Beispiel #1
0
// initialize coherent demodulator
void cpfskdem_init_coherent(cpfskdem _q)
{
    // specify coherent receiver
    _q->demod_type = CPFSKDEM_COHERENT;

    // set demodulate function pointer
    _q->demodulate = cpfskdem_demodulate_coherent;

    // create object depending upon input type
    float bw = 0.0f;
    float beta = 0.0f;
    float gmsk_bt = _q->beta;
    switch(_q->type) {
    case LIQUID_CPFSK_SQUARE:
        //bw = 0.9f / (float)k;
        bw = 0.4f;
        _q->symbol_delay = _q->m;
        _q->data.coherent.mf = firfilt_crcf_create_kaiser(2*_q->k*_q->m+1, bw, 60.0f, 0.0f);
        firfilt_crcf_set_scale(_q->data.coherent.mf, 2.0f * bw);
        break;
    case LIQUID_CPFSK_RCOS_FULL:
        if (_q->M==2) {
            _q->data.coherent.mf = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,_q->k,_q->m,0.5f,0);
            firfilt_crcf_set_scale(_q->data.coherent.mf, 1.33f / (float)_q->k);
            _q->symbol_delay = _q->m;
        } else {
            _q->data.coherent.mf = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,_q->k/2,2*_q->m,0.9f,0);
            firfilt_crcf_set_scale(_q->data.coherent.mf, 3.25f / (float)_q->k);
            _q->symbol_delay = 0; // TODO: fix this value
        }
        break;
    case LIQUID_CPFSK_RCOS_PARTIAL:
        if (_q->M==2) {
            _q->data.coherent.mf = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,_q->k,_q->m,0.3f,0);
            firfilt_crcf_set_scale(_q->data.coherent.mf, 1.10f / (float)_q->k);
            _q->symbol_delay = _q->m;
        } else {
            _q->data.coherent.mf = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,_q->k/2,2*_q->m,0.27f,0);
            firfilt_crcf_set_scale(_q->data.coherent.mf, 2.90f / (float)_q->k);
            _q->symbol_delay = 0; // TODO: fix this value
        }
        break;
    case LIQUID_CPFSK_GMSK:
        bw = 0.5f / (float)_q->k;
        // TODO: figure out beta value here
        beta = (_q->M == 2) ? 0.8*gmsk_bt : 1.0*gmsk_bt;
        _q->data.coherent.mf = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,_q->k,_q->m,_q->beta,0);
        firfilt_crcf_set_scale(_q->data.coherent.mf, 2.0f * bw);
        _q->symbol_delay = _q->m;
        break;
    default:
        fprintf(stderr,"error: cpfskdem_init_coherent(), invalid tx filter type\n");
        exit(1);
    }
}
int main(int argc, char*argv[])
{
    // options
    unsigned int sequence_len =   80;   // number of sync symbols
    unsigned int k            =    2;   // samples/symbol
    unsigned int m            =    7;   // filter delay [symbols]
    float        beta         = 0.3f;   // excess bandwidth factor
    int          ftype        = LIQUID_FIRFILT_ARKAISER;
    float        gamma        = 10.0f;  // channel gain
    float        tau          = -0.3f;  // fractional sample timing offset
    float        dphi         = -0.01f; // carrier frequency offset
    float        phi          =  0.5f;  // carrier phase offset
    float        SNRdB        = 20.0f;  // signal-to-noise ratio [dB]
    float        threshold    =  0.5f;  // detection threshold

    int dopt;
    while ((dopt = getopt(argc,argv,"hn:k:m:b:F:T:S:t:")) != EOF) {
        switch (dopt) {
        case 'h': usage();                      return 0;
        case 'n': sequence_len  = atoi(optarg); break;
        case 'k': k             = atoi(optarg); break;
        case 'm': m             = atoi(optarg); break;
        case 'b': beta          = atof(optarg); break;
        case 'F': dphi          = atof(optarg); break;
        case 'T': tau           = atof(optarg); break;
        case 'S': SNRdB         = atof(optarg); break;
        case 't': threshold     = atof(optarg); break;
        default:
            exit(1);
        }
    }

    unsigned int i;

    // validate input
    if (tau < -0.5f || tau > 0.5f) {
        fprintf(stderr,"error: %s, fractional sample offset must be in [-0.5,0.5]\n", argv[0]);
        exit(1);
    }

    // generate synchronization sequence (QPSK symbols)
    float complex sequence[sequence_len];
    for (i=0; i<sequence_len; i++) {
        sequence[i] = (rand() % 2 ? 1.0f : -1.0f) * M_SQRT1_2 +
                      (rand() % 2 ? 1.0f : -1.0f) * M_SQRT1_2 * _Complex_I;
    }

    //
    float tau_hat   = 0.0f;
    float gamma_hat = 0.0f;
    float dphi_hat  = 0.0f;
    float phi_hat   = 0.0f;
    int   frame_detected = 0;

    // create detector
    qdetector_cccf q = qdetector_cccf_create_linear(sequence, sequence_len, ftype, k, m, beta);
    qdetector_cccf_set_threshold(q, threshold);
    qdetector_cccf_print(q);

    //
    unsigned int seq_len     = qdetector_cccf_get_seq_len(q);
    unsigned int buf_len     = qdetector_cccf_get_buf_len(q);
    unsigned int num_samples = 2*buf_len;   // double buffer length to ensure detection
    unsigned int num_symbols = buf_len;

    // arrays
    float complex y[num_samples];       // received signal
    float complex syms_rx[num_symbols]; // recovered symbols

    // get pointer to sequence and generate full sequence
    float complex * v = (float complex*) qdetector_cccf_get_sequence(q);
    unsigned int filter_delay = 15;
    firfilt_crcf filter = firfilt_crcf_create_kaiser(2*filter_delay+1, 0.4f, 60.0f, -tau);
    float        nstd        = 0.1f;
    for (i=0; i<num_samples; i++) {
        // add delay
        firfilt_crcf_push(filter, i < seq_len ? v[i] : 0);
        firfilt_crcf_execute(filter, &y[i]);

        // channel gain
        y[i] *= gamma;

        // carrier offset
        y[i] *= cexpf(_Complex_I*(dphi*i + phi));
        
        // noise
        y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
    }
    firfilt_crcf_destroy(filter);

    // run detection on sequence
    for (i=0; i<num_samples; i++) {
        v = qdetector_cccf_execute(q,y[i]);

        if (v != NULL) {
            printf("\nframe detected!\n");
            frame_detected = 1;

            // get statistics
            tau_hat   = qdetector_cccf_get_tau(q);
            gamma_hat = qdetector_cccf_get_gamma(q);
            dphi_hat  = qdetector_cccf_get_dphi(q);
            phi_hat   = qdetector_cccf_get_phi(q);
            break;
        }
    }

    unsigned int num_syms_rx = 0;   // output symbol counter
    unsigned int counter     = 0;   // decimation counter
    if (frame_detected) {
        // recover symbols
        firfilt_crcf mf = firfilt_crcf_create_rnyquist(ftype, k, m, beta, tau_hat);
        firfilt_crcf_set_scale(mf, 1.0f / (float)(k*gamma_hat));
        nco_crcf     nco = nco_crcf_create(LIQUID_VCO);
        nco_crcf_set_frequency(nco, dphi_hat);
        nco_crcf_set_phase    (nco,  phi_hat);

        for (i=0; i<buf_len; i++) {
            // 
            float complex sample;
            nco_crcf_mix_down(nco, v[i], &sample);
            nco_crcf_step(nco);

            // apply decimator
            firfilt_crcf_push(mf, sample);
            counter++;
            if (counter == k-1)
                firfilt_crcf_execute(mf, &syms_rx[num_syms_rx++]);
            counter %= k;
        }

        nco_crcf_destroy(nco);
        firfilt_crcf_destroy(mf);
    }

    // destroy objects
    qdetector_cccf_destroy(q);

    // print results
    printf("\n");
    printf("frame detected  :   %s\n", frame_detected ? "yes" : "no");
    printf("  gamma hat     : %8.3f, actual=%8.3f (error=%8.3f)\n",            gamma_hat, gamma, gamma_hat - gamma);
    printf("  tau hat       : %8.3f, actual=%8.3f (error=%8.3f) samples\n",    tau_hat,   tau,   tau_hat   - tau  );
    printf("  dphi hat      : %8.5f, actual=%8.5f (error=%8.5f) rad/sample\n", dphi_hat,  dphi,  dphi_hat  - dphi );
    printf("  phi hat       : %8.5f, actual=%8.5f (error=%8.5f) radians\n",    phi_hat,   phi,   phi_hat   - phi  );
    printf("  symbols rx    : %u\n", num_syms_rx);
    printf("\n");

    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"sequence_len= %u;\n", sequence_len);
    fprintf(fid,"num_samples = %u;\n", num_samples);

    fprintf(fid,"y = zeros(1,num_samples);\n");
    for (i=0; i<num_samples; i++)
        fprintf(fid,"y(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));

    fprintf(fid,"num_syms_rx = %u;\n", num_syms_rx);
    fprintf(fid,"syms_rx     = zeros(1,num_syms_rx);\n");
    for (i=0; i<num_syms_rx; i++)
        fprintf(fid,"syms_rx(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(syms_rx[i]), cimagf(syms_rx[i]));

    fprintf(fid,"t=[0:(num_samples-1)];\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(4,1,1);\n");
    fprintf(fid,"  plot(t,real(y), t,imag(y));\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('received signal');\n");
    fprintf(fid,"subplot(4,1,2:4);\n");
    fprintf(fid,"  plot(real(syms_rx), imag(syms_rx), 'x');\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.5);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('real');\n");
    fprintf(fid,"  ylabel('imag');\n");

    fclose(fid);
    printf("results written to '%s'\n", OUTPUT_FILENAME);

    return 0;
}
int main(int argc, char*argv[]) {
    // options
    unsigned int k  = 8;        // filter samples/symbol
    unsigned int bps= 1;        // number of bits/symbol
    float h         = 0.5f;     // modulation index (h=1/2 for MSK)
    unsigned int num_data_symbols = 20; // number of data symbols
    float SNRdB     = 80.0f;    // signal-to-noise ratio [dB]
    float cfo       = 0.0f;     // carrier frequency offset
    float cpo       = 0.0f;     // carrier phase offset
    float tau       = 0.0f;     // fractional symbol offset
    enum {
        TXFILT_SQUARE=0,
        TXFILT_RCOS_FULL,
        TXFILT_RCOS_HALF,
        TXFILT_GMSK,
    } tx_filter_type = TXFILT_SQUARE;
    float gmsk_bt = 0.35f;              // GMSK bandwidth-time factor

    int dopt;
    while ((dopt = getopt(argc,argv,"ht:k:b:H:B:n:s:F:P:T:")) != EOF) {
        switch (dopt) {
        case 'h': usage();                         return 0;
        case 't':
            if (strcmp(optarg,"square")==0) {
                tx_filter_type = TXFILT_SQUARE;
            } else if (strcmp(optarg,"rcos-full")==0) {
                tx_filter_type = TXFILT_RCOS_FULL;
            } else if (strcmp(optarg,"rcos-half")==0) {
                tx_filter_type = TXFILT_RCOS_HALF;
            } else if (strcmp(optarg,"gmsk")==0) {
                tx_filter_type = TXFILT_GMSK;
            } else {
                fprintf(stderr,"error: %s, unknown filter type '%s'\n", argv[0], optarg);
                exit(1);
            }
            break;
        case 'k': k = atoi(optarg);                break;
        case 'b': bps = atoi(optarg);              break;
        case 'H': h = atof(optarg);                break;
        case 'B': gmsk_bt = atof(optarg);          break;
        case 'n': num_data_symbols = atoi(optarg); break;
        case 's': SNRdB = atof(optarg);            break;
        case 'F': cfo   = atof(optarg);            break;
        case 'P': cpo   = atof(optarg);            break;
        case 'T': tau   = atof(optarg);            break;
        default:
            exit(1);
        }
    }

    unsigned int i;

    // derived values
    unsigned int num_symbols = num_data_symbols;
    unsigned int num_samples = k*num_symbols;
    unsigned int M = 1 << bps;              // constellation size
    float nstd = powf(10.0f, -SNRdB/20.0f);

    // arrays
    unsigned char sym_in[num_symbols];      // input symbols
    float phi[num_samples];                 // transmitted phase
    float complex x[num_samples];           // transmitted signal
    float complex y[num_samples];           // received signal
    float complex z[num_samples];           // output...
    //unsigned char sym_out[num_symbols];     // output symbols

    unsigned int ht_len = 0;
    unsigned int tx_delay = 0;
    float * ht = NULL;
    switch (tx_filter_type) {
    case TXFILT_SQUARE:
        // regular MSK
        ht_len = k;
        tx_delay = 1;
        ht = (float*) malloc(ht_len *sizeof(float));
        for (i=0; i<ht_len; i++)
            ht[i] = h * M_PI / (float)k;
        break;
    case TXFILT_RCOS_FULL:
        // full-response raised-cosine pulse
        ht_len = k;
        tx_delay = 1;
        ht = (float*) malloc(ht_len *sizeof(float));
        for (i=0; i<ht_len; i++)
            ht[i] = h * M_PI / (float)k * (1.0f - cosf(2.0f*M_PI*i/(float)ht_len));
        break;
    case TXFILT_RCOS_HALF:
        // partial-response raised-cosine pulse
        ht_len = 3*k;
        tx_delay = 2;
        ht = (float*) malloc(ht_len *sizeof(float));
        for (i=0; i<ht_len; i++)
            ht[i] = 0.0f;
        for (i=0; i<2*k; i++)
            ht[i+k/2] = h * 0.5f * M_PI / (float)k * (1.0f - cosf(2.0f*M_PI*i/(float)(2*k)));
        break;
    case TXFILT_GMSK:
        ht_len = 2*k*3+1+k;
        tx_delay = 4;
        ht = (float*) malloc(ht_len *sizeof(float));
        for (i=0; i<ht_len; i++)
            ht[i] = 0.0f;
        liquid_firdes_gmsktx(k,3,gmsk_bt,0.0f,&ht[k/2]);
        for (i=0; i<ht_len; i++)
            ht[i] *= h * 2.0f / (float)k;
        break;
    default:
        fprintf(stderr,"error: %s, invalid tx filter type\n", argv[0]);
        exit(1);
    }
    for (i=0; i<ht_len; i++)
        printf("ht(%3u) = %12.8f;\n", i+1, ht[i]);
    firinterp_rrrf interp_tx = firinterp_rrrf_create(k, ht, ht_len);

    // generate symbols and interpolate
    // phase-accumulating filter (trapezoidal integrator)
    float b[2] = {0.5f,  0.5f};
    if (tx_filter_type == TXFILT_SQUARE) {
        // square filter: rectangular integration with one sample of delay
        b[0] = 0.0f;
        b[1] = 1.0f;
    }
    float a[2] = {1.0f, -1.0f};
    iirfilt_rrrf integrator = iirfilt_rrrf_create(b,2,a,2);
    float theta = 0.0f;
    for (i=0; i<num_symbols; i++) {
        sym_in[i] = rand() % M;
        float v = 2.0f*sym_in[i] - (float)(M-1);    // +/-1, +/-3, ... +/-(M-1)
        firinterp_rrrf_execute(interp_tx, v, &phi[k*i]);

        // accumulate phase
        unsigned int j;
        for (j=0; j<k; j++) {
            iirfilt_rrrf_execute(integrator, phi[i*k+j], &theta);
            x[i*k+j] = cexpf(_Complex_I*theta);
        }
    }
    iirfilt_rrrf_destroy(integrator);

    // push through channel
    for (i=0; i<num_samples; i++) {
        // add carrier frequency/phase offset
        y[i] = x[i]*cexpf(_Complex_I*(cfo*i + cpo));

        // add noise
        y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
    }
    
    // create decimator
    unsigned int m = 3;
    float bw = 0.0f;
    float beta = 0.0f;
    firfilt_crcf decim_rx = NULL;
    switch (tx_filter_type) {
    case TXFILT_SQUARE:
        //bw = 0.9f / (float)k;
        bw = 0.4f;
        decim_rx = firfilt_crcf_create_kaiser(2*k*m+1, bw, 60.0f, 0.0f);
        firfilt_crcf_set_scale(decim_rx, 2.0f * bw);
        break;
    case TXFILT_RCOS_FULL:
        if (M==2) {
            decim_rx = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,k,m,0.5f,0);
            firfilt_crcf_set_scale(decim_rx, 1.33f / (float)k);
        } else {
            decim_rx = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,k/2,2*m,0.9f,0);
            firfilt_crcf_set_scale(decim_rx, 3.25f / (float)k);
        }
        break;
    case TXFILT_RCOS_HALF:
        if (M==2) {
            decim_rx = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,k,m,0.3f,0);
            firfilt_crcf_set_scale(decim_rx, 1.10f / (float)k);
        } else {
            decim_rx = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,k/2,2*m,0.27f,0);
            firfilt_crcf_set_scale(decim_rx, 2.90f / (float)k);
        }
        break;
    case TXFILT_GMSK:
        bw = 0.5f / (float)k;
        // TODO: figure out beta value here
        beta = (M == 2) ? 0.8*gmsk_bt : 1.0*gmsk_bt;
        decim_rx = firfilt_crcf_create_rnyquist(LIQUID_FIRFILT_GMSKRX,k,m,beta,0);
        firfilt_crcf_set_scale(decim_rx, 2.0f * bw);
        break;
    default:
        fprintf(stderr,"error: %s, invalid tx filter type\n", argv[0]);
        exit(1);
    }
    printf("bw = %f\n", bw);

    // run receiver
    unsigned int n=0;
    unsigned int num_errors = 0;
    unsigned int num_symbols_checked = 0;
    float complex z_prime = 0.0f;
    for (i=0; i<num_samples; i++) {
        // push through filter
        firfilt_crcf_push(decim_rx, y[i]);
        firfilt_crcf_execute(decim_rx, &z[i]);

        // decimate output
        if ( (i%k)==0 ) {
            // compute instantaneous frequency scaled by modulation index
            float phi_hat = cargf(conjf(z_prime) * z[i]) / (h * M_PI);

            // estimate transmitted symbol
            float v = (phi_hat + (M-1.0))*0.5f;
            unsigned int sym_out = ((int) roundf(v)) % M;

            // save current point
            z_prime = z[i];

            // print result to screen
            printf("%3u : %12.8f + j%12.8f, <f=%8.4f : %8.4f> (%1u)",
                    n, crealf(z[i]), cimagf(z[i]), phi_hat, v, sym_out);
            if (n >= m+tx_delay) {
                num_errors += (sym_out == sym_in[n-m-tx_delay]) ? 0 : 1;
                num_symbols_checked++;
                printf(" (%1u)\n", sym_in[n-m-tx_delay]);
            } else {
                printf("\n");
            }
            n++;
        }
    }

    // print number of errors
    printf("errors : %3u / %3u\n", num_errors, num_symbols_checked);

    // destroy objects
    firinterp_rrrf_destroy(interp_tx);
    firfilt_crcf_destroy(decim_rx);

    // compute power spectral density of transmitted signal
    unsigned int nfft = 1024;
    float psd[nfft];
    spgramcf periodogram = spgramcf_create_kaiser(nfft, nfft/2, 8.0f);
    spgramcf_estimate_psd(periodogram, y, num_samples, psd);
    spgramcf_destroy(periodogram);

    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"k = %u;\n", k);
    fprintf(fid,"h = %f;\n", h);
    fprintf(fid,"num_symbols = %u;\n", num_symbols);
    fprintf(fid,"num_samples = %u;\n", num_samples);
    fprintf(fid,"nfft        = %u;\n", nfft);
    fprintf(fid,"delay       = %u; %% receive filter delay\n", tx_delay);

    fprintf(fid,"x   = zeros(1,num_samples);\n");
    fprintf(fid,"y   = zeros(1,num_samples);\n");
    fprintf(fid,"z   = zeros(1,num_samples);\n");
    fprintf(fid,"phi = zeros(1,num_samples);\n");
    for (i=0; i<num_samples; i++) {
        fprintf(fid,"x(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(x[i]), cimagf(x[i]));
        fprintf(fid,"y(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));
        fprintf(fid,"z(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(z[i]), cimagf(z[i]));
        fprintf(fid,"phi(%4u) = %12.8f;\n", i+1, phi[i]);
    }
    // save PSD
    fprintf(fid,"psd = zeros(1,nfft);\n");
    for (i=0; i<nfft; i++)
        fprintf(fid,"psd(%4u) = %12.8f;\n", i+1, psd[i]);

    fprintf(fid,"t=[0:(num_samples-1)]/k;\n");
    fprintf(fid,"i = 1:k:num_samples;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(3,4,1:3);\n");
    fprintf(fid,"  plot(t,real(x),'-', t(i),real(x(i)),'bs','MarkerSize',4,...\n");
    fprintf(fid,"       t,imag(x),'-', t(i),imag(x(i)),'gs','MarkerSize',4);\n");
    fprintf(fid,"  axis([0 num_symbols -1.2 1.2]);\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('x(t)');\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,4,5:7);\n");
    fprintf(fid,"  plot(t-delay,real(z),'-', t(i)-delay,real(z(i)),'bs','MarkerSize',4,...\n");
    fprintf(fid,"       t-delay,imag(z),'-', t(i)-delay,imag(z(i)),'gs','MarkerSize',4);\n");
    fprintf(fid,"  axis([0 num_symbols -1.2 1.2]);\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('\"matched\" filter output');\n");
    fprintf(fid,"  grid on;\n");
    // plot I/Q constellations
    fprintf(fid,"subplot(3,4,4);\n");
    fprintf(fid,"  plot(real(y),imag(y),'-',real(y(i)),imag(y(i)),'rs','MarkerSize',3);\n");
    fprintf(fid,"  xlabel('I');\n");
    fprintf(fid,"  ylabel('Q');\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.2);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,4,8);\n");
    fprintf(fid,"  plot(real(z),imag(z),'-',real(z(i)),imag(z(i)),'rs','MarkerSize',3);\n");
    fprintf(fid,"  xlabel('I');\n");
    fprintf(fid,"  ylabel('Q');\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.2);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    // plot PSD
    fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"subplot(3,4,9:12);\n");
    fprintf(fid,"  plot(f,psd,'LineWidth',1.5);\n");
    fprintf(fid,"  axis([-0.5 0.5 -40 20]);\n");
    fprintf(fid,"  xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"  ylabel('PSD [dB]');\n");
    fprintf(fid,"  grid on;\n");

#if 0
    fprintf(fid,"figure;\n");
    fprintf(fid,"  %% compute instantaneous received frequency\n");
    fprintf(fid,"  freq_rx = arg( conj(z(:)) .* circshift(z(:),-1) )';\n");
    fprintf(fid,"  freq_rx(1:(k*delay)) = 0;\n");
    fprintf(fid,"  freq_rx(end) = 0;\n");
    fprintf(fid,"  %% compute instantaneous tx/rx phase\n");
    if (tx_filter_type == TXFILT_SQUARE) {
        fprintf(fid,"  theta_tx = filter([0 1],[1 -1],phi)/(h*pi);\n");
        fprintf(fid,"  theta_rx = filter([0 1],[1 -1],freq_rx)/(h*pi);\n");
    } else {
        fprintf(fid,"  theta_tx = filter([0.5 0.5],[1 -1],phi)/(h*pi);\n");
        fprintf(fid,"  theta_rx = filter([0.5 0.5],[1 -1],freq_rx)/(h*pi);\n");
    }
    fprintf(fid,"  %% plot instantaneous tx/rx phase\n");
    fprintf(fid,"  plot(t,      theta_tx,'-b', t(i),      theta_tx(i),'sb',...\n");
    fprintf(fid,"       t-delay,theta_rx,'-r', t(i)-delay,theta_rx(i),'sr');\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('instantaneous phase/(h \\pi)');\n");
    fprintf(fid,"  legend('transmitted','syms','received/filtered','syms','location','northwest');\n");
    fprintf(fid,"  grid on;\n");
#else
    // plot filter response
    fprintf(fid,"ht_len = %u;\n", ht_len);
    fprintf(fid,"ht     = zeros(1,ht_len);\n");
    for (i=0; i<ht_len; i++)
        fprintf(fid,"ht(%4u) = %12.8f;\n", i+1, ht[i]);
    fprintf(fid,"gt1 = filter([0.5 0.5],[1 -1],ht) / (pi*h);\n");
    fprintf(fid,"gt2 = filter([0.0 1.0],[1 -1],ht) / (pi*h);\n");
    fprintf(fid,"tfilt = [0:(ht_len-1)]/k - delay + 0.5;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"plot(tfilt,ht, '-x','MarkerSize',4,...\n");
    fprintf(fid,"     tfilt,gt1,'-x','MarkerSize',4,...\n");
    fprintf(fid,"     tfilt,gt2,'-x','MarkerSize',4);\n");
    fprintf(fid,"axis([tfilt(1) tfilt(end) -0.1 1.1]);\n");
    fprintf(fid,"legend('pulse','trap. int.','rect. int.','location','northwest');\n");
    fprintf(fid,"grid on;\n");
#endif

    fclose(fid);
    printf("results written to '%s'\n", OUTPUT_FILENAME);
    
    // free allocated filter memory
    free(ht);

    return 0;
}