tFloat Ugci(tFloat s1, tFloat s2, tFloat q, tFloat pu, tFloat pl, tFloat Fs) { if(pu<pl) return Fs*fabsq(s1-s2)/(powq(q,pu)-1.0q); else return Fs*fabsq(s1-s2)/(powq(q,pl)-1.0q); }
tFloat Residual(int n, tFloat *T, tFloat **eq) { tFloat r = 0.0q; r += fabsq(eq[0][2]*T[1] + eq[0][2] - eq[0][0]*T[0]); for(int i=1; i<n-1; i++) r += fabsq(eq[i][1]*T[i-1] + eq[i][2]*T[i+1] + eq[i][2] - eq[i][0]*T[i]); r+= fabsq(eq[n-1][1]*T[n-2] + eq[n-1][2] - eq[n-1][0]*T[n-1]); return r; }
int main() { __float128 f = -2.0Q; f = fabsq(f); return 0; }
/* Square root algorithm from glibc. */ __complex128 csqrtq (__complex128 z) { __float128 re = REALPART(z), im = IMAGPART(z); __complex128 v; if (im == 0) { if (re < 0) { COMPLEX_ASSIGN (v, 0, copysignq (sqrtq (-re), im)); } else { COMPLEX_ASSIGN (v, fabsq (sqrtq (re)), copysignq (0, im)); } } else if (re == 0) { __float128 r = sqrtq (0.5 * fabsq (im)); COMPLEX_ASSIGN (v, r, copysignq (r, im)); } else { __float128 d = hypotq (re, im); __float128 r, s; /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (re > 0) r = sqrtq (0.5 * d + 0.5 * re), s = (0.5 * im) / r; else s = sqrtq (0.5 * d - 0.5 * re), r = fabsq ((0.5 * im) / s); COMPLEX_ASSIGN (v, r, copysignq (s, im)); } return v; }
inline __float128 abs( __float128 x ) { return fabsq( x ); }
inline void eval_fabs(float128_backend& result, const float128_backend& arg) { result.value() = fabsq(arg.value()); }
__float128 log2q (__float128 x) { __float128 z; __float128 y; int e; int64_t hx, lx; /* Test for domain */ GET_FLT128_WORDS64 (hx, lx, x); if (((hx & 0x7fffffffffffffffLL) | lx) == 0) return (-1.0Q / fabsq (x)); /* log2l(+-0)=-inf */ if (hx < 0) return (x - x) / (x - x); if (hx >= 0x7fff000000000000LL) return (x + x); if (x == 1.0Q) return 0.0Q; /* separate mantissa from exponent */ /* Note, frexp is used so that denormal numbers * will be handled properly. */ x = frexpq (x, &e); /* logarithm using log(x) = z + z**3 P(z)/Q(z), * where z = 2(x-1)/x+1) */ if ((e > 2) || (e < -2)) { if (x < SQRTH) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; z = x - 0.5Q; y = 0.5Q * z + 0.5Q; } else { /* 2 (x-1)/(x+1) */ z = x - 0.5Q; z -= 0.5Q; y = 0.5Q * x + 0.5Q; } x = z / y; z = x * x; y = x * (z * neval (z, R, 5) / deval (z, S, 5)); goto done; } /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ if (x < SQRTH) { e -= 1; x = 2.0 * x - 1.0Q; /* 2x - 1 */ } else { x = x - 1.0Q; } z = x * x; y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); y = y - 0.5 * z; done: /* Multiply log of fraction by log2(e) * and base 2 exponent by 1 */ z = y * LOG2EA; z += x * LOG2EA; z += y; z += x; z += e; return (z); }
__float128 remquoq (__float128 x, __float128 y, int *quo) { int64_t hx,hy; uint64_t sx,lx,ly,qs; int cquo; GET_FLT128_WORDS64 (hx, lx, x); GET_FLT128_WORDS64 (hy, ly, y); sx = hx & 0x8000000000000000ULL; qs = sx ^ (hy & 0x8000000000000000ULL); hy &= 0x7fffffffffffffffLL; hx &= 0x7fffffffffffffffLL; /* Purge off exception values. */ if ((hy | ly) == 0) return (x * y) / (x * y); /* y = 0 */ if ((hx >= 0x7fff000000000000LL) /* x not finite */ || ((hy >= 0x7fff000000000000LL) /* y is NaN */ && (((hy - 0x7fff000000000000LL) | ly) != 0))) return (x * y) / (x * y); if (hy <= 0x7ffbffffffffffffLL) x = fmodq (x, 8 * y); /* now x < 8y */ if (((hx - hy) | (lx - ly)) == 0) { *quo = qs ? -1 : 1; return zero * x; } x = fabsq (x); y = fabsq (y); cquo = 0; if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y) { x -= 4 * y; cquo += 4; } if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y) { x -= 2 * y; cquo += 2; } if (hy < 0x0002000000000000LL) { if (x + x > y) { x -= y; ++cquo; if (x + x >= y) { x -= y; ++cquo; } } } else { __float128 y_half = 0.5Q * y; if (x > y_half) { x -= y; ++cquo; if (x >= y_half) { x -= y; ++cquo; } } } *quo = qs ? -cquo : cquo; /* Ensure correct sign of zero result in round-downward mode. */ if (x == 0.0Q) x = 0.0Q; if (sx) x = -x; return x; }
__complex128 cacoshq (__complex128 x) { __complex128 res; int rcls = fpclassifyq (__real__ x); int icls = fpclassifyq (__imag__ x); if (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE) { if (icls == QUADFP_INFINITE) { __real__ res = HUGE_VALQ; if (rcls == QUADFP_NAN) __imag__ res = nanq (""); else __imag__ res = copysignq ((rcls == QUADFP_INFINITE ? (__real__ x < 0.0 ? M_PIq - M_PI_4q : M_PI_4q) : M_PI_2q), __imag__ x); } else if (rcls == QUADFP_INFINITE) { __real__ res = HUGE_VALQ; if (icls >= QUADFP_ZERO) __imag__ res = copysignq (signbitq (__real__ x) ? M_PIq : 0.0, __imag__ x); else __imag__ res = nanq (""); } else { __real__ res = nanq (""); __imag__ res = nanq (""); } } else if (rcls == QUADFP_ZERO && icls == QUADFP_ZERO) { __real__ res = 0.0; __imag__ res = copysignq (M_PI_2q, __imag__ x); } /* The factor 16 is just a guess. */ else if (16.0Q * fabsq (__imag__ x) < fabsq (__real__ x)) { /* Kahan's formula which avoid cancellation through subtraction in some cases. */ res = 2.0Q * clogq (csqrtq ((x + 1.0Q) / 2.0Q) + csqrtq ((x - 1.0Q) / 2.0Q)); if (signbitq (__real__ res)) __real__ res = 0.0Q; } else { __complex128 y; __real__ y = (__real__ x - __imag__ x) * (__real__ x + __imag__ x) - 1.0; __imag__ y = 2.0 * __real__ x * __imag__ x; y = csqrtq (y); if (signbitq (x)) y = -y; __real__ y += __real__ x; __imag__ y += __imag__ x; res = clogq (y); } return res; }
__complex128 ctanhq (__complex128 x) { __complex128 res; if (__builtin_expect (!finiteq (__real__ x) || !finiteq (__imag__ x), 0)) { if (__quadmath_isinf_nsq (__real__ x)) { __real__ res = copysignq (1.0Q, __real__ x); __imag__ res = copysignq (0.0Q, __imag__ x); } else if (__imag__ x == 0.0Q) { res = x; } else { __real__ res = nanq (""); __imag__ res = nanq (""); #ifdef HAVE_FENV_H if (__quadmath_isinf_nsq (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { __float128 sinix, cosix; __float128 den; const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2); int icls = fpclassifyq (__imag__ x); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } if (fabsq (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ __float128 exp_2t = expq (2 * t); __real__ res = copysignq (1.0, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabsq (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= expq (2 * __real__ x); } else { __float128 sinhrx, coshrx; if (fabsq (__real__ x) > FLT128_MIN) { sinhrx = sinhq (__real__ x); coshrx = coshq (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0Q; } if (fabsq (sinhrx) > fabsq (cosix) * FLT128_EPSILON) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * coshrx / den; __imag__ res = sinix * cosix / den; } } return res; }
static __float128 __quadmath_kernel_tanq (__float128 x, __float128 y, int iy) { __float128 z, r, v, w, s; int32_t ix, sign = 1; ieee854_float128 u, u1; u.value = x; ix = u.words32.w0 & 0x7fffffff; if (ix < 0x3fc60000) /* x < 2**-57 */ { if ((int) x == 0) { /* generate inexact */ if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3 | (iy + 1)) == 0) return one / fabsq (x); else return (iy == 1) ? x : -one / x; } } if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ { if ((u.words32.w0 & 0x80000000) != 0) { x = -x; y = -y; sign = -1; } else sign = 1; z = pio4hi - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); r = r / v; s = z * x; r = y + z * (s * r + y); r += TH * s; w = x + r; if (ix >= 0x3ffe5942) { v = (__float128) iy; w = (v - 2.0Q * (x - (w * w / (w + v) - r))); if (sign < 0) w = -w; return w; } if (iy == 1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ u1.value = w; u1.words32.w2 = 0; u1.words32.w3 = 0; v = r - (u1.value - x); /* u1+v = r+x */ z = -1.0 / w; u.value = z; u.words32.w2 = 0; u.words32.w3 = 0; s = 1.0 + u.value * u1.value; return u.value + z * (s + u.value * v); } }