extern "C" void fc_solve_dbm_store_offload_pre_cache(
    fcs_dbm_store_t store,
    fcs_pre_cache_t * pre_cache
)
{
    leveldb::DB * db;
#ifdef FCS_DBM_USE_LIBAVL
    struct avl_traverser trav;
    dict_key_t item;
#else
    dnode_t * node;
#endif
    dict_t * kaz_tree;
    int num_left_in_transaction = MAX_ITEMS_IN_TRANSACTION;
    leveldb::WriteBatch batch;
    fcs_pre_cache_key_val_pair_t * kv;

    db = (leveldb::DB *)store;
    kaz_tree = pre_cache->kaz_tree;

#ifdef FCS_DBM_USE_LIBAVL
    avl_t_init(&trav, kaz_tree);
#endif

#ifdef FCS_DBM_USE_LIBAVL
    for (
        item = avl_t_first(&trav, kaz_tree)
            ;
        item
            ;
        item = avl_t_next(&trav)
        )
#else
    for (node = fc_solve_kaz_tree_first(kaz_tree);
            node ;
            node = fc_solve_kaz_tree_next(kaz_tree, node)
            )
#define item (node->dict_key)
#endif
    {
        kv = (fcs_pre_cache_key_val_pair_t *)(item);

    leveldb::Slice key((const char *)(kv->key.s+1),kv->key.s[0]);
    /* We add 1 to the parent and move's length because it includes the
     * trailing one-char move.
     * */
    leveldb::Slice parent_and_move((const char *)(kv->parent_and_move.s+1),kv->parent_and_move.s[0]+1);
        batch.Put(key, parent_and_move);

        if ((--num_left_in_transaction) <= 0)
        {
#define WRITE() assert(db->Write(leveldb::WriteOptions(), &batch).ok())
            WRITE();
            batch.Clear();
            num_left_in_transaction = MAX_ITEMS_IN_TRANSACTION;
        }
    }
    WRITE();
#undef WRITE
}
Beispiel #2
0
extern void fc_solve_dbm_store_offload_pre_cache(
    fcs_dbm_store store, fcs_pre_cache *const pre_cache)
{
    fcs_dbm *const db = (fcs_dbm *)store;
    dict_t *const kaz_tree = pre_cache->kaz_tree;
    DB *const dbp = db->dbp;

    for (dnode_t *node = fc_solve_kaz_tree_first(kaz_tree); node;
         node = fc_solve_kaz_tree_next(kaz_tree, node))
    {
        const_AUTO(kv, (pre_cache_key_val_pair *)(node->dict_key));

        db->key.data = kv->key.s + 1;
        db->key.size = kv->key.s[0];
        db->data.data = kv->parent.s + 1;
        db->data.size = kv->parent.s[0];
        int ret;
        if ((ret = dbp->put(dbp, NULL, &(db->key), &(db->data), 0)) != 0)
        {
            dbp->err(dbp, ret, "DB->put");
            my_close(dbp, ret);
        }
    }
}
dnode_t *fc_solve_kaz_tree_delete(dict_t *dict, dnode_t *target)
{
    dnode_t *nil = dict_nil(dict), *child, *delparent = target->parent;

    /* basic deletion */

    assert (!dict_isempty(dict));
    assert (dict_contains(dict, target));

    /*
     * If the node being deleted has two children, then we replace it with its
     * successor (i.e. the leftmost node in the right subtree.) By doing this,
     * we avoid the traditional algorithm under which the successor's key and
     * value *only* move to the deleted node and the successor is spliced out
     * from the tree. We cannot use this approach because the user may hold
     * pointers to the successor, or nodes may be inextricably tied to some
     * other structures by way of embedding, etc. So we must splice out the
     * node we are given, not some other node, and must not move contents from
     * one node to another behind the user's back.
     */

    if (target->left != nil && target->right != nil) {
        dnode_t *next = fc_solve_kaz_tree_next(dict, target);
        dnode_t *nextparent = next->parent;
        dnode_color_t nextcolor = next->color;

        assert (next != nil);
        assert (next->parent != nil);
        assert (next->left == nil);

        /*
         * First, splice out the successor from the tree completely, by
         * moving up its right child into its place.
         */

        child = next->right;
        child->parent = nextparent;

        if (nextparent->left == next) {
            nextparent->left = child;
        } else {
            assert (nextparent->right == next);
            nextparent->right = child;
        }

        /*
         * Now that the successor has been extricated from the tree, install it
         * in place of the node that we want deleted.
         */

        next->parent = delparent;
        next->left = target->left;
        next->right = target->right;
        next->left->parent = next;
        next->right->parent = next;
        next->color = target->color;
        target->color = nextcolor;

        if (delparent->left == target) {
            delparent->left = next;
        } else {
            assert (delparent->right == target);
            delparent->right = next;
        }

    } else {
        assert (target != nil);
        assert (target->left == nil || target->right == nil);

        child = (target->left != nil) ? target->left : target->right;

        child->parent = delparent = target->parent;

        if (target == delparent->left) {
            delparent->left = child;
        } else {
            assert (target == delparent->right);
            delparent->right = child;
        }
    }

    target->parent = NULL;
    target->right = NULL;
    target->left = NULL;

#ifdef NO_FC_SOLVE
    dict->nodecount--;
#endif

    assert (verify_bintree(dict));

    /* red-black adjustments */

    if (target->color == dnode_black) {
        dnode_t *parent, *sister;

        dict_root(dict)->color = dnode_red;

        while (child->color == dnode_black) {
            parent = child->parent;
            if (child == parent->left) {
                sister = parent->right;
                assert (sister != nil);
                if (sister->color == dnode_red) {
                    sister->color = dnode_black;
                    parent->color = dnode_red;
                    rotate_left(parent);
                    sister = parent->right;
                    assert (sister != nil);
                }
                if (sister->left->color == dnode_black
                        && sister->right->color == dnode_black) {
                    sister->color = dnode_red;
                    child = parent;
                } else {
                    if (sister->right->color == dnode_black) {
                        assert (sister->left->color == dnode_red);
                        sister->left->color = dnode_black;
                        sister->color = dnode_red;
                        rotate_right(sister);
                        sister = parent->right;
                        assert (sister != nil);
                    }
                    sister->color = parent->color;
                    sister->right->color = dnode_black;
                    parent->color = dnode_black;
                    rotate_left(parent);
                    break;
                }
            } else {    /* symmetric case: child == child->parent->right */
                assert (child == parent->right);
                sister = parent->left;
                assert (sister != nil);
                if (sister->color == dnode_red) {
                    sister->color = dnode_black;
                    parent->color = dnode_red;
                    rotate_right(parent);
                    sister = parent->left;
                    assert (sister != nil);
                }
                if (sister->right->color == dnode_black
                        && sister->left->color == dnode_black) {
                    sister->color = dnode_red;
                    child = parent;
                } else {
                    if (sister->left->color == dnode_black) {
                        assert (sister->right->color == dnode_red);
                        sister->right->color = dnode_black;
                        sister->color = dnode_red;
                        rotate_left(sister);
                        sister = parent->left;
                        assert (sister != nil);
                    }
                    sister->color = parent->color;
                    sister->left->color = dnode_black;
                    parent->color = dnode_black;
                    rotate_right(parent);
                    break;
                }
            }
        }

        child->color = dnode_black;
        dict_root(dict)->color = dnode_black;
    }

    assert (dict_verify(dict));

    return target;
}