void ext2_xip_verify_sb(struct super_block *sb)
{
	struct ext2_sb_info *sbi = EXT2_SB(sb);

	if ((sbi->s_mount_opt & EXT2_MOUNT_XIP) &&
	    !sb->s_bdev->bd_disk->fops->direct_access) {
		sbi->s_mount_opt &= (~EXT2_MOUNT_XIP);
		ext2_warning(sb, __func__,
			     "ignoring xip option - not supported by bdev");
	}
}
Beispiel #2
0
/* Free node NP; the on disk copy has already been synced with
   diskfs_node_update (where NP->dn_stat.st_mode was 0).  It's
   mode used to be OLD_MODE.  */
void
diskfs_free_node (struct node *np, mode_t old_mode)
{
  char *bh;
  unsigned long block_group;
  unsigned long bit;
  struct ext2_group_desc *gdp;
  ino_t inum = np->cache_id;

  assert (!diskfs_readonly);

  ext2_debug ("freeing inode %u", inum);

  pthread_spin_lock (&global_lock);

  if (inum < EXT2_FIRST_INO (sblock) || inum > sblock->s_inodes_count)
    {
      ext2_error ("reserved inode or nonexistent inode: %Ld", inum);
      pthread_spin_unlock (&global_lock);
      return;
    }

  block_group = (inum - 1) / sblock->s_inodes_per_group;
  bit = (inum - 1) % sblock->s_inodes_per_group;

  gdp = group_desc (block_group);
  bh = disk_cache_block_ref (gdp->bg_inode_bitmap);

  if (!clear_bit (bit, bh))
    ext2_warning ("bit already cleared for inode %Ld", inum);
  else
    {
      disk_cache_block_ref_ptr (bh);
      record_global_poke (bh);

      gdp->bg_free_inodes_count++;
      if (S_ISDIR (old_mode))
	gdp->bg_used_dirs_count--;
      disk_cache_block_ref_ptr (gdp);
      record_global_poke (gdp);

      sblock->s_free_inodes_count++;
    }

  disk_cache_block_deref (bh);
  sblock_dirty = 1;
  pthread_spin_unlock (&global_lock);
  alloc_sync(0);
}
Beispiel #3
0
static int ext2_block_to_path(struct inode *inode,
                              long i_block, int offsets[4], int *boundary)
{
    int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
    int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
    const long direct_blocks = EXT2_NDIR_BLOCKS,
               indirect_blocks = ptrs,
               double_blocks = (1 << (ptrs_bits * 2));
    int n = 0;
    int final = 0;

    if (i_block < 0) {
        ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
    } else if (i_block < direct_blocks) {
        offsets[n++] = i_block;
        final = direct_blocks;
Beispiel #4
0
static int ext2_block_to_path(struct inode *inode,
			      long i_block, int offsets[4], int *boundary)
{
        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);             /* max no.of logic block pointers in a block, say 1024 for 4k block */
        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);   /* no.of bit for above, say 10 */
        const long direct_blocks = EXT2_NDIR_BLOCKS,		 /*say 12*/
          indirect_blocks = ptrs,				 /*say 1024*/
          double_blocks = (1 << (ptrs_bits * 2));		 /*say 1024 * 1024*/
        int n = 0;
        int final = 0;

	if (i_block < 0) {
		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
Beispiel #5
0
static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])
{
	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT2_NDIR_BLOCKS,
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;

	if (i_block < 0) {
		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
		offsets[n++] = EXT2_IND_BLOCK;
		offsets[n++] = i_block;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
		offsets[n++] = EXT2_DIND_BLOCK;
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
Beispiel #6
0
void ext2_update_dynamic_rev(struct super_block *sb)
{
	struct ext2_super_block *es = EXT2_SB(sb)->s_es;

	if (le32_to_cpu(es->s_rev_level) > EXT2_GOOD_OLD_REV)
		return;

	ext2_warning(sb, __func__,
		     "updating to rev %d because of new feature flag, "
		     "running e2fsck is recommended",
		     EXT2_DYNAMIC_REV);

	es->s_first_ino = cpu_to_le32(EXT2_GOOD_OLD_FIRST_INO);
	es->s_inode_size = cpu_to_le16(EXT2_GOOD_OLD_INODE_SIZE);
	es->s_rev_level = cpu_to_le32(EXT2_DYNAMIC_REV);
	/* leave es->s_feature_*compat flags alone */
	/* es->s_uuid will be set by e2fsck if empty */

	/*
	 * The rest of the superblock fields should be zero, and if not it
	 * means they are likely already in use, so leave them alone.  We
	 * can leave it up to e2fsck to clean up any inconsistencies there.
	 */
}
Beispiel #7
0
static int ext2_fill_super(struct super_block *sb, void *data, int silent)
{
	struct buffer_head * bh;
	struct ext2_sb_info * sbi;
	struct ext2_super_block * es;
	struct inode *root;
	unsigned long block;
	unsigned long sb_block = get_sb_block(&data);
	unsigned long logic_sb_block;
	unsigned long offset = 0;
	unsigned long def_mount_opts;
	long ret = -EINVAL;
	int blocksize = BLOCK_SIZE;
	int db_count;
	int i, j;
	__le32 features;
	int err;

	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;

	sbi->s_blockgroup_lock =
		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
	if (!sbi->s_blockgroup_lock) {
		kfree(sbi);
		return -ENOMEM;
	}
	sb->s_fs_info = sbi;
	sbi->s_sb_block = sb_block;

	/*
	 * See what the current blocksize for the device is, and
	 * use that as the blocksize.  Otherwise (or if the blocksize
	 * is smaller than the default) use the default.
	 * This is important for devices that have a hardware
	 * sectorsize that is larger than the default.
	 */
	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
	if (!blocksize) {
		printk ("EXT2-fs: unable to set blocksize\n");
		goto failed_sbi;
	}

	/*
	 * If the superblock doesn't start on a hardware sector boundary,
	 * calculate the offset.  
	 */
	if (blocksize != BLOCK_SIZE) {
		logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;
		offset = (sb_block*BLOCK_SIZE) % blocksize;
	} else {
		logic_sb_block = sb_block;
	}

	if (!(bh = sb_bread(sb, logic_sb_block))) {
		printk ("EXT2-fs: unable to read superblock\n");
		goto failed_sbi;
	}
	/*
	 * Note: s_es must be initialized as soon as possible because
	 *       some ext2 macro-instructions depend on its value
	 */
	es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
	sbi->s_es = es;
	sb->s_magic = le16_to_cpu(es->s_magic);

	if (sb->s_magic != EXT2_SUPER_MAGIC)
		goto cantfind_ext2;

	/* Set defaults before we parse the mount options */
	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
	if (def_mount_opts & EXT2_DEFM_DEBUG)
		set_opt(sbi->s_mount_opt, DEBUG);
	if (def_mount_opts & EXT2_DEFM_BSDGROUPS)
		set_opt(sbi->s_mount_opt, GRPID);
	if (def_mount_opts & EXT2_DEFM_UID16)
		set_opt(sbi->s_mount_opt, NO_UID32);
#ifdef CONFIG_EXT2_FS_XATTR
	if (def_mount_opts & EXT2_DEFM_XATTR_USER)
		set_opt(sbi->s_mount_opt, XATTR_USER);
#endif
#ifdef CONFIG_EXT2_FS_POSIX_ACL
	if (def_mount_opts & EXT2_DEFM_ACL)
		set_opt(sbi->s_mount_opt, POSIX_ACL);
#endif
	
	if (le16_to_cpu(sbi->s_es->s_errors) == EXT2_ERRORS_PANIC)
		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT2_ERRORS_CONTINUE)
		set_opt(sbi->s_mount_opt, ERRORS_CONT);
	else
		set_opt(sbi->s_mount_opt, ERRORS_RO);

	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
	
	set_opt(sbi->s_mount_opt, RESERVATION);

	if (!parse_options ((char *) data, sbi))
		goto failed_mount;

	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		((EXT2_SB(sb)->s_mount_opt & EXT2_MOUNT_POSIX_ACL) ?
		 MS_POSIXACL : 0);

	ext2_xip_verify_sb(sb); /* see if bdev supports xip, unset
				    EXT2_MOUNT_XIP if not */

	if (le32_to_cpu(es->s_rev_level) == EXT2_GOOD_OLD_REV &&
	    (EXT2_HAS_COMPAT_FEATURE(sb, ~0U) ||
	     EXT2_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
	     EXT2_HAS_INCOMPAT_FEATURE(sb, ~0U)))
		printk("EXT2-fs warning: feature flags set on rev 0 fs, "
		       "running e2fsck is recommended\n");
	/*
	 * Check feature flags regardless of the revision level, since we
	 * previously didn't change the revision level when setting the flags,
	 * so there is a chance incompat flags are set on a rev 0 filesystem.
	 */
	features = EXT2_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP);
	if (features) {
		printk("EXT2-fs: %s: couldn't mount because of "
		       "unsupported optional features (%x).\n",
		       sb->s_id, le32_to_cpu(features));
		goto failed_mount;
	}
	if (!(sb->s_flags & MS_RDONLY) &&
	    (features = EXT2_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))){
		printk("EXT2-fs: %s: couldn't mount RDWR because of "
		       "unsupported optional features (%x).\n",
		       sb->s_id, le32_to_cpu(features));
		goto failed_mount;
	}

	blocksize = BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);

	if (ext2_use_xip(sb) && blocksize != PAGE_SIZE) {
		if (!silent)
			printk("XIP: Unsupported blocksize\n");
		goto failed_mount;
	}

	/* If the blocksize doesn't match, re-read the thing.. */
	if (sb->s_blocksize != blocksize) {
		brelse(bh);

		if (!sb_set_blocksize(sb, blocksize)) {
			printk(KERN_ERR "EXT2-fs: blocksize too small for device.\n");
			goto failed_sbi;
		}

		logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;
		offset = (sb_block*BLOCK_SIZE) % blocksize;
		bh = sb_bread(sb, logic_sb_block);
		if(!bh) {
			printk("EXT2-fs: Couldn't read superblock on "
			       "2nd try.\n");
			goto failed_sbi;
		}
		es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
		sbi->s_es = es;
		if (es->s_magic != cpu_to_le16(EXT2_SUPER_MAGIC)) {
			printk ("EXT2-fs: Magic mismatch, very weird !\n");
			goto failed_mount;
		}
	}

	sb->s_maxbytes = ext2_max_size(sb->s_blocksize_bits);

	if (le32_to_cpu(es->s_rev_level) == EXT2_GOOD_OLD_REV) {
		sbi->s_inode_size = EXT2_GOOD_OLD_INODE_SIZE;
		sbi->s_first_ino = EXT2_GOOD_OLD_FIRST_INO;
	} else {
		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
		if ((sbi->s_inode_size < EXT2_GOOD_OLD_INODE_SIZE) ||
		    !is_power_of_2(sbi->s_inode_size) ||
		    (sbi->s_inode_size > blocksize)) {
			printk ("EXT2-fs: unsupported inode size: %d\n",
				sbi->s_inode_size);
			goto failed_mount;
		}
	}

	sbi->s_frag_size = EXT2_MIN_FRAG_SIZE <<
				   le32_to_cpu(es->s_log_frag_size);
	if (sbi->s_frag_size == 0)
		goto cantfind_ext2;
	sbi->s_frags_per_block = sb->s_blocksize / sbi->s_frag_size;

	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
	sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);

	if (EXT2_INODE_SIZE(sb) == 0)
		goto cantfind_ext2;
	sbi->s_inodes_per_block = sb->s_blocksize / EXT2_INODE_SIZE(sb);
	if (sbi->s_inodes_per_block == 0 || sbi->s_inodes_per_group == 0)
		goto cantfind_ext2;
	sbi->s_itb_per_group = sbi->s_inodes_per_group /
					sbi->s_inodes_per_block;
	sbi->s_desc_per_block = sb->s_blocksize /
					sizeof (struct ext2_group_desc);
	sbi->s_sbh = bh;
	sbi->s_mount_state = le16_to_cpu(es->s_state);
	sbi->s_addr_per_block_bits =
		ilog2 (EXT2_ADDR_PER_BLOCK(sb));
	sbi->s_desc_per_block_bits =
		ilog2 (EXT2_DESC_PER_BLOCK(sb));

	if (sb->s_magic != EXT2_SUPER_MAGIC)
		goto cantfind_ext2;

	if (sb->s_blocksize != bh->b_size) {
		if (!silent)
			printk ("VFS: Unsupported blocksize on dev "
				"%s.\n", sb->s_id);
		goto failed_mount;
	}

	if (sb->s_blocksize != sbi->s_frag_size) {
		printk ("EXT2-fs: fragsize %lu != blocksize %lu (not supported yet)\n",
			sbi->s_frag_size, sb->s_blocksize);
		goto failed_mount;
	}

	if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #blocks per group too big: %lu\n",
			sbi->s_blocks_per_group);
		goto failed_mount;
	}
	if (sbi->s_frags_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #fragments per group too big: %lu\n",
			sbi->s_frags_per_group);
		goto failed_mount;
	}
	if (sbi->s_inodes_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #inodes per group too big: %lu\n",
			sbi->s_inodes_per_group);
		goto failed_mount;
	}

	if (EXT2_BLOCKS_PER_GROUP(sb) == 0)
		goto cantfind_ext2;
 	sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) -
 				le32_to_cpu(es->s_first_data_block) - 1)
 					/ EXT2_BLOCKS_PER_GROUP(sb)) + 1;
	db_count = (sbi->s_groups_count + EXT2_DESC_PER_BLOCK(sb) - 1) /
		   EXT2_DESC_PER_BLOCK(sb);
	sbi->s_group_desc = kmalloc (db_count * sizeof (struct buffer_head *), GFP_KERNEL);
	if (sbi->s_group_desc == NULL) {
		printk ("EXT2-fs: not enough memory\n");
		goto failed_mount;
	}
	bgl_lock_init(sbi->s_blockgroup_lock);
	sbi->s_debts = kcalloc(sbi->s_groups_count, sizeof(*sbi->s_debts), GFP_KERNEL);
	if (!sbi->s_debts) {
		printk ("EXT2-fs: not enough memory\n");
		goto failed_mount_group_desc;
	}
	for (i = 0; i < db_count; i++) {
		block = descriptor_loc(sb, logic_sb_block, i);
		sbi->s_group_desc[i] = sb_bread(sb, block);
		if (!sbi->s_group_desc[i]) {
			for (j = 0; j < i; j++)
				brelse (sbi->s_group_desc[j]);
			printk ("EXT2-fs: unable to read group descriptors\n");
			goto failed_mount_group_desc;
		}
	}
	if (!ext2_check_descriptors (sb)) {
		printk ("EXT2-fs: group descriptors corrupted!\n");
		goto failed_mount2;
	}
	sbi->s_gdb_count = db_count;
	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
	spin_lock_init(&sbi->s_next_gen_lock);

	/* per fileystem reservation list head & lock */
	spin_lock_init(&sbi->s_rsv_window_lock);
	sbi->s_rsv_window_root = RB_ROOT;
	/*
	 * Add a single, static dummy reservation to the start of the
	 * reservation window list --- it gives us a placeholder for
	 * append-at-start-of-list which makes the allocation logic
	 * _much_ simpler.
	 */
	sbi->s_rsv_window_head.rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
	sbi->s_rsv_window_head.rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
	sbi->s_rsv_window_head.rsv_alloc_hit = 0;
	sbi->s_rsv_window_head.rsv_goal_size = 0;
	ext2_rsv_window_add(sb, &sbi->s_rsv_window_head);

	err = percpu_counter_init(&sbi->s_freeblocks_counter,
				ext2_count_free_blocks(sb));
	if (!err) {
		err = percpu_counter_init(&sbi->s_freeinodes_counter,
				ext2_count_free_inodes(sb));
	}
	if (!err) {
		err = percpu_counter_init(&sbi->s_dirs_counter,
				ext2_count_dirs(sb));
	}
	if (err) {
		printk(KERN_ERR "EXT2-fs: insufficient memory\n");
		goto failed_mount3;
	}
	/*
	 * set up enough so that it can read an inode
	 */
	sb->s_op = &ext2_sops;
	sb->s_export_op = &ext2_export_ops;
	sb->s_xattr = ext2_xattr_handlers;
	root = ext2_iget(sb, EXT2_ROOT_INO);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto failed_mount3;
	}
	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
		iput(root);
		printk(KERN_ERR "EXT2-fs: corrupt root inode, run e2fsck\n");
		goto failed_mount3;
	}

	sb->s_root = d_alloc_root(root);
	if (!sb->s_root) {
		iput(root);
		printk(KERN_ERR "EXT2-fs: get root inode failed\n");
		ret = -ENOMEM;
		goto failed_mount3;
	}
	if (EXT2_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL))
		ext2_warning(sb, __func__,
			"mounting ext3 filesystem as ext2");
	ext2_setup_super (sb, es, sb->s_flags & MS_RDONLY);
	return 0;

cantfind_ext2:
	if (!silent)
		printk("VFS: Can't find an ext2 filesystem on dev %s.\n",
		       sb->s_id);
	goto failed_mount;
failed_mount3:
	percpu_counter_destroy(&sbi->s_freeblocks_counter);
	percpu_counter_destroy(&sbi->s_freeinodes_counter);
	percpu_counter_destroy(&sbi->s_dirs_counter);
failed_mount2:
	for (i = 0; i < db_count; i++)
		brelse(sbi->s_group_desc[i]);
failed_mount_group_desc:
	kfree(sbi->s_group_desc);
	kfree(sbi->s_debts);
failed_mount:
	brelse(bh);
failed_sbi:
	sb->s_fs_info = NULL;
	kfree(sbi->s_blockgroup_lock);
	kfree(sbi);
	return ret;
}
Beispiel #8
0
static int ext2_remount (struct super_block * sb, int * flags, char * data)
{
	struct ext2_sb_info * sbi = EXT2_SB(sb);
	struct ext2_super_block * es;
	unsigned long old_mount_opt = sbi->s_mount_opt;
	struct ext2_mount_options old_opts;
	unsigned long old_sb_flags;
	int err;

	lock_kernel();

	/* Store the old options */
	old_sb_flags = sb->s_flags;
	old_opts.s_mount_opt = sbi->s_mount_opt;
	old_opts.s_resuid = sbi->s_resuid;
	old_opts.s_resgid = sbi->s_resgid;

	/*
	 * Allow the "check" option to be passed as a remount option.
	 */
	if (!parse_options (data, sbi)) {
		err = -EINVAL;
		goto restore_opts;
	}

	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		((sbi->s_mount_opt & EXT2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);

	ext2_xip_verify_sb(sb); /* see if bdev supports xip, unset
				    EXT2_MOUNT_XIP if not */

	if ((ext2_use_xip(sb)) && (sb->s_blocksize != PAGE_SIZE)) {
		printk("XIP: Unsupported blocksize\n");
		err = -EINVAL;
		goto restore_opts;
	}

	es = sbi->s_es;
	if (((sbi->s_mount_opt & EXT2_MOUNT_XIP) !=
	    (old_mount_opt & EXT2_MOUNT_XIP)) &&
	    invalidate_inodes(sb)) {
		ext2_warning(sb, __func__, "refusing change of xip flag "
			     "with busy inodes while remounting");
		sbi->s_mount_opt &= ~EXT2_MOUNT_XIP;
		sbi->s_mount_opt |= old_mount_opt & EXT2_MOUNT_XIP;
	}
	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
		unlock_kernel();
		return 0;
	}
	if (*flags & MS_RDONLY) {
		if (le16_to_cpu(es->s_state) & EXT2_VALID_FS ||
		    !(sbi->s_mount_state & EXT2_VALID_FS)) {
			unlock_kernel();
			return 0;
		}
		/*
		 * OK, we are remounting a valid rw partition rdonly, so set
		 * the rdonly flag and then mark the partition as valid again.
		 */
		es->s_state = cpu_to_le16(sbi->s_mount_state);
		es->s_mtime = cpu_to_le32(get_seconds());
	} else {
		__le32 ret = EXT2_HAS_RO_COMPAT_FEATURE(sb,
					       ~EXT2_FEATURE_RO_COMPAT_SUPP);
		if (ret) {
			printk("EXT2-fs: %s: couldn't remount RDWR because of "
			       "unsupported optional features (%x).\n",
			       sb->s_id, le32_to_cpu(ret));
			err = -EROFS;
			goto restore_opts;
		}
		/*
		 * Mounting a RDONLY partition read-write, so reread and
		 * store the current valid flag.  (It may have been changed
		 * by e2fsck since we originally mounted the partition.)
		 */
		sbi->s_mount_state = le16_to_cpu(es->s_state);
		if (!ext2_setup_super (sb, es, 0))
			sb->s_flags &= ~MS_RDONLY;
	}
	ext2_sync_super(sb, es);
	unlock_kernel();
	return 0;
restore_opts:
	sbi->s_mount_opt = old_opts.s_mount_opt;
	sbi->s_resuid = old_opts.s_resuid;
	sbi->s_resgid = old_opts.s_resgid;
	sb->s_flags = old_sb_flags;
	unlock_kernel();
	return err;
}
Beispiel #9
0
/*
 * There are two policies for allocating an inode.  If the new inode is
 * a directory, then a forward search is made for a block group with both
 * free space and a low directory-to-inode ratio; if that fails, then of
 * the groups with above-average free space, that group with the fewest
 * directories already is chosen.
 *
 * For other inodes, search forward from the parent directory\'s block
 * group to find a free inode.
 */
ino_t
ext2_alloc_inode (ino_t dir_inum, mode_t mode)
{
  char *bh = NULL;
  int i, j, avefreei;
  ino_t inum;
  struct ext2_group_desc *gdp;
  struct ext2_group_desc *tmp;

  pthread_spin_lock (&global_lock);

repeat:
  assert (bh == NULL);
  gdp = NULL;
  i = 0;

  if (S_ISDIR (mode))
    {
      avefreei = sblock->s_free_inodes_count / groups_count;

/* I am not yet convinced that this next bit is necessary.
      i = inode_group_num(dir_inum);
      for (j = 0; j < groups_count; j++)
	{
	  tmp = group_desc (i);
	  if ((tmp->bg_used_dirs_count << 8) < tmp->bg_free_inodes_count)
	    {
	      gdp = tmp;
	      break;
	    }
	  else
	    i = ++i % groups_count;
	}
 */

      if (!gdp)
	{
	  for (j = 0; j < groups_count; j++)
	    {
	      tmp = group_desc (j);
	      if (tmp->bg_free_inodes_count
		  && tmp->bg_free_inodes_count >= avefreei)
		{
		  if (!gdp ||
		      (tmp->bg_free_blocks_count > gdp->bg_free_blocks_count))
		    {
		      i = j;
		      gdp = tmp;
		    }
		}
	    }
	}
    }
  else
    {
      /*
       * Try to place the inode in its parent directory
       */
      i = inode_group_num(dir_inum);
      tmp = group_desc (i);
      if (tmp->bg_free_inodes_count)
	gdp = tmp;
      else
	{
	  /*
	   * Use a quadratic hash to find a group with a
	   * free inode
	   */
	  for (j = 1; j < groups_count; j <<= 1)
	    {
	      i += j;
	      if (i >= groups_count)
		i -= groups_count;
	      tmp = group_desc (i);
	      if (tmp->bg_free_inodes_count)
		{
		  gdp = tmp;
		  break;
		}
	    }
	}
      if (!gdp)
	{
	  /*
	   * That failed: try linear search for a free inode
	   */
	  i = inode_group_num(dir_inum) + 1;
	  for (j = 2; j < groups_count; j++)
	    {
	      if (++i >= groups_count)
		i = 0;
	      tmp = group_desc (i);
	      if (tmp->bg_free_inodes_count)
		{
		  gdp = tmp;
		  break;
		}
	    }
	}
    }

  if (!gdp)
    {
      pthread_spin_unlock (&global_lock);
      return 0;
    }

  bh = disk_cache_block_ref (gdp->bg_inode_bitmap);
  if ((inum =
       find_first_zero_bit ((unsigned long *) bh, sblock->s_inodes_per_group))
      < sblock->s_inodes_per_group)
    {
      if (set_bit (inum, bh))
	{
	  ext2_warning ("bit already set for inode %d", inum);
	  disk_cache_block_deref (bh);
	  bh = NULL;
	  goto repeat;
	}
      record_global_poke (bh);
      bh = NULL;
    }
  else
    {
      disk_cache_block_deref (bh);
      bh = NULL;
      if (gdp->bg_free_inodes_count != 0)
	{
	  ext2_error ("free inodes count corrupted in group %d", i);
	  inum = 0;
	  goto sync_out;
	}
      goto repeat;
    }

  inum += i * sblock->s_inodes_per_group + 1;
  if (inum < EXT2_FIRST_INO (sblock) || inum > sblock->s_inodes_count)
    {
      ext2_error ("reserved inode or inode > inodes count - "
		  "block_group = %d,inode=%d", i, inum);
      inum = 0;
      goto sync_out;
    }

  gdp->bg_free_inodes_count--;
  if (S_ISDIR (mode))
    gdp->bg_used_dirs_count++;
  disk_cache_block_ref_ptr (gdp);
  record_global_poke (gdp);

  sblock->s_free_inodes_count--;
  sblock_dirty = 1;

 sync_out:
  assert (bh == NULL);
  pthread_spin_unlock (&global_lock);
  alloc_sync (0);

  /* Make sure the coming read_node won't complain about bad
     fields.  */
  {
    struct ext2_inode *di = dino_ref (inum);
    memset (di, 0, sizeof *di);
    dino_deref (di);
  }

  return inum;
}
Beispiel #10
0
struct super_block * ext2_read_super (struct super_block * sb, void * data,
				      int silent)
{
	struct buffer_head * bh;
  	struct ext2_sb_info * sbi = EXT2_SB(sb);
	struct ext2_super_block * es;
	unsigned long sb_block = 1;
	unsigned short resuid = EXT2_DEF_RESUID;
	unsigned short resgid = EXT2_DEF_RESGID;
	unsigned long block;
	unsigned long logic_sb_block;
	unsigned long offset = 0;
	kdev_t dev = sb->s_dev;
	int blocksize = BLOCK_SIZE;
	int db_count;
	int i, j;

	/*
	 * See what the current blocksize for the device is, and
	 * use that as the blocksize.  Otherwise (or if the blocksize
	 * is smaller than the default) use the default.
	 * This is important for devices that have a hardware
	 * sectorsize that is larger than the default.
	 */
	blocksize = get_hardsect_size(dev);
	if(blocksize < BLOCK_SIZE )
	    blocksize = BLOCK_SIZE;

	sb->u.ext2_sb.s_mount_opt = 0;
	if (!parse_options ((char *) data, &sb_block, &resuid, &resgid,
	    &sb->u.ext2_sb.s_mount_opt)) {
		return NULL;
	}

	if (set_blocksize(dev, blocksize) < 0) {
		printk ("EXT2-fs: unable to set blocksize %d\n", blocksize);
		return NULL;
	}
	sb->s_blocksize = blocksize;

	/*
	 * If the superblock doesn't start on a sector boundary,
	 * calculate the offset.  FIXME(eric) this doesn't make sense
	 * that we would have to do this.
	 */
	if (blocksize != BLOCK_SIZE) {
		logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;
		offset = (sb_block*BLOCK_SIZE) % blocksize;
	} else {
		logic_sb_block = sb_block;
	}

	if (!(bh = sb_bread(sb, logic_sb_block))) {
		printk ("EXT2-fs: unable to read superblock\n");
		return NULL;
	}
	/*
	 * Note: s_es must be initialized as soon as possible because
	 *       some ext2 macro-instructions depend on its value
	 */
	es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
	sb->u.ext2_sb.s_es = es;
	sb->s_magic = le16_to_cpu(es->s_magic);
	if (sb->s_magic != EXT2_SUPER_MAGIC) {
		if (!silent)
			printk ("VFS: Can't find ext2 filesystem on dev %s.\n",
				bdevname(dev));
		goto failed_mount;
	}
	if (le32_to_cpu(es->s_rev_level) == EXT2_GOOD_OLD_REV &&
	    (EXT2_HAS_COMPAT_FEATURE(sb, ~0U) ||
	     EXT2_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
	     EXT2_HAS_INCOMPAT_FEATURE(sb, ~0U)))
		printk("EXT2-fs warning: feature flags set on rev 0 fs, "
		       "running e2fsck is recommended\n");
	/*
	 * Check feature flags regardless of the revision level, since we
	 * previously didn't change the revision level when setting the flags,
	 * so there is a chance incompat flags are set on a rev 0 filesystem.
	 */
	if ((i = EXT2_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))) {
		printk("EXT2-fs: %s: couldn't mount because of "
		       "unsupported optional features (%x).\n",
		       bdevname(dev), i);
		goto failed_mount;
	}
	if (!(sb->s_flags & MS_RDONLY) &&
	    (i = EXT2_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))){
		printk("EXT2-fs: %s: couldn't mount RDWR because of "
		       "unsupported optional features (%x).\n",
		       bdevname(dev), i);
		goto failed_mount;
	}
	if (EXT2_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL))
		ext2_warning(sb, __FUNCTION__,
			"mounting ext3 filesystem as ext2\n");
	sb->s_blocksize_bits =
		le32_to_cpu(EXT2_SB(sb)->s_es->s_log_block_size) + 10;
	sb->s_blocksize = 1 << sb->s_blocksize_bits;

	sb->s_maxbytes = ext2_max_size(sb->s_blocksize_bits);

	/* If the blocksize doesn't match, re-read the thing.. */
	if (sb->s_blocksize != blocksize) {
		blocksize = sb->s_blocksize;
		brelse(bh);

		if (set_blocksize(dev, blocksize) < 0) {
			printk(KERN_ERR "EXT2-fs: blocksize too small for device.\n");
			return NULL;
		}

		logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;
		offset = (sb_block*BLOCK_SIZE) % blocksize;
		bh = sb_bread(sb, logic_sb_block);
		if(!bh) {
			printk("EXT2-fs: Couldn't read superblock on "
			       "2nd try.\n");
			goto failed_mount;
		}
		es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
		sb->u.ext2_sb.s_es = es;
		if (es->s_magic != le16_to_cpu(EXT2_SUPER_MAGIC)) {
			printk ("EXT2-fs: Magic mismatch, very weird !\n");
			goto failed_mount;
		}
	}

	if (le32_to_cpu(es->s_rev_level) == EXT2_GOOD_OLD_REV) {
		sbi->s_inode_size = EXT2_GOOD_OLD_INODE_SIZE;
		sbi->s_first_ino = EXT2_GOOD_OLD_FIRST_INO;
	} else {
		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
		if ((sbi->s_inode_size < EXT2_GOOD_OLD_INODE_SIZE) ||
		    (sbi->s_inode_size & (sbi->s_inode_size - 1)) ||
		    (sbi->s_inode_size > blocksize)) {
			printk ("EXT2-fs: unsupported inode size: %d\n",
				sbi->s_inode_size);
			goto failed_mount;
		}
	}
	sb->u.ext2_sb.s_frag_size = EXT2_MIN_FRAG_SIZE <<
				   le32_to_cpu(es->s_log_frag_size);
	if (sb->u.ext2_sb.s_frag_size)
		sb->u.ext2_sb.s_frags_per_block = sb->s_blocksize /
						  sb->u.ext2_sb.s_frag_size;
	else
		sb->s_magic = 0;
	sb->u.ext2_sb.s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
	sb->u.ext2_sb.s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
	sb->u.ext2_sb.s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
	sb->u.ext2_sb.s_inodes_per_block = sb->s_blocksize /
					   EXT2_INODE_SIZE(sb);
	sb->u.ext2_sb.s_itb_per_group = sb->u.ext2_sb.s_inodes_per_group /
				        sb->u.ext2_sb.s_inodes_per_block;
	sb->u.ext2_sb.s_desc_per_block = sb->s_blocksize /
					 sizeof (struct ext2_group_desc);
	sb->u.ext2_sb.s_sbh = bh;
	if (resuid != EXT2_DEF_RESUID)
		sb->u.ext2_sb.s_resuid = resuid;
	else
		sb->u.ext2_sb.s_resuid = le16_to_cpu(es->s_def_resuid);
	if (resgid != EXT2_DEF_RESGID)
		sb->u.ext2_sb.s_resgid = resgid;
	else
		sb->u.ext2_sb.s_resgid = le16_to_cpu(es->s_def_resgid);
	sb->u.ext2_sb.s_mount_state = le16_to_cpu(es->s_state);
	sb->u.ext2_sb.s_addr_per_block_bits =
		log2 (EXT2_ADDR_PER_BLOCK(sb));
	sb->u.ext2_sb.s_desc_per_block_bits =
		log2 (EXT2_DESC_PER_BLOCK(sb));
	if (sb->s_magic != EXT2_SUPER_MAGIC) {
		if (!silent)
			printk ("VFS: Can't find an ext2 filesystem on dev "
				"%s.\n",
				bdevname(dev));
		goto failed_mount;
	}
	if (sb->s_blocksize != bh->b_size) {
		if (!silent)
			printk ("VFS: Unsupported blocksize on dev "
				"%s.\n", bdevname(dev));
		goto failed_mount;
	}

	if (sb->s_blocksize != sb->u.ext2_sb.s_frag_size) {
		printk ("EXT2-fs: fragsize %lu != blocksize %lu (not supported yet)\n",
			sb->u.ext2_sb.s_frag_size, sb->s_blocksize);
		goto failed_mount;
	}

	if (sb->u.ext2_sb.s_blocks_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #blocks per group too big: %lu\n",
			sb->u.ext2_sb.s_blocks_per_group);
		goto failed_mount;
	}
	if (sb->u.ext2_sb.s_frags_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #fragments per group too big: %lu\n",
			sb->u.ext2_sb.s_frags_per_group);
		goto failed_mount;
	}
	if (sb->u.ext2_sb.s_inodes_per_group > sb->s_blocksize * 8) {
		printk ("EXT2-fs: #inodes per group too big: %lu\n",
			sb->u.ext2_sb.s_inodes_per_group);
		goto failed_mount;
	}

	sb->u.ext2_sb.s_groups_count = (le32_to_cpu(es->s_blocks_count) -
				        le32_to_cpu(es->s_first_data_block) +
				       EXT2_BLOCKS_PER_GROUP(sb) - 1) /
				       EXT2_BLOCKS_PER_GROUP(sb);
	db_count = (sb->u.ext2_sb.s_groups_count + EXT2_DESC_PER_BLOCK(sb) - 1) /
		   EXT2_DESC_PER_BLOCK(sb);
	sb->u.ext2_sb.s_group_desc = kmalloc (db_count * sizeof (struct buffer_head *), GFP_KERNEL);
	if (sb->u.ext2_sb.s_group_desc == NULL) {
		printk ("EXT2-fs: not enough memory\n");
		goto failed_mount;
	}
	for (i = 0; i < db_count; i++) {
		block = descriptor_loc(sb, logic_sb_block, i);
		sbi->s_group_desc[i] = sb_bread(sb, block);
		if (!sbi->s_group_desc[i]) {
			for (j = 0; j < i; j++)
				brelse (sbi->s_group_desc[j]);
			kfree(sbi->s_group_desc);
			printk ("EXT2-fs: unable to read group descriptors\n");
			goto failed_mount;
		}
	}
	if (!ext2_check_descriptors (sb)) {
		printk ("EXT2-fs: group descriptors corrupted!\n");
		db_count = i;
		goto failed_mount2;
	}
	for (i = 0; i < EXT2_MAX_GROUP_LOADED; i++) {
		sb->u.ext2_sb.s_inode_bitmap_number[i] = 0;
		sb->u.ext2_sb.s_inode_bitmap[i] = NULL;
		sb->u.ext2_sb.s_block_bitmap_number[i] = 0;
		sb->u.ext2_sb.s_block_bitmap[i] = NULL;
	}
	sb->u.ext2_sb.s_loaded_inode_bitmaps = 0;
	sb->u.ext2_sb.s_loaded_block_bitmaps = 0;
	sb->u.ext2_sb.s_gdb_count = db_count;
	/*
	 * set up enough so that it can read an inode
	 */
	sb->s_op = &ext2_sops;
	sb->s_root = d_alloc_root(iget(sb, EXT2_ROOT_INO));
	if (!sb->s_root || !S_ISDIR(sb->s_root->d_inode->i_mode) ||
	    !sb->s_root->d_inode->i_blocks || !sb->s_root->d_inode->i_size) {
		if (sb->s_root) {
			dput(sb->s_root);
			sb->s_root = NULL;
			printk(KERN_ERR "EXT2-fs: corrupt root inode, run e2fsck\n");
		} else
			printk(KERN_ERR "EXT2-fs: get root inode failed\n");
		goto failed_mount2;
	}
	ext2_setup_super (sb, es, sb->s_flags & MS_RDONLY);
	return sb;
failed_mount2:
	for (i = 0; i < db_count; i++)
		brelse(sb->u.ext2_sb.s_group_desc[i]);
	kfree(sb->u.ext2_sb.s_group_desc);
failed_mount:
	brelse(bh);
	return NULL;
}
Beispiel #11
0
/*
 * There are two policies for allocating an inode.  If the new inode is
 * a directory, then a forward search is made for a block group with both
 * free space and a low directory-to-inode ratio; if that fails, then of
 * the groups with above-average free space, that group with the fewest
 * directories already is chosen.
 *
 * For other inodes, search forward from the parent directory\'s block
 * group to find a free inode.
 */
struct inode * ext2_new_inode (const struct inode * dir, int mode, int * err)
{
	struct super_block * sb;
	struct buffer_head * bh;
	struct buffer_head * bh2;
	int i, j, avefreei;
	struct inode * inode;
	int bitmap_nr;
	struct ext2_group_desc * gdp;
	struct ext2_group_desc * tmp;
	struct ext2_super_block * es;

	/* Cannot create files in a deleted directory */
	if (!dir || !dir->i_nlink) {
		*err = -EPERM;
		return NULL;
	}

	inode = get_empty_inode ();
	if (!inode) {
		*err = -ENOMEM;
		return NULL;
	}

	sb = dir->i_sb;
	inode->i_sb = sb;
	inode->i_flags = 0;
	lock_super (sb);
	es = sb->u.ext2_sb.s_es;
repeat:
	gdp = NULL; i=0;
	
	*err = -ENOSPC;
	if (S_ISDIR(mode)) {
		avefreei = le32_to_cpu(es->s_free_inodes_count) /
			sb->u.ext2_sb.s_groups_count;
/* I am not yet convinced that this next bit is necessary.
		i = dir->u.ext2_i.i_block_group;
		for (j = 0; j < sb->u.ext2_sb.s_groups_count; j++) {
			tmp = ext2_get_group_desc (sb, i, &bh2);
			if (tmp &&
			    (le16_to_cpu(tmp->bg_used_dirs_count) << 8) < 
			     le16_to_cpu(tmp->bg_free_inodes_count)) {
				gdp = tmp;
				break;
			}
			else
			i = ++i % sb->u.ext2_sb.s_groups_count;
		}
*/
		if (!gdp) {
			for (j = 0; j < sb->u.ext2_sb.s_groups_count; j++) {
				tmp = ext2_get_group_desc (sb, j, &bh2);
				if (tmp &&
				    le16_to_cpu(tmp->bg_free_inodes_count) &&
				    le16_to_cpu(tmp->bg_free_inodes_count) >= avefreei) {
					if (!gdp || 
					    (le16_to_cpu(tmp->bg_free_blocks_count) >
					     le16_to_cpu(gdp->bg_free_blocks_count))) {
						i = j;
						gdp = tmp;
					}
				}
			}
		}
	}
	else 
	{
		/*
		 * Try to place the inode in its parent directory
		 */
		i = dir->u.ext2_i.i_block_group;
		tmp = ext2_get_group_desc (sb, i, &bh2);
		if (tmp && le16_to_cpu(tmp->bg_free_inodes_count))
			gdp = tmp;
		else
		{
			/*
			 * Use a quadratic hash to find a group with a
			 * free inode
			 */
			for (j = 1; j < sb->u.ext2_sb.s_groups_count; j <<= 1) {
				i += j;
				if (i >= sb->u.ext2_sb.s_groups_count)
					i -= sb->u.ext2_sb.s_groups_count;
				tmp = ext2_get_group_desc (sb, i, &bh2);
				if (tmp &&
				    le16_to_cpu(tmp->bg_free_inodes_count)) {
					gdp = tmp;
					break;
				}
			}
		}
		if (!gdp) {
			/*
			 * That failed: try linear search for a free inode
			 */
			i = dir->u.ext2_i.i_block_group + 1;
			for (j = 2; j < sb->u.ext2_sb.s_groups_count; j++) {
				if (++i >= sb->u.ext2_sb.s_groups_count)
					i = 0;
				tmp = ext2_get_group_desc (sb, i, &bh2);
				if (tmp &&
				    le16_to_cpu(tmp->bg_free_inodes_count)) {
					gdp = tmp;
					break;
				}
			}
		}
	}

	if (!gdp) {
		unlock_super (sb);
		iput(inode);
		return NULL;
	}
	bitmap_nr = load_inode_bitmap (sb, i);
	if (bitmap_nr < 0) {
		unlock_super (sb);
		iput(inode);
		*err = -EIO;
		return NULL;
	}

	bh = sb->u.ext2_sb.s_inode_bitmap[bitmap_nr];
	if ((j = ext2_find_first_zero_bit ((unsigned long *) bh->b_data,
				      EXT2_INODES_PER_GROUP(sb))) <
	    EXT2_INODES_PER_GROUP(sb)) {
		if (ext2_set_bit (j, bh->b_data)) {
			ext2_warning (sb, "ext2_new_inode",
				      "bit already set for inode %d", j);
			goto repeat;
		}
		mark_buffer_dirty(bh, 1);
		if (sb->s_flags & MS_SYNCHRONOUS) {
			ll_rw_block (WRITE, 1, &bh);
			wait_on_buffer (bh);
		}
	} else {
		if (le16_to_cpu(gdp->bg_free_inodes_count) != 0) {
			ext2_error (sb, "ext2_new_inode",
				    "Free inodes count corrupted in group %d",
				    i);
			unlock_super (sb);
			iput (inode);
			return NULL;
		}
		goto repeat;
	}
	j += i * EXT2_INODES_PER_GROUP(sb) + 1;
	if (j < EXT2_FIRST_INO(sb) || j > le32_to_cpu(es->s_inodes_count)) {
		ext2_error (sb, "ext2_new_inode",
			    "reserved inode or inode > inodes count - "
			    "block_group = %d,inode=%d", i, j);
		unlock_super (sb);
		iput (inode);
		return NULL;
	}
	gdp->bg_free_inodes_count =
		cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) - 1);
	if (S_ISDIR(mode))
		gdp->bg_used_dirs_count =
			cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) + 1);
	mark_buffer_dirty(bh2, 1);
	es->s_free_inodes_count =
		cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) - 1);
	mark_buffer_dirty(sb->u.ext2_sb.s_sbh, 1);
	sb->s_dirt = 1;
	inode->i_mode = mode;
	inode->i_sb = sb;
	inode->i_nlink = 1;
	inode->i_dev = sb->s_dev;
	inode->i_uid = current->fsuid;
	if (test_opt (sb, GRPID))
		inode->i_gid = dir->i_gid;
	else if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else
		inode->i_gid = current->fsgid;

	inode->i_ino = j;
	inode->i_blksize = PAGE_SIZE;	/* This is the optimal IO size (for stat), not the fs block size */
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->u.ext2_i.i_new_inode = 1;
	inode->u.ext2_i.i_flags = dir->u.ext2_i.i_flags;
	if (S_ISLNK(mode))
		inode->u.ext2_i.i_flags &= ~(EXT2_IMMUTABLE_FL | EXT2_APPEND_FL);
	inode->u.ext2_i.i_faddr = 0;
	inode->u.ext2_i.i_frag_no = 0;
	inode->u.ext2_i.i_frag_size = 0;
	inode->u.ext2_i.i_file_acl = 0;
	inode->u.ext2_i.i_dir_acl = 0;
	inode->u.ext2_i.i_dtime = 0;
	inode->u.ext2_i.i_block_group = i;
	inode->i_op = NULL;
	if (inode->u.ext2_i.i_flags & EXT2_SYNC_FL)
		inode->i_flags |= MS_SYNCHRONOUS;
	insert_inode_hash(inode);
	mark_inode_dirty(inode);
	inc_inode_version (inode, gdp, mode);

	unlock_super (sb);
	if(DQUOT_ALLOC_INODE(sb, inode)) {
		sb->dq_op->drop(inode);
		inode->i_nlink = 0;
		iput(inode);
		*err = -EDQUOT;
		return NULL;
	}
	ext2_debug ("allocating inode %lu\n", inode->i_ino);

	*err = 0;
	return inode;
}
Beispiel #12
0
/*
 * NOTE! When we get the inode, we're the only people
 * that have access to it, and as such there are no
 * race conditions we have to worry about. The inode
 * is not on the hash-lists, and it cannot be reached
 * through the filesystem because the directory entry
 * has been deleted earlier.
 *
 * HOWEVER: we must make sure that we get no aliases,
 * which means that we have to call "clear_inode()"
 * _before_ we mark the inode not in use in the inode
 * bitmaps. Otherwise a newly created file might use
 * the same inode number (not actually the same pointer
 * though), and then we'd have two inodes sharing the
 * same inode number and space on the harddisk.
 */
void ext2_free_inode (struct inode * inode)
{
	struct super_block * sb = inode->i_sb;
	int is_directory;
	unsigned long ino;
	struct buffer_head * bh;
	struct buffer_head * bh2;
	unsigned long block_group;
	unsigned long bit;
	int bitmap_nr;
	struct ext2_group_desc * gdp;
	struct ext2_super_block * es;

	if (!inode->i_dev) {
		printk ("ext2_free_inode: inode has no device\n");
		return;
	}
	if (inode->i_count > 1) {
		printk ("ext2_free_inode: inode has count=%d\n", inode->i_count);
		return;
	}
	if (inode->i_nlink) {
		printk ("ext2_free_inode: inode has nlink=%d\n",
			(int) inode->i_nlink);
		return;
	}
	if (!sb) {
		printk("ext2_free_inode: inode on nonexistent device\n");
		return;
	}

	ino = inode->i_ino;
	ext2_debug ("freeing inode %lu\n", ino);

	/*
	 * Note: we must free any quota before locking the superblock,
	 * as writing the quota to disk may need the lock as well.
	 */
	DQUOT_FREE_INODE(sb, inode);
	DQUOT_DROP(inode);

	lock_super (sb);
	es = sb->u.ext2_sb.s_es;
	if (ino < EXT2_FIRST_INO(sb) || 
	    ino > le32_to_cpu(es->s_inodes_count)) {
		ext2_error (sb, "free_inode",
			    "reserved inode or nonexistent inode");
		goto error_return;
	}
	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
	bit = (ino - 1) % EXT2_INODES_PER_GROUP(sb);
	bitmap_nr = load_inode_bitmap (sb, block_group);
	if (bitmap_nr < 0)
		goto error_return;
	
	bh = sb->u.ext2_sb.s_inode_bitmap[bitmap_nr];

	is_directory = S_ISDIR(inode->i_mode);

	/* Do this BEFORE marking the inode not in use */
	clear_inode (inode);

	/* Ok, now we can actually update the inode bitmaps.. */
	if (!ext2_clear_bit (bit, bh->b_data))
		ext2_warning (sb, "ext2_free_inode",
			      "bit already cleared for inode %lu", ino);
	else {
		gdp = ext2_get_group_desc (sb, block_group, &bh2);
		if (gdp) {
			gdp->bg_free_inodes_count =
				cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) + 1);
			if (is_directory)
				gdp->bg_used_dirs_count =
					cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) - 1);
		}
		mark_buffer_dirty(bh2, 1);
		es->s_free_inodes_count =
			cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) + 1);
		mark_buffer_dirty(sb->u.ext2_sb.s_sbh, 1);
	}
	mark_buffer_dirty(bh, 1);
	if (sb->s_flags & MS_SYNCHRONOUS) {
		ll_rw_block (WRITE, 1, &bh);
		wait_on_buffer (bh);
	}
	sb->s_dirt = 1;
error_return:
	unlock_super (sb);
}
Beispiel #13
0
/* The user must define this function if she wants to use the node
   cache.  Read stat information out of the on-disk node.  */
error_t
diskfs_user_read_node (struct node *np, struct lookup_context *ctx)
{
  error_t err;
  struct stat *st = &np->dn_stat;
  struct disknode *dn = diskfs_node_disknode (np);
  struct ext2_inode *di;
  struct ext2_inode_info *info = &dn->info;

  ext2_debug ("(%llu)", np->cache_id);

  err = diskfs_catch_exception ();
  if (err)
    return err;

  di = dino_ref (np->cache_id);

  st->st_fstype = FSTYPE_EXT2FS;
  st->st_fsid = getpid ();	/* This call is very cheap.  */
  st->st_ino = np->cache_id;
  st->st_blksize = vm_page_size * 2;

  st->st_nlink = di->i_links_count;
  st->st_size = di->i_size;
  st->st_gen = di->i_generation;

  st->st_atim.tv_sec = di->i_atime;
#ifdef not_yet
  /* ``struct ext2_inode'' doesn't do better than sec. precision yet.  */
#else
  st->st_atim.tv_nsec = 0;
#endif
  st->st_mtim.tv_sec = di->i_mtime;
#ifdef not_yet
  /* ``struct ext2_inode'' doesn't do better than sec. precision yet.  */
#else
  st->st_mtim.tv_nsec = 0;
#endif
  st->st_ctim.tv_sec = di->i_ctime;
#ifdef not_yet
  /* ``struct ext2_inode'' doesn't do better than sec. precision yet.  */
#else
  st->st_ctim.tv_nsec = 0;
#endif

  st->st_blocks = di->i_blocks;

  st->st_flags = 0;
  if (di->i_flags & EXT2_APPEND_FL)
    st->st_flags |= UF_APPEND;
  if (di->i_flags & EXT2_NODUMP_FL)
    st->st_flags |= UF_NODUMP;
  if (di->i_flags & EXT2_IMMUTABLE_FL)
    st->st_flags |= UF_IMMUTABLE;

  if (sblock->s_creator_os == EXT2_OS_HURD)
    {
      st->st_mode = di->i_mode | (di->i_mode_high << 16);
      st->st_mode &= ~S_ITRANS;
      if (di->i_translator)
	st->st_mode |= S_IPTRANS;

      st->st_uid = di->i_uid | (di->i_uid_high << 16);
      st->st_gid = di->i_gid | (di->i_gid_high << 16);

      st->st_author = di->i_author;
      if (st->st_author == -1)
	st->st_author = st->st_uid;
    }
  else
    {
      st->st_mode = di->i_mode & ~S_ITRANS;
      st->st_uid = di->i_uid;
      st->st_gid = di->i_gid;
      st->st_author = st->st_uid;
      np->author_tracks_uid = 1;
    }

  /* Setup the ext2fs auxiliary inode info.  */
  info->i_dtime = di->i_dtime;
  info->i_flags = di->i_flags;
  info->i_faddr = di->i_faddr;
  info->i_frag_no = di->i_frag;
  info->i_frag_size = di->i_fsize;
  info->i_osync = 0;
  info->i_file_acl = di->i_file_acl;
  if (S_ISDIR (st->st_mode))
    info->i_dir_acl = di->i_dir_acl;
  else
    {
      info->i_dir_acl = 0;
      info->i_high_size = di->i_size_high;
      if (info->i_high_size)	/* XXX */
	{
	  dino_deref (di);
	  ext2_warning ("cannot handle large file inode %Ld", np->cache_id);
	  diskfs_end_catch_exception ();
	  return EFBIG;
	}
    }
  info->i_block_group = inode_group_num (np->cache_id);
  info->i_next_alloc_block = 0;
  info->i_next_alloc_goal = 0;
  info->i_prealloc_count = 0;

  /* Set to a conservative value.  */
  dn->last_page_partially_writable = 0;

  if (S_ISCHR (st->st_mode) || S_ISBLK (st->st_mode))
    st->st_rdev = di->i_block[0];
  else
    {
      memcpy (info->i_data, di->i_block,
	      EXT2_N_BLOCKS * sizeof info->i_data[0]);
      st->st_rdev = 0;
    }
  dn->info_i_translator = di->i_translator;

  dino_deref (di);
  diskfs_end_catch_exception ();

  if (S_ISREG (st->st_mode) || S_ISDIR (st->st_mode)
      || (S_ISLNK (st->st_mode) && st->st_blocks))
    {
      unsigned offset;

      np->allocsize = np->dn_stat.st_size;

      /* Round up to a block multiple.  */
      offset = np->allocsize & ((1 << log2_block_size) - 1);
      if (offset > 0)
	np->allocsize += block_size - offset;
    }
  else
    /* Allocsize should be zero for anything except directories, files, and
       long symlinks.  These are the only things allowed to have any blocks
       allocated as well, although st_size may be zero for any type (cases
       where st_blocks=0 and st_size>0 include fast symlinks, and, under
       linux, some devices).  */
    np->allocsize = 0;

  if (!diskfs_check_readonly () && !np->dn_stat.st_gen)
    {
      pthread_spin_lock (&generation_lock);
      if (++next_generation < diskfs_mtime->seconds)
	next_generation = diskfs_mtime->seconds;
      np->dn_stat.st_gen = next_generation;
      pthread_spin_unlock (&generation_lock);
      np->dn_set_ctime = 1;
    }

  return 0;
}
Beispiel #14
0
void ext2_free_inode (struct inode * inode)
{
	struct super_block * sb;
	struct buffer_head * bh;
	struct buffer_head * bh2;
	unsigned long block_group;
	unsigned long bit;
	int bitmap_nr;
	int bs;
	struct ext2_group_desc * gdp;
	struct ext2_super_block * es;

	if (!inode)
		return;
	if (!inode->i_dev) {
		printk ("ext2_free_inode: inode has no device\n");
		return;
	}
	if (inode->i_count > 1) {
		printk ("ext2_free_inode: inode has count=%ld\n",
			inode->i_count);
		return;
	}
	if (inode->i_nlink) {
		printk ("ext2_free_inode: inode has nlink=%d\n",
			inode->i_nlink);
		return;
	}
	sb = inode->i_sb;
	if (!sb) {
		printk("ext2_free_inode: inode on nonexistent device\n");
		return;
	}

	ext2_debug ("freeing inode %lu\n", inode->i_ino);

	/* We need to kill quota references now, before grabbing the
	 * superblock lock because writing the quota out to disk
	 * may need to lock the superblock as well.
	 *
	 * It is safe to do this early instead of the original
	 * places because we cannot be here in ext2_free_inode
	 * if any other references to this inode exist at all.
	 *
	 * Based upon a 2.1.x fix by Bill Hawes.   --DaveM
	 */
	if (sb->dq_op) {
		sb->dq_op->free_inode (inode, 1);
		if (IS_WRITABLE (inode))
			sb->dq_op->drop(inode);
	}

	lock_super (sb);
	bs = BYTE_SWAP(inode->i_sb->u.ext2_sb.s_byte_swapped);
	if (inode->i_ino < EXT2_FIRST_INO(sb) ||
	    inode->i_ino > e_swab (bs, sb->u.ext2_sb.s_es->s_inodes_count)) {
		ext2_error (sb, "free_inode",
			    "reserved inode or nonexistent inode");
		unlock_super (sb);
		return;
	}
	es = sb->u.ext2_sb.s_es;
	block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(sb);
	bit = (inode->i_ino - 1) % EXT2_INODES_PER_GROUP(sb);
	bitmap_nr = load_inode_bitmap (sb, block_group);
	if (bitmap_nr < 0) {
		unlock_super (sb);
		return;
	}
	
	bh = sb->u.ext2_sb.s_inode_bitmap[bitmap_nr];
	if (!ext2_clear_bit (bit, bh->b_data))
		ext2_warning (sb, "ext2_free_inode",
			      "bit already cleared for inode %lu", inode->i_ino);
	else {
		gdp = get_group_desc (sb, block_group, &bh2);
		e_set_swab (bs, gdp->bg_free_inodes_count,
			    e_swab (bs, gdp->bg_free_inodes_count) + 1);
		if (S_ISDIR(inode->i_mode))
			e_set_swab (bs, gdp->bg_used_dirs_count,
				    e_swab (bs, gdp->bg_used_dirs_count) - 1);
		mark_buffer_dirty(bh2, 1);
		e_set_swab (bs, es->s_free_inodes_count,
			    e_swab (bs, es->s_free_inodes_count) + 1);
		mark_buffer_dirty(sb->u.ext2_sb.s_sbh, 1);
		inode->i_dirt = 0;
	}
	mark_buffer_dirty(bh, 1);
	if (sb->s_flags & MS_SYNCHRONOUS) {
		ll_rw_block (WRITE, 1, &bh);
		wait_on_buffer (bh);
	}
	sb->s_dirt = 1;
	clear_inode (inode);
	unlock_super (sb);
}