Beispiel #1
0
void curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
  felem bp[10], x[10], z[10], zmone[10];
  fexpand(bp, basepoint);
  cmult(x, z, secret, bp);
  crecip(zmone, z);
  fmul(z, x, zmone);
  fcontract(mypublic, z);
}
Beispiel #2
0
bits256 cards777_initcrypt(bits256 data,bits256 privkey,bits256 pubkey,int32_t invert)
{
    bits256 hash; bits320 hexp;
    hash = curve25519_shared(privkey,pubkey);
    hexp = fexpand(hash);
    if ( invert != 0 )
        hexp = crecip(hexp);
    return(fcontract(fmul(fexpand(data),hexp)));
}
Beispiel #3
0
int
crypto_scalarmult(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
  felem bp[5], x[5], z[5], zmone[5];
  unsigned char e[32];
  int i;
  for (i = 0;i < 32;++i) e[i] = secret[i];
  e[0] &= 248;
  e[31] &= 127;
  e[31] |= 64;
  fexpand(bp, basepoint);
  cmult(x, z, e, bp);
  crecip(zmone, z);
  fmul(z, x, zmone);
  fcontract(mypublic, z);
  return 0;
}
Beispiel #4
0
std::string hex(const felem e)
{
    bytestring s(32, 0);
    fcontract(&s[0], e);
    return hex(s);
}
Beispiel #5
0
    void operator()(std::map<uint64_t, uint64_t> &accounts, std::string thread_seed) {
        // Our approach is to pick a random point and repeatedly double it.
        // This is cheaper than the more naive approach of multiplying the
        // generator point times random exponents.
        // We work in batches because our point doubling algorithm requires a
        // modular inversion which is more efficiently computed in batches.
        const int n = BATCH_SIZE;
        felem xs[BATCH_SIZE], zs[BATCH_SIZE];
        std::vector<bytestring> exponents;
        static const unsigned char generator[32] = {9};
        for ( int i = 0; i < n; i++ ) {
            bytestring exponent(32, 0);
            std::string exponent_seed = boost::str(boost::format("%1%:%2%") % thread_seed % i);
            sha256((unsigned char*) &exponent_seed[0], exponent_seed.size(), &exponent[0]);
            // transform initial exponent according to curve25519 tweaks
            exponent[0] &= 248;
            exponent[31] &= 127;
            exponent[31] |= 64;
            uint8_t pubkey[32];
            curve25519_donna(pubkey, &exponent[0], generator);
            fexpand(xs[i], pubkey);
            exponents.push_back(exponent);
        }
        for ( uint64_t doublings = 1; true; doublings++ ) {
            for ( int i = 0; i < n; i++ ) {
                felem xout;
                xz_ge_double(xout, zs[i], xs[i]);
                fcopy(xs[i], xout);
            }
            batch_inverse(zs, n);
            for ( int i = 0; i < n; i++ ) {
                felem xout;
                fmul(xout, xs[i], zs[i]);
                uint8_t pubkey[32], pubkey_hash[32];
                fcontract(pubkey, xout);
                // not entirely sure normalizing the representation of x is necessary but can't hurt
                fexpand(xout, pubkey);
                fcopy(xs[i], xout);
                sha256(pubkey, 32, pubkey_hash);
                uint64_t account_id = *((uint64_t*) pubkey_hash);

                unsigned int a = (pubkey_hash[0] << 24) | (pubkey_hash[1] << 16) | (pubkey_hash[2] << 8) | (pubkey_hash[3]);
                if((a==0x25c5a207) || (a==0x861fc1a3) || (a==0x65ae467f) || (a==0xba973233) || (a==0x6e01b0b7) || (a==0x28dca32c) || (a==0xf297ad07) || (a==0xed66fe31) || (a==0xba2d6f04) || (a==0xc846bf0c) || (a==0x4fa8cf07) || (a==0x4e6e2b3d) || (a==0x1febd530) || (a==0x780ad9aa) || (a==0xb60166f3) || (a==0xa0860100) || (a==0xe239bdb) || (a==0xe708b03a) || (a==0xb1efa06b) || (a==0xe2ea7edf) || (a==0x1c96882c)) {
                    boost::lock_guard<boost::recursive_mutex> lock(guard);
                    boost::multiprecision::cpp_int e = compute_exponent(exponents[i], doublings);
                    std::cout << "found share " << account_id << std::endl;
                    std::cout << "  pubkey = " << get_array(pubkey) << std::endl;
                    std::cout << "  pubhash = " << get_array(pubkey_hash) << std::endl;
                    std::cout << "  secret exponent = " << e << std::endl;

                    unsigned char net_order[32];
                    for(int i=0; i<32; ++i) {
                        int j = e.convert_to<int>();
                        net_order[31-i] = j & 0xFF;
                        e = e >> 8;
                    }
                    submit_share(account,get_array(net_order));


                }

            }
            checked += n;
        }
Beispiel #6
0
void zktest()
{
    /*
     # Given the public key of B (remote_pub), shows that the shared secret
     # between A and B was generated by A.
     # Returns zero-knowledge proof of shared Diffie-Hellman secret between A & B.
     def prove_shared_secret(self, remote_pub):
     G = self.G; prover_pub = self.public; phi = self. P - 1;
     secret = self.get_shared_secret(remote_pub)
     
     # Random key in the group Z_q
     randKey = DiffieHellman() # random secret
     commit1 = randKey.public
     commit2 = randKey.get_shared_secret(remote_pub)
     */
    void fdifference_backwards(uint64_t *out, const uint64_t *in); // output = in - output
    void fmul(uint64_t *output,const uint64_t *in,const uint64_t *in2);
    void fcontract(uint8_t *output, const uint64_t *input);
    void fexpand(uint64_t *output, const uint8_t *in);
    bits256 curve25519(bits256,bits256);
    static uint8_t _basepoint[32] = {9};
    bits320 randsecret,challenge,product,response,selfsecret,secret;
    bits256 remote_pub,basepoint,remote_secret,randkey,commit1,commit2,_secret,tmp,buf[8]; int32_t n = 0;
    tmp = GENESIS_PRIVKEY;
    _secret = curve25519(tmp,remote_pub);
    fexpand(secret.ulongs,_secret.bytes);
    randombytes(randkey.bytes,sizeof(randkey)), randkey.bytes[0] &= 248, randkey.bytes[31] &= 127, randkey.bytes[31] |= 64;
    randombytes(remote_secret.bytes,sizeof(remote_secret)), remote_secret.bytes[0] &= 248, remote_secret.bytes[31] &= 127, remote_secret.bytes[31] |= 64;
    memcpy(basepoint.bytes,_basepoint,sizeof(basepoint));
    remote_pub = curve25519(remote_secret,basepoint);
    fexpand(randsecret.ulongs,randkey.bytes);
    curve25519_donna(commit1.bytes,randkey.bytes,_basepoint);
    commit2 = curve25519(randkey,remote_pub);
    /*
     # shift and hash
     concat = str(G) + str(prover_pub) + str(remote_pub) + str(secret) + str(commit1) + str(commit2)
     h = hashlib.md5()
     h.update(concat.encode("utf-8"))
     challenge = int(h.hexdigest(), 16)
     product = (self.secret * challenge) % phi
     response = (randKey.secret - product) % phi
     
     return (secret, challenge, response)*/
    buf[n++] = GENESIS_PRIVKEY, buf[n++] = GENESIS_PUBKEY;
    buf[n++] = remote_pub, buf[n++] = _secret, buf[n++] = commit1, buf[n++] = commit2;
    memset(challenge.bytes,0,sizeof(challenge));
    calc_sha256(0,tmp.bytes,buf[0].bytes,n*sizeof(buf[0]));
    fexpand(challenge.ulongs,tmp.bytes);
    tmp = GENESIS_PRIVKEY;
    fexpand(selfsecret.ulongs,tmp.bytes);
    fmul(product.ulongs,selfsecret.ulongs,challenge.ulongs);
    response = product;
    fdifference_backwards(product.ulongs,randsecret.ulongs);
    /*
     # Verifies proof generated above. Verifier c is showing that
     # shared secret between A and B was generated by A.
     # returns 0 if if verification fails; returns shared secret otherwise
     def verify_shared_secret(self, prover_pub, remote_pub, secret, challenge,
     response):
     P = self.P; G = self.G ; public = self.public
     
     # g^r * (a's public key)^challenge
     commit1 = (pow(G, response, P) * pow(public, challenge, P)) % P
     
     # (b's public key)^response * (secret)^challenge
     commit2 = (pow(remote_pub, response, P) * pow(secret, challenge, P)) % P
     */
    bits256 _commit1b,_commit2b,_tmp2,_challenge,_response; bits320 Tmp,Tmp2,commit2b;
    fcontract(_challenge.bytes,challenge.ulongs);
    fcontract(_response.bytes,response.ulongs);
    tmp = curve25519(_secret,_challenge);
    _tmp2 = curve25519(remote_pub,_response);
    fexpand(Tmp.ulongs,tmp.bytes);
    fexpand(Tmp2.ulongs,_tmp2.bytes);
    fmul(commit2b.ulongs,Tmp.ulongs,Tmp2.ulongs);
    fcontract(_commit2b.bytes,commit2b.ulongs);
    printf("commits %llx %llx vs %llx %llx\n",commit1.txid,commit2.txid,_commit1b.txid,_commit2b.txid);
    /*
     # Shift and hash
     hasher = hashlib.md5()
     concat = str(G) + str(prover_pub) + str(remote_pub) + str(secret) + str(commit1) + str(commit2)
     hasher.update(concat.encode("utf-8"))
     check = int(hasher.hexdigest(), 16)
     
     if challenge == check:
     return secret
     else:
     return 0
     
     def main():
     a = DiffieHellman()
     b = DiffieHellman()
     results = a.prove_shared_secret(b.public)
     assert a.verify_shared_secret(a.public, b.public, results[0],  \
     results[1], results[2])
     */
}