
        }
#ifdef HAVE_SETRLIMIT
        if (nofile == 0) {
            nofile = conf->nofile;
        }
        /*
         * no need to check the return value here since we will show
         * the user an error message if setrlimit(2) fails
         */
        if (nofile) {
            if (verbose) {
                LOGI("setting NOFILE to %d", nofile);
            }
            set_nofile(nofile);
        }
#endif
    }

    if (remote_num == 0 || remote_port == NULL ||
        local_port == NULL || password == NULL) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (timeout == NULL) {
        timeout = "60";
    }

    if (local_addr == NULL) {
        local_addr = "127.0.0.1";
    }

    if (pid_flags) {
        USE_SYSLOG(argv[0]);
        daemonize(pid_path);
    }

    if (fast_open == 1) {
#ifdef TCP_FASTOPEN
        LOGI("using tcp fast open");
#else
        LOGE("tcp fast open is not supported by this environment");
#endif
    }

    if (auth) {
        LOGI("onetime authentication enabled");
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // Setup keys
    LOGI("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    // Setup proxy context
    struct listen_ctx listen_ctx;
    listen_ctx.remote_num = remote_num;
    listen_ctx.remote_addr = malloc(sizeof(struct sockaddr *) * remote_num);
    for (i = 0; i < remote_num; i++) {
        char *host = remote_addr[i].host;
        char *port = remote_addr[i].port == NULL ? remote_port :
            remote_addr[i].port;
        struct sockaddr_storage *storage = malloc(sizeof(struct sockaddr_storage));
        memset(storage, 0, sizeof(struct sockaddr_storage));
        if (get_sockaddr(host, port, storage, 1) == -1) {
            FATAL("failed to resolve the provided hostname");
        }
        listen_ctx.remote_addr[i] = (struct sockaddr *)storage;
    }
    listen_ctx.timeout = atoi(timeout);
    listen_ctx.iface = iface;
    listen_ctx.method = m;

    struct ev_loop *loop = EV_DEFAULT;

    // Setup socket
    int listenfd;
    listenfd = create_and_bind(local_addr, local_port);
    if (listenfd < 0) {
        FATAL("bind() error");
    }
    if (listen(listenfd, SOMAXCONN) == -1) {
        FATAL("listen() error");
    }
    setnonblocking(listenfd);

    listen_ctx.fd = listenfd;

    ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
    ev_io_start(loop, &listen_ctx.io);

    // Setup UDP
    if (mode != TCP_ONLY) {
        LOGI("udprelay enabled");
        init_udprelay(local_addr, local_port, listen_ctx.remote_addr[0],
                      get_sockaddr_len(listen_ctx.remote_addr[0]), m, listen_ctx.timeout, iface);
    }

    LOGI("listening at %s:%s", local_addr, local_port);

    // setuid
    if (user != NULL) {
        run_as(user);
    }

    // Init connections
    cork_dllist_init(&connections);

    // Enter the loop
    ev_run(loop, 0);

    if (verbose) {
        LOGI("closed gracefully");
    }

    // Clean up
    ev_io_stop(loop, &listen_ctx.io);
    free_connections(loop);

    if (mode != TCP_ONLY) {
        free_udprelay();
    }

    for (i = 0; i < remote_num; i++) {
        free(listen_ctx.remote_addr[i]);
    }
    free(listen_ctx.remote_addr);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    return 0;
}

#else

int start_ss_local_server(profile_t profile)
{
    srand(time(NULL));

    char *remote_host = profile.remote_host;
    char *local_addr = profile.local_addr;
    char *method = profile.method;
    char *password = profile.password;
    char *log = profile.log;
    int remote_port = profile.remote_port;
    int local_port = profile.local_port;
    int timeout = profile.timeout;

    mode = profile.mode;
    fast_open = profile.fast_open;
    verbose = profile.verbose;

    char local_port_str[16];
    char remote_port_str[16];
    sprintf(local_port_str, "%d", local_port);
    sprintf(remote_port_str, "%d", remote_port);

    USE_LOGFILE(log);

    if (profile.acl != NULL) {
        acl = !init_acl(profile.acl);
    }

    if (local_addr == NULL) {
        local_addr = "127.0.0.1";
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // Setup keys
    LOGI("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    struct sockaddr_storage *storage = malloc(sizeof(struct sockaddr_storage));
    memset(storage, 0, sizeof(struct sockaddr_storage));
    if (get_sockaddr(remote_host, remote_port_str, storage, 1) == -1) {
        return -1;
    }

    // Setup proxy context
    struct ev_loop *loop = EV_DEFAULT;
    struct listen_ctx listen_ctx;

    listen_ctx.remote_num = 1;
    listen_ctx.remote_addr = malloc(sizeof(struct sockaddr *));
    listen_ctx.remote_addr[0] = (struct sockaddr *)storage;
    listen_ctx.timeout = timeout;
    listen_ctx.method = m;
    listen_ctx.iface = NULL;

    // Setup socket
    int listenfd;
    listenfd = create_and_bind(local_addr, local_port_str);
    if (listenfd < 0) {
        ERROR("bind()");
        return -1;
    }
    if (listen(listenfd, SOMAXCONN) == -1) {
        ERROR("listen()");
        return -1;
    }
    setnonblocking(listenfd);

    listen_ctx.fd = listenfd;

    ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
    ev_io_start(loop, &listen_ctx.io);

    // Setup UDP
    if (mode != TCP_ONLY) {
        LOGI("udprelay enabled");
        struct sockaddr *addr = (struct sockaddr *)storage;
        init_udprelay(local_addr, local_port_str, addr,
                      get_sockaddr_len(addr), m, timeout, NULL);
    }

    LOGI("listening at %s:%s", local_addr, local_port_str);

    // Init connections
    cork_dllist_init(&connections);

    // Enter the loop
    ev_run(loop, 0);

    if (verbose) {
        LOGI("closed gracefully");
    }

    // Clean up
    if (mode != TCP_ONLY) {
        free_udprelay();
    }

    ev_io_stop(loop, &listen_ctx.io);
    free_connections(loop);
    close(listen_ctx.fd);

    free(listen_ctx.remote_addr);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    // cannot reach here
    return 0;
}
Beispiel #13
0
int main(int argc, char** argv) {
    if (argc < 4) {
        printf("Usage: %s ip port path2worker [shmsize]\n", argv[0]);
        return EXIT_FAILURE;
    }


    struct listener_s listener;
    listener.argc = argc;
    listener.argv = argv;
    listener.stop_moniter = 0;
    listener.shm_id = -1;
    listener.shm_size = -1;

    if (argc > 4) {
        listener.shm_size = atoi(argv[4]);
        if (listener.shm_size > 0) {
            listener.shm_id = shm_alloc(0, listener.shm_size);
        }
        if (listener.shm_id != -1) {
            shm_free(listener.shm_id); // lazy free
        }
    }


    // get loop
    struct ev_loop* loop = ev_default_loop(EVBACKEND_EPOLL);
    ev_set_userdata(loop, &listener);


    // setup signal handler
    struct ev_signal quitwatcher;
    struct ev_signal hupwatcher;
    ev_signal_init(&quitwatcher, listener_stop, SIGQUIT);
    ev_signal_init(&hupwatcher, restart_workers, SIGHUP);
    ev_signal_start(loop, &quitwatcher);
    ev_unref(loop); // 将loop中的watchercnt--,保证不停止此watcher的情况下loop也能正常退出
    ev_signal_start(loop, &hupwatcher);
    ev_unref(loop); // 将loop中的watchercnt--,保证不停止此watcher的情况下loop也能正常退出


    // get cpu number
    listener.worker_count = (int)sysconf(_SC_NPROCESSORS_CONF);


    // init workers
    struct worker_s workers[listener.worker_count];
    listener.workers = &workers[0];

    if (0 != setup_workers(loop, &listener)) {
        return EXIT_FAILURE;
    }


    int r = ev_run(loop, 0);


    ev_ref(loop);
    ev_signal_stop(loop, &quitwatcher);
    ev_ref(loop);
    ev_signal_stop(loop, &hupwatcher);


    return r;
}
Beispiel #14
0
int main(int argc, char **argv)
{

    int i, c;
    int pid_flags = 0;
    char *user = NULL;
    char *password = NULL;
    char *timeout = NULL;
    char *method = NULL;
    char *pid_path = NULL;
    char *conf_path = NULL;
    char *iface = NULL;

    int server_num = 0;
    const char *server_host[MAX_REMOTE_NUM];

    char * nameservers[MAX_DNS_NUM + 1];
    int nameserver_num = 0;

    int option_index = 0;
    static struct option long_options[] =
    {
        { "fast-open",          no_argument,       0, 0 },
        { "acl",                required_argument, 0, 0 },
        { "manager-address",    required_argument, 0, 0 },
        { 0,                    0,                 0, 0 }
    };

    opterr = 0;

    USE_TTY();

    while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:c:i:d:a:uUv",
                            long_options, &option_index)) != -1) {
        switch (c) {
        case 0:
            if (option_index == 0) {
                fast_open = 1;
            } else if (option_index == 1) {
                LOGI("initialize acl...");
                acl = !init_acl(optarg);
            } else if (option_index == 2) {
                manager_address = optarg;
            }
            break;
        case 's':
            if (server_num < MAX_REMOTE_NUM) {
                server_host[server_num++] = optarg;
            }
            break;
        case 'p':
            server_port = optarg;
            break;
        case 'k':
            password = optarg;
            break;
        case 'f':
            pid_flags = 1;
            pid_path = optarg;
            break;
        case 't':
            timeout = optarg;
            break;
        case 'm':
            method = optarg;
            break;
        case 'c':
            conf_path = optarg;
            break;
        case 'i':
            iface = optarg;
            break;
        case 'd':
            if (nameserver_num < MAX_DNS_NUM) {
                nameservers[nameserver_num++] = optarg;
            }
            break;
        case 'a':
            user = optarg;
            break;
        case 'u':
            mode = TCP_AND_UDP;
            break;
        case 'U':
            mode = UDP_ONLY;
            break;
        case 'v':
            verbose = 1;
            break;
        }
    }

    if (opterr) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (argc == 1) {
        if (conf_path == NULL) {
            conf_path = DEFAULT_CONF_PATH;
        }
    }

    if (conf_path != NULL) {
        jconf_t *conf = read_jconf(conf_path);
        if (server_num == 0) {
            server_num = conf->remote_num;
            for (i = 0; i < server_num; i++) {
                server_host[i] = conf->remote_addr[i].host;
            }
        }
        if (server_port == NULL) {
            server_port = conf->remote_port;
        }
        if (password == NULL) {
            password = conf->password;
        }
        if (method == NULL) {
            method = conf->method;
        }
        if (timeout == NULL) {
            timeout = conf->timeout;
        }
#ifdef TCP_FASTOPEN
        if (fast_open == 0) {
            fast_open = conf->fast_open;
        }
#endif
#ifdef HAVE_SETRLIMIT
        if (nofile == 0) {
            nofile = conf->nofile;
        }
        /*
         * no need to check the return value here since we will show
         * the user an error message if setrlimit(2) fails
         */
        if (nofile) {
            if (verbose) {
                LOGI("setting NOFILE to %d", nofile);
            }
            set_nofile(nofile);
        }
#endif
        if (conf->nameserver != NULL) {
            nameservers[nameserver_num++] = conf->nameserver;
        }
    }

    if (server_num == 0) {
        server_host[server_num++] = NULL;
    }

    if (server_num == 0 || server_port == NULL || password == NULL) {
        usage();
        exit(EXIT_FAILURE);
    }

    if (method == NULL) {
        method = "table";
    }

    if (timeout == NULL) {
        timeout = "60";
    }

    if (pid_flags) {
        USE_SYSLOG(argv[0]);
        daemonize(pid_path);
    }

    if (fast_open == 1) {
#ifdef TCP_FASTOPEN
        LOGI("using tcp fast open");
#else
        LOGE("tcp fast open is not supported by this environment");
#endif
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGCHLD, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // setup keys
    LOGI("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    // inilitialize ev loop
    struct ev_loop *loop = EV_DEFAULT;

    // setup udns
    if (nameserver_num == 0) {
#ifdef __MINGW32__
        nameservers[nameserver_num++] = "8.8.8.8";
        resolv_init(loop, nameservers, nameserver_num);
#else
        resolv_init(loop, NULL, 0);
#endif
    } else {
        resolv_init(loop, nameservers, nameserver_num);
    }

    for (int i = 0; i < nameserver_num; i++) {
        LOGI("using nameserver: %s", nameservers[i]);
    }

    // inilitialize listen context
    struct listen_ctx listen_ctx_list[server_num];

    // bind to each interface
    while (server_num > 0) {
        int index = --server_num;
        const char * host = server_host[index];

        if (mode != UDP_ONLY) {
            // Bind to port
            int listenfd;
            listenfd = create_and_bind(host, server_port);
            if (listenfd < 0) {
                FATAL("bind() error");
            }
            if (listen(listenfd, SSMAXCONN) == -1) {
                FATAL("listen() error");
            }
            setnonblocking(listenfd);
            struct listen_ctx *listen_ctx = &listen_ctx_list[index];

            // Setup proxy context
            listen_ctx->timeout = atoi(timeout);
            listen_ctx->fd = listenfd;
            listen_ctx->method = m;
            listen_ctx->iface = iface;
            listen_ctx->loop = loop;

            ev_io_init(&listen_ctx->io, accept_cb, listenfd, EV_READ);
            ev_io_start(loop, &listen_ctx->io);
        }

        // Setup UDP
        if (mode != TCP_ONLY) {
            init_udprelay(server_host[index], server_port, m, atoi(timeout),
                          iface);
        }

        LOGI("listening at %s:%s", host ? host : "*", server_port);

    }

    if (manager_address != NULL) {
        ev_timer_init(&stat_update_watcher, stat_update_cb, UPDATE_INTERVAL, UPDATE_INTERVAL);
        ev_timer_start(EV_DEFAULT, &stat_update_watcher);
    }

    if (mode != TCP_ONLY) {
        LOGI("UDP relay enabled");
    }

    if (mode == UDP_ONLY) {
        LOGI("TCP relay disabled");
    }

    // setuid
    if (user != NULL) {
        run_as(user);
    }

    // Init connections
    cork_dllist_init(&connections);

    // start ev loop
    ev_run(loop, 0);

    if (verbose) {
        LOGI("closed gracefully");
    }

    if (manager_address != NULL) {
        ev_timer_stop(EV_DEFAULT, &stat_update_watcher);
    }

    // Clean up
    for (int i = 0; i <= server_num; i++) {
        struct listen_ctx *listen_ctx = &listen_ctx_list[i];
        if (mode != UDP_ONLY) {
            ev_io_stop(loop, &listen_ctx->io);
            close(listen_ctx->fd);
        }
    }

    if (mode != UDP_ONLY) {
        free_connections(loop);
    }

    if (mode != TCP_ONLY) {
        free_udprelay();
    }

    resolv_shutdown(loop);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    return 0;
}
Beispiel #15
0
int main(int argc, char *argv[])
{
	struct sigaction sa;
	struct rlimit limit;
	int i, c, rc;
	int opt_foreground = 0, opt_allow_links = 0;
	enum startup_state opt_startup = startup_enable;
	extern char *optarg;
	extern int optind;
	struct ev_loop *loop;
	struct ev_io netlink_watcher;
	struct ev_signal sigterm_watcher;
	struct ev_signal sighup_watcher;
	struct ev_signal sigusr1_watcher;
	struct ev_signal sigusr2_watcher;
	struct ev_signal sigchld_watcher;

	/* Get params && set mode */
	while ((c = getopt(argc, argv, "flns:")) != -1) {
		switch (c) {
		case 'f':
			opt_foreground = 1;
			break;
		case 'l':
			opt_allow_links=1;
			break;
		case 'n':
			do_fork = 0;
			break;
		case 's':
			for (i=0; i<startup_INVALID; i++) {
				if (strncmp(optarg, startup_states[i],
					strlen(optarg)) == 0) {
					opt_startup = i;
					break;
				}
			}
			if (i == startup_INVALID) {
				fprintf(stderr, "unknown startup mode '%s'\n",
					optarg);
				usage();
			}
			break;
		default:
			usage();
		}
	}

	/* check for trailing command line following options */
	if (optind < argc) {
		usage();
	}

	if (opt_allow_links)
		set_allow_links(1);

	if (opt_foreground) {
		config.daemonize = D_FOREGROUND;
		set_aumessage_mode(MSG_STDERR, DBG_YES);
	} else {
		config.daemonize = D_BACKGROUND;
		set_aumessage_mode(MSG_SYSLOG, DBG_NO);
		(void) umask( umask( 077 ) | 022 );
	}

#ifndef DEBUG
	/* Make sure we are root */
	if (getuid() != 0) {
		fprintf(stderr, "You must be root to run this program.\n");
		return 4;
	}
#endif

	/* Register sighandlers */
	sa.sa_flags = 0 ;
	sigemptyset( &sa.sa_mask ) ;
	/* Ignore all signals by default */
	sa.sa_handler = SIG_IGN;
	for (i=1; i<NSIG; i++)
		sigaction( i, &sa, NULL );

	atexit(clean_exit);

	/* Raise the rlimits in case we're being started from a shell
         * with restrictions. Not a fatal error.  */
	limit.rlim_cur = RLIM_INFINITY;
	limit.rlim_max = RLIM_INFINITY;
	setrlimit(RLIMIT_FSIZE, &limit);
	setrlimit(RLIMIT_CPU, &limit);

	/* Load the Configuration File */
	if (load_config(&config, TEST_AUDITD))
		return 6;

	if (config.priority_boost != 0) {
		errno = 0;
		rc = nice((int)-config.priority_boost);
		if (rc == -1 && errno) {
			audit_msg(LOG_ERR, "Cannot change priority (%s)", 
					strerror(errno));
			return 1;
		}
	} 
	
	/* Daemonize or stay in foreground for debugging */
	if (config.daemonize == D_BACKGROUND) {
		if (become_daemon() != 0) {
			audit_msg(LOG_ERR, "Cannot daemonize (%s)",
				strerror(errno));
			tell_parent(FAILURE);
			return 1;
		} 
		openlog("auditd", LOG_PID, LOG_DAEMON);
	}

	/* Init netlink */
	if ((fd = audit_open()) < 0) {
        	audit_msg(LOG_ERR, "Cannot open netlink audit socket");
		tell_parent(FAILURE);
		return 1;
	}

	/* Init the event handler thread */
	write_pid_file();
	if (init_event(&config)) {
		if (pidfile)
			unlink(pidfile);
		tell_parent(FAILURE);
		return 1;
	}

	if (init_dispatcher(&config)) {
		if (pidfile)
			unlink(pidfile);
		tell_parent(FAILURE);
		return 1;
	}

	/* Get machine name ready for use */
	if (resolve_node(&config)) {
		if (pidfile)
			unlink(pidfile);
		tell_parent(FAILURE);
		return 1;
	}

	/* Write message to log that we are alive */
	{
		struct utsname ubuf;
		char start[DEFAULT_BUF_SZ];
		const char *fmt = audit_lookup_format((int)config.log_format);
		if (fmt == NULL)
			fmt = "UNKNOWN";
		if (uname(&ubuf) != 0) {
			if (pidfile)
				unlink(pidfile);
			tell_parent(FAILURE);
			return 1;
		}
		if (getsubj(subj))
			snprintf(start, sizeof(start),
				"auditd start, ver=%s format=%s "
			    "kernel=%.56s auid=%u pid=%d subj=%s res=success",
				VERSION, fmt, ubuf.release,
				audit_getloginuid(), getpid(), subj);
		else
			snprintf(start, sizeof(start),
				"auditd start, ver=%s format=%s "
				"kernel=%.56s auid=%u pid=%d res=success",
				VERSION, fmt, ubuf.release,
				audit_getloginuid(), getpid());
		if (send_audit_event(AUDIT_DAEMON_START, start)) {
        		audit_msg(LOG_ERR, "Cannot send start message");
			if (pidfile)
				unlink(pidfile);
			shutdown_dispatcher();
			tell_parent(FAILURE);
			return 1;
		}
	}

	/* Tell kernel not to kill us */
	avoid_oom_killer();

	/* let config manager init */
	init_config_manager();

	if (opt_startup != startup_nochange && (audit_is_enabled(fd) < 2) &&
	    audit_set_enabled(fd, (int)opt_startup) < 0) {
		char emsg[DEFAULT_BUF_SZ];
		if (*subj)
			snprintf(emsg, sizeof(emsg),
			"auditd error halt, auid=%u pid=%d subj=%s res=failed",
				audit_getloginuid(), getpid(), subj);
		else
			snprintf(emsg, sizeof(emsg),
				"auditd error halt, auid=%u pid=%d res=failed",
				audit_getloginuid(), getpid());
		stop = 1;
		send_audit_event(AUDIT_DAEMON_ABORT, emsg);
		audit_msg(LOG_ERR,
		"Unable to set initial audit startup state to '%s', exiting",
			startup_states[opt_startup]);
		close_down();
		if (pidfile)
			unlink(pidfile);
		shutdown_dispatcher();
		tell_parent(FAILURE);
		return 1;
	}

	/* Tell the kernel we are alive */
	if (audit_set_pid(fd, getpid(), WAIT_YES) < 0) {
		char emsg[DEFAULT_BUF_SZ];
		if (*subj)
			snprintf(emsg, sizeof(emsg),
			"auditd error halt, auid=%u pid=%d subj=%s res=failed",
				audit_getloginuid(), getpid(), subj);
		else
			snprintf(emsg, sizeof(emsg),
				"auditd error halt, auid=%u pid=%d res=failed",
				audit_getloginuid(), getpid());
		stop = 1;
		send_audit_event(AUDIT_DAEMON_ABORT, emsg);
		audit_msg(LOG_ERR, "Unable to set audit pid, exiting");
		close_down();
		if (pidfile)
			unlink(pidfile);
		shutdown_dispatcher();
		tell_parent(FAILURE);
		return 1;
	}

	/* Depending on value of opt_startup (-s) set initial audit state */
	loop = ev_default_loop (EVFLAG_NOENV);

	ev_io_init (&netlink_watcher, netlink_handler, fd, EV_READ);
	ev_io_start (loop, &netlink_watcher);

	ev_signal_init (&sigterm_watcher, term_handler, SIGTERM);
	ev_signal_start (loop, &sigterm_watcher);

	ev_signal_init (&sighup_watcher, hup_handler, SIGHUP);
	ev_signal_start (loop, &sighup_watcher);

	ev_signal_init (&sigusr1_watcher, user1_handler, SIGUSR1);
	ev_signal_start (loop, &sigusr1_watcher);

	ev_signal_init (&sigusr2_watcher, user2_handler, SIGUSR2);
	ev_signal_start (loop, &sigusr2_watcher);

	ev_signal_init (&sigchld_watcher, child_handler, SIGCHLD);
	ev_signal_start (loop, &sigchld_watcher);

	if (auditd_tcp_listen_init (loop, &config)) {
		char emsg[DEFAULT_BUF_SZ];
		if (*subj)
			snprintf(emsg, sizeof(emsg),
			"auditd error halt, auid=%u pid=%d subj=%s res=failed",
				audit_getloginuid(), getpid(), subj);
		else
			snprintf(emsg, sizeof(emsg),
				"auditd error halt, auid=%u pid=%d res=failed",
				audit_getloginuid(), getpid());
		stop = 1;
		send_audit_event(AUDIT_DAEMON_ABORT, emsg);
		tell_parent(FAILURE);
	} else {
		/* Now tell parent that everything went OK */
		tell_parent(SUCCESS);
		audit_msg(LOG_NOTICE,
	    "Init complete, auditd %s listening for events (startup state %s)",
			VERSION,
			startup_states[opt_startup]);
	}

	/* Parent should be gone by now...   */
	if (do_fork)
		close(init_pipe[1]);

	// Init complete, start event loop
	if (!stop)
		ev_loop (loop, 0);

	auditd_tcp_listen_uninit (loop, &config);

	// Tear down IO watchers Part 1
	ev_signal_stop (loop, &sighup_watcher);
	ev_signal_stop (loop, &sigusr1_watcher);
	ev_signal_stop (loop, &sigusr2_watcher);
	ev_signal_stop (loop, &sigterm_watcher);

	/* Write message to log that we are going down */
	rc = audit_request_signal_info(fd);
	if (rc > 0) {
		struct audit_reply trep;

		rc = get_reply(fd, &trep, rc);
		if (rc > 0) {
			char txt[MAX_AUDIT_MESSAGE_LENGTH];
			snprintf(txt, sizeof(txt),
				"auditd normal halt, sending auid=%u "
				"pid=%d subj=%s res=success",
				 trep.signal_info->uid,
				 trep.signal_info->pid, 
				 trep.signal_info->ctx); 
			send_audit_event(AUDIT_DAEMON_END, txt);
		} 
	} 
	if (rc <= 0)
		send_audit_event(AUDIT_DAEMON_END, 
				"auditd normal halt, sending auid=? "
				"pid=? subj=? res=success");
	free(rep);

	// Tear down IO watchers Part 2
	ev_io_stop (loop, &netlink_watcher);

	// Give DAEMON_END event a little time to be sent in case
	// of remote logging
	usleep(10000); // 10 milliseconds
	shutdown_dispatcher();

	// Tear down IO watchers Part 3
	ev_signal_stop (loop, &sigchld_watcher);

	close_down();
	free_config(&config);
	ev_default_destroy();

	return 0;
}
Beispiel #16
0
static inline void wx_break_loop(struct ev_loop* loop, struct ev_signal* quit_watcher, int revents) {
    ev_signal_stop(loop, quit_watcher);
    ev_io_stop(loop, &wx_worker.accept_watcher);
}
Beispiel #17
0
/**
 * lws_context_destroy() - Destroy the websocket context
 * @context:	Websocket context
 *
 *	This function closes any active connections and then frees the
 *	context.  After calling this, any further use of the context is
 *	undefined.
 */
LWS_VISIBLE void
lws_context_destroy(struct lws_context *context)
{
	const struct lws_protocols *protocol = NULL;
	struct lws wsi;
	int n;

	lwsl_notice("%s\n", __func__);

	if (!context)
		return;

	memset(&wsi, 0, sizeof(wsi));
	wsi.context = context;

#ifdef LWS_LATENCY
	if (context->worst_latency_info[0])
		lwsl_notice("Worst latency: %s\n", context->worst_latency_info);
#endif

	for (n = 0; n < context->fds_count; n++) {
		struct lws *wsi = wsi_from_fd(context, context->fds[n].fd);
		if (!wsi)
			continue;
		lws_close_free_wsi(wsi, LWS_CLOSE_STATUS_NOSTATUS_CONTEXT_DESTROY
				/* no protocol close */);
		n--;
	}

	/*
	 * give all extensions a chance to clean up any per-context
	 * allocations they might have made
	 */

	n = lws_ext_cb_all_exts(context, NULL,
			LWS_EXT_CALLBACK_SERVER_CONTEXT_DESTRUCT, NULL, 0);

	n = lws_ext_cb_all_exts(context, NULL,
			LWS_EXT_CALLBACK_CLIENT_CONTEXT_DESTRUCT, NULL, 0);

	/*
	 * inform all the protocols that they are done and will have no more
	 * callbacks
	 */
	protocol = context->protocols;
	if (protocol) {
		while (protocol->callback) {
			protocol->callback(&wsi,
					   LWS_CALLBACK_PROTOCOL_DESTROY,
					   NULL, NULL, 0);
			protocol++;
		}
	}
#ifdef LWS_USE_LIBEV
	ev_io_stop(context->io_loop, &context->w_accept.watcher);
	if(context->use_ev_sigint)
		ev_signal_stop(context->io_loop, &context->w_sigint.watcher);
#endif /* LWS_USE_LIBEV */

	lws_plat_context_early_destroy(context);
	lws_ssl_context_destroy(context);
	if (context->fds)
		lws_free(context->fds);
	if (context->ah_pool)
		lws_free(context->ah_pool);
	if (context->http_header_data)
		lws_free(context->http_header_data);

	lws_plat_context_late_destroy(context);

	lws_free(context);
}
Beispiel #18
0
static void signal_stop (void *impl, flux_watcher_t *w)
{
    assert (w->signature == SIGNAL_SIG);
    ev_signal_stop (w->r->loop, (ev_signal *)impl);
}
Beispiel #19
0
void Signal::stop() {
    ev_signal_stop(loop->base, &ev);
}
Beispiel #20
0
int start_ss_local_server(profile_t profile)
{
    srand(time(NULL));

    char *remote_host = profile.remote_host;
    char *local_addr = profile.local_addr;
    char *method = profile.method;
    char *password = profile.password;
    char *log = profile.log;
    int remote_port = profile.remote_port;
    int local_port = profile.local_port;
    int timeout = profile.timeout;

    mode = profile.mode;
    fast_open = profile.fast_open;
    verbose = profile.verbose;

    char local_port_str[16];
    char remote_port_str[16];
    sprintf(local_port_str, "%d", local_port);
    sprintf(remote_port_str, "%d", remote_port);

    USE_LOGFILE(log);

    if (profile.acl != NULL) {
        acl = !init_acl(profile.acl);
    }

    if (local_addr == NULL) {
        local_addr = "127.0.0.1";
    }

#ifdef __MINGW32__
    winsock_init();
#else
    // ignore SIGPIPE
    signal(SIGPIPE, SIG_IGN);
    signal(SIGABRT, SIG_IGN);
#endif

    struct ev_signal sigint_watcher;
    struct ev_signal sigterm_watcher;
    ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
    ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
    ev_signal_start(EV_DEFAULT, &sigint_watcher);
    ev_signal_start(EV_DEFAULT, &sigterm_watcher);

    // Setup keys
    LOGI("initialize ciphers... %s", method);
    int m = enc_init(password, method);

    struct sockaddr_storage *storage = malloc(sizeof(struct sockaddr_storage));
    memset(storage, 0, sizeof(struct sockaddr_storage));
    if (get_sockaddr(remote_host, remote_port_str, storage, 1) == -1) {
        return -1;
    }

    // Setup proxy context
    struct ev_loop *loop = EV_DEFAULT;
    struct listen_ctx listen_ctx;

    listen_ctx.remote_num = 1;
    listen_ctx.remote_addr = malloc(sizeof(struct sockaddr *));
    listen_ctx.remote_addr[0] = (struct sockaddr *)storage;
    listen_ctx.timeout = timeout;
    listen_ctx.method = m;
    listen_ctx.iface = NULL;

    // Setup socket
    int listenfd;
    listenfd = create_and_bind(local_addr, local_port_str);
    if (listenfd < 0) {
        ERROR("bind()");
        return -1;
    }
    if (listen(listenfd, SOMAXCONN) == -1) {
        ERROR("listen()");
        return -1;
    }
    setnonblocking(listenfd);

    listen_ctx.fd = listenfd;

    ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
    ev_io_start(loop, &listen_ctx.io);

    // Setup UDP
    if (mode != TCP_ONLY) {
        LOGI("udprelay enabled");
        struct sockaddr *addr = (struct sockaddr *)storage;
        init_udprelay(local_addr, local_port_str, addr,
                      get_sockaddr_len(addr), m, timeout, NULL);
    }

    LOGI("listening at %s:%s", local_addr, local_port_str);

    // Init connections
    cork_dllist_init(&connections);

    // Enter the loop
    ev_run(loop, 0);

    if (verbose) {
        LOGI("closed gracefully");
    }

    // Clean up
    if (mode != TCP_ONLY) {
        free_udprelay();
    }

    ev_io_stop(loop, &listen_ctx.io);
    free_connections(loop);
    close(listen_ctx.fd);

    free(listen_ctx.remote_addr);

#ifdef __MINGW32__
    winsock_cleanup();
#endif

    ev_signal_stop(EV_DEFAULT, &sigint_watcher);
    ev_signal_stop(EV_DEFAULT, &sigterm_watcher);

    // cannot reach here
    return 0;
}