Beispiel #1
0
/** Find orthogonal factor Q of rank 1 (or less) M **/
void do_rank1(HMatrix M, HMatrix Q)
{
    float v1[3], v2[3], s;
    int col;
    /* If rank(M) is 1, we should find a non-zero column in M */
    col = find_max_col(M);
    if (col<0) {mat_copy(Q,=,mat_id,4); return;} /* Rank is 0 */
Beispiel #2
0
 /** Find orthogonal factor Q of rank 1 (or less) M **/
 void do_rank1(_HMatrix M, _HMatrix Q)
 {
     double v1[3], v2[3], s;
     int col;
     mat_copy(Q,=,mat_id,4);
     /* If rank(M) is 1, we should find a non-zero column in M */
     col = find_max_col(M);
     if (col<0) return; /* Rank is 0 */
     v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
     make_reflector(v1, v1); reflect_cols(M, v1);
     v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
     make_reflector(v2, v2); reflect_rows(M, v2);
     s = M[2][2];
     if (s<0.0) Q[2][2] = -1.0;
     reflect_cols(Q, v1); reflect_rows(Q, v2);
 }
Beispiel #3
0
/** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/
void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q)
{
    float v1[3], v2[3];
    float w, x, y, z, c, s, d;
    int col;
    /* If rank(M) is 2, we should find a non-zero column in MadjT */
    col = find_max_col(MadjT);
    if (col<0) {
        do_rank1(M, Q);    /* Rank<2 */
        return;
    }
    v1[0] = MadjT[0][col];
    v1[1] = MadjT[1][col];
    v1[2] = MadjT[2][col];
    make_reflector(v1, v1);
    reflect_cols(M, v1);
    vcross(M[0], M[1], v2);
    make_reflector(v2, v2);
    reflect_rows(M, v2);
    w = M[0][0];
    x = M[0][1];
    y = M[1][0];
    z = M[1][1];
    if (w*z>x*y) {
        c = z+w;
        s = y-x;
        d = static_cast<float>(sqrt(c*c+s*s));
        c = c/d;
        s = s/d;
        Q[0][0] = Q[1][1] = c;
        Q[0][1] = -(Q[1][0] = s);
    } else {
        c = z-w;
        s = y+x;
        d = static_cast<float>(sqrt(c*c+s*s));
        c = c/d;
        s = s/d;
        Q[0][0] = -(Q[1][1] = c);
        Q[0][1] = Q[1][0] = s;
    }
    Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0;
    Q[2][2] = 1.0;
    reflect_cols(Q, v1);
    reflect_rows(Q, v2);
}
Beispiel #4
0
// Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose
void do_rank2(mat3& M, mat3 &MadjT, mat3& Q)
{
    vec3        v1, v2;
    nv_scalar   w, x, y, z, c, s, d;
    int         col;
    // If rank(M) is 2, we should find a non-zero column in MadjT
    col = find_max_col(MadjT);
    if (col<0) 
    {
        do_rank1(M, Q); 
        return;
    } // Rank<2
    v1[0] = MadjT[0][col]; 
    v1[1] = MadjT[1][col]; 
    v1[2] = MadjT[2][col];
    make_reflector(v1, v1); 
    reflect_cols(M, v1);
    cross(v2, M[0], M[1]);
    make_reflector(v2, v2); 
    reflect_rows(M, v2);
    w = M[0][0]; 
    x = M[0][1]; 
    y = M[1][0]; 
    z = M[1][1];
    if (w*z>x*y) 
    {
        c = z+w; s = y-x; d = sqrtf(c*c+s*s); c = c/d; s = s/d;
        Q(0,0) = Q(1,1) = c; Q(0,1) = -(Q(1,0) = s);
    }
    else 
    {
        c = z-w; s = y+x; d = sqrtf(c*c+s*s); c = c/d; s = s/d;
        Q(0,0) = -(Q(1,1) = c); Q(0,1) = Q(1,0) = s;
    }
    Q(0,2) = Q(2,0) = Q(1,2) = Q(2,1) = nv_zero; Q(2,2) = nv_one;
    reflect_cols(Q, v1); 
    reflect_rows(Q, v2);
}
Beispiel #5
0
// Find orthogonal factor Q of rank 1 (or less) M
void do_rank1(mat3 & M, mat3& Q)
{
    vec3        v1, v2;
    nv_scalar   s;
    int         col;

    Q = mat3_id;
    /* If rank(M) is 1, we should find a non-zero column in M */
    col = find_max_col(M);
    if ( col < 0 ) 
        return; /* Rank is 0 */
    v1 = M.col(col); 

    make_reflector(v1, v1); 
    reflect_cols(M, v1);

    v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
    make_reflector(v2, v2); reflect_rows(M, v2);
    s = M[2][2];
    if (s < nv_zero) 
        Q(2,2) = -nv_one;
    reflect_cols(Q, v1); reflect_rows(Q, v2);
}