code *orthxmm(elem *e, regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; code *c = codelem(e1,&retregs,FALSE); // eval left leaf unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; code *cr = scodelem(e2, &rretregs, retregs, TRUE); // eval right leaf unsigned op = xmmoperator(e1->Ety, e->Eoper); unsigned rreg = findreg(rretregs); // float + ifloat is not actually addition if ((e->Eoper == OPadd || e->Eoper == OPmin) && ((tyreal(e1->Ety) && tyimaginary(e2->Ety)) || (tyreal(e2->Ety) && tyimaginary(e1->Ety)))) { retregs |= rretregs; c = cat(c, cr); if (e->Eoper == OPmin) { unsigned nretregs = XMMREGS & ~retregs; unsigned sreg; // hold sign bit unsigned sz = tysize[tybasic(e1->Ety)]; c = cat(c,allocreg(&nretregs,&sreg,e2->Ety)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; c = cat(c, movxmmconst(sreg, sz, signbit, 0)); c = cat(c, getregs(nretregs)); unsigned xop = (sz == 8) ? XORPD : XORPS; // XORPD/S rreg,sreg c = cat(c, gen2(CNIL,xop,modregxrmx(3,rreg-XMM0,sreg-XMM0))); } if (retregs != *pretregs) c = cat(c, fixresult(e,retregs,pretregs)); return c; } /* We should take advantage of mem addressing modes for OP XMM,MEM * but we do not at the moment. */ code *cg; if (OTrel(e->Eoper)) { retregs = mPSW; cg = NULL; code *cc = gen2(CNIL,op,modregxrmx(3,rreg-XMM0,reg-XMM0)); return cat4(c,cr,cg,cc); } else cg = getregs(retregs); code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); if (retregs != *pretregs) co = cat(co,fixresult(e,retregs,pretregs)); return cat4(c,cr,cg,co); }
code *xmmneg(elem *e,regm_t *pretregs) { //printf("xmmneg()\n"); //elem_print(e); assert(*pretregs); tym_t tyml = tybasic(e->E1->Ety); int sz = _tysize[tyml]; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; /* Generate: * MOV reg,e1 * MOV rreg,signbit * XOR reg,rreg */ CodeBuilder cdb; cdb.append(codelem(e->E1,&retregs,FALSE)); cdb.append(getregs(retregs)); unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; unsigned rreg; cdb.append(allocreg(&rretregs,&rreg,tyml)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; cdb.append(movxmmconst(rreg, sz, signbit, 0)); cdb.append(getregs(retregs)); unsigned op = (sz == 8) ? XORPD : XORPS; // XORPD/S reg,rreg cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
code *xmmneg(elem *e,regm_t *pretregs) { //printf("xmmneg()\n"); //elem_print(e); assert(*pretregs); tym_t tyml = tybasic(e->E1->Ety); int sz = tysize[tyml]; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; /* Generate: * MOV reg,e1 * MOV rreg,signbit * XOR reg,rreg */ code *cl = codelem(e->E1,&retregs,FALSE); cl = cat(cl,getregs(retregs)); unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; unsigned rreg; cl = cat(cl,allocreg(&rretregs,&rreg,tyml)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; code *c = movxmmconst(rreg, sz, signbit, 0); code *cg = getregs(retregs); unsigned op = (sz == 8) ? XORPD : XORPS; // XORPD/S reg,rreg code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); co = cat(co,fixresult(e,retregs,pretregs)); return cat4(cl,c,cg,co); }
code *cdsetjmp(elem *e,regm_t *pretregs) { code cs; code *c; regm_t retregs; unsigned stackpushsave; unsigned flag; c = NULL; stackpushsave = stackpush; #if SCPP if (CPP && (funcsym_p->Sfunc->Fflags3 & Fcppeh || usednteh & NTEHcpp)) { /* If in C++ try block If the frame that is calling setjmp has a try,catch block then the call to setjmp3 is as follows: __setjmp3(environment,3,__cpp_longjmp_unwind,trylevel,funcdata); __cpp_longjmp_unwind is a routine in the RTL. This is a stdcall routine that will deal with unwinding for CPP Frames. trylevel is the value that gets incremented at each catch, constructor invocation. funcdata is the same value that you put into EAX prior to cppframehandler getting called. */ symbol *s; s = except_gensym(); if (!s) goto L1; c = gencs(c,0x68,0,FLextern,s); // PUSH &scope_table stackpush += 4; genadjesp(c,4); c = genc1(c,0xFF,modregrm(1,6,BP),FLconst,(targ_uns)-4); // PUSH trylevel stackpush += 4; genadjesp(c,4); cs.Iop = 0x68; cs.Iflags = CFoff; cs.Irex = 0; cs.IFL2 = FLextern; cs.IEVsym2 = rtlsym[RTLSYM_CPP_LONGJMP]; cs.IEVoffset2 = 0; c = gen(c,&cs); // PUSH &_cpp_longjmp_unwind stackpush += 4; genadjesp(c,4); flag = 3; } else #endif if (funcsym_p->Sfunc->Fflags3 & Fnteh) { /* If in NT SEH try block If the frame that is calling setjmp has a try, except block then the call to setjmp3 is as follows: __setjmp3(environment,2,__seh_longjmp_unwind,trylevel); __seth_longjmp_unwind is supplied by the RTL and is a stdcall function. It is the name that MSOFT uses, we should probably use the same one. trylevel is the value that you increment at each try and decrement at the close of the try. This corresponds to the index field of the ehrec. */ int sindex_off; sindex_off = 20; // offset of __context.sindex cs.Iop = 0xFF; cs.Irm = modregrm(2,6,BPRM); cs.Iflags = 0; cs.Irex = 0; cs.IFL1 = FLbprel; cs.IEVsym1 = nteh_contextsym(); cs.IEVoffset1 = sindex_off; c = gen(c,&cs); // PUSH scope_index stackpush += 4; genadjesp(c,4); cs.Iop = 0x68; cs.Iflags = CFoff; cs.Irex = 0; cs.IFL2 = FLextern; cs.IEVsym2 = rtlsym[RTLSYM_LONGJMP]; cs.IEVoffset2 = 0; c = gen(c,&cs); // PUSH &_seh_longjmp_unwind stackpush += 4; genadjesp(c,4); flag = 2; } else { /* If the frame calling setjmp has neither a try..except, nor a try..catch, then call setjmp3 as follows: _setjmp3(environment,0) */ L1: flag = 0; } cs.Iop = 0x68; cs.Iflags = 0; cs.Irex = 0; cs.IFL2 = FLconst; cs.IEV2.Vint = flag; c = gen(c,&cs); // PUSH flag stackpush += 4; genadjesp(c,4); c = cat(c,params(e->E1,REGSIZE)); c = cat(c,getregs(~rtlsym[RTLSYM_SETJMP3]->Sregsaved & (ALLREGS | mES))); gencs(c,0xE8,0,FLfunc,rtlsym[RTLSYM_SETJMP3]); // CALL __setjmp3 c = genc2(c,0x81,modregrm(3,0,SP),stackpush - stackpushsave); // ADD ESP,8 genadjesp(c,-(stackpush - stackpushsave)); stackpush = stackpushsave; retregs = regmask(e->Ety, TYnfunc); return cat(c,fixresult(e,retregs,pretregs)); }
code *orthxmm(elem *e, regm_t *pretregs) { //printf("orthxmm(e = %p, *pretregs = %s)\n", e, regm_str(*pretregs)); elem *e1 = e->E1; elem *e2 = e->E2; // float + ifloat is not actually addition if ((e->Eoper == OPadd || e->Eoper == OPmin) && ((tyreal(e1->Ety) && tyimaginary(e2->Ety)) || (tyreal(e2->Ety) && tyimaginary(e1->Ety)))) { regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; unsigned reg; regm_t rretregs; unsigned rreg; if (tyreal(e1->Ety)) { reg = findreg(retregs); rreg = findreg(retregs & ~mask[reg]); retregs = mask[reg]; rretregs = mask[rreg]; } else { // Pick the second register, not the first rreg = findreg(retregs); rretregs = mask[rreg]; reg = findreg(retregs & ~rretregs); retregs = mask[reg]; } assert(retregs && rretregs); CodeBuilder cdb; cdb.append(codelem(e1,&retregs,FALSE)); // eval left leaf cdb.append(scodelem(e2, &rretregs, retregs, TRUE)); // eval right leaf retregs |= rretregs; if (e->Eoper == OPmin) { unsigned nretregs = XMMREGS & ~retregs; unsigned sreg; // hold sign bit unsigned sz = tysize(e1->Ety); cdb.append(allocreg(&nretregs,&sreg,e2->Ety)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; cdb.append(movxmmconst(sreg, sz, signbit, 0)); cdb.append(getregs(nretregs)); unsigned xop = (sz == 8) ? XORPD : XORPS; // XORPD/S rreg,sreg cdb.gen2(xop,modregxrmx(3,rreg-XMM0,sreg-XMM0)); } if (retregs != *pretregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); } regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; CodeBuilder cdb; cdb.append(codelem(e1,&retregs,FALSE)); // eval left leaf unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; cdb.append(scodelem(e2, &rretregs, retregs, TRUE)); // eval right leaf unsigned rreg = findreg(rretregs); unsigned op = xmmoperator(e1->Ety, e->Eoper); /* We should take advantage of mem addressing modes for OP XMM,MEM * but we do not at the moment. */ if (OTrel(e->Eoper)) { retregs = mPSW; cdb.gen2(op,modregxrmx(3,rreg-XMM0,reg-XMM0)); checkSetVex(cdb.last(), e1->Ety); return cdb.finish(); } else cdb.append(getregs(retregs)); cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); checkSetVex(cdb.last(), e1->Ety); if (retregs != *pretregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
code *xmmpost(elem *e,regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; tym_t ty1 = tybasic(e1->Ety); CodeBuilder cdb; regm_t retregs; unsigned reg; bool regvar = FALSE; if (config.flags4 & CFG4optimized) { // Be careful of cases like (x = x+x+x). We cannot evaluate in // x if x is in a register. unsigned varreg; regm_t varregm; if (isregvar(e1,&varregm,&varreg) && // if lvalue is register variable doinreg(e1->EV.sp.Vsym,e2) // and we can compute directly into it ) { regvar = TRUE; retregs = varregm; reg = varreg; // evaluate directly in target register cdb.append(getregs(retregs)); // destroy these regs } } code cs; if (!regvar) { code *c = getlvalue(&cs,e1,0); // get EA cdb.append(c); retregs = XMMREGS & ~*pretregs; if (!retregs) retregs = XMMREGS; c = allocreg(&retregs,®,ty1); cdb.append(c); cs.Iop = xmmload(ty1, true); // MOVSD xmm,xmm_m64 code_newreg(&cs,reg - XMM0); cdb.gen(&cs); checkSetVex(cdb.last(), ty1); } // Result register regm_t resultregs = XMMREGS & *pretregs & ~retregs; if (!resultregs) resultregs = XMMREGS & ~retregs; unsigned resultreg; code *c = allocreg(&resultregs, &resultreg, ty1); cdb.append(c); cdb.gen2(xmmload(ty1,true),modregxrmx(3,resultreg-XMM0,reg-XMM0)); // MOVSS/D resultreg,reg checkSetVex(cdb.last(), ty1); regm_t rretregs = XMMREGS & ~(*pretregs | retregs | resultregs); if (!rretregs) rretregs = XMMREGS & ~(retregs | resultregs); c = codelem(e2,&rretregs,FALSE); // eval right leaf cdb.append(c); unsigned rreg = findreg(rretregs); unsigned op = xmmoperator(e1->Ety, e->Eoper); cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); // ADD reg,rreg checkSetVex(cdb.last(), e1->Ety); if (!regvar) { cs.Iop = xmmstore(ty1,true); // reverse operand order of MOVS[SD] cdb.gen(&cs); checkSetVex(cdb.last(), ty1); } if (e1->Ecount || // if lvalue is a CSE or regvar) // rvalue can't be a CSE { cdb.append(getregs_imm(retregs)); // necessary if both lvalue and // rvalue are CSEs (since a reg // can hold only one e at a time) cssave(e1,retregs,EOP(e1)); // if lvalue is a CSE } cdb.append(fixresult(e,resultregs,pretregs)); freenode(e1); return cdb.finish(); }
code *xmmcnvt(elem *e,regm_t *pretregs) { unsigned op=0, regs; tym_t ty; unsigned char rex = 0; bool zx = false; // zero extend uint /* There are no ops for integer <-> float/real conversions * but there are instructions for them. In order to use these * try to fuse chained conversions. Be careful not to loose * precision for real to long. */ elem *e1 = e->E1; switch (e->Eoper) { case OPd_f: if (e1->Eoper == OPs32_d) ; else if (I64 && e1->Eoper == OPs64_d) rex = REX_W; else if (I64 && e1->Eoper == OPu32_d) { rex = REX_W; zx = true; } else { regs = XMMREGS; op = CVTSD2SS; ty = TYfloat; break; } // directly use si2ss regs = ALLREGS; e1 = e1->E1; op = CVTSI2SS; ty = TYfloat; break; case OPs32_d: goto Litod; case OPs64_d: rex = REX_W; goto Litod; case OPu32_d: rex = REX_W; zx = true; goto Litod; Litod: regs = ALLREGS; op = CVTSI2SD; ty = TYdouble; break; case OPd_s32: ty = TYint; goto Ldtoi; case OPd_u32: ty = TYlong; if (I64) rex = REX_W; goto Ldtoi; case OPd_s64: ty = TYlong; rex = REX_W; goto Ldtoi; Ldtoi: regs = XMMREGS; switch (e1->Eoper) { case OPf_d: e1 = e1->E1; op = CVTTSS2SI; break; case OPld_d: if (e->Eoper == OPd_s64) return cnvt87(e,pretregs); // precision /* FALL-THROUGH */ default: op = CVTTSD2SI; break; } break; case OPf_d: regs = XMMREGS; op = CVTSS2SD; ty = TYdouble; break; } assert(op); CodeBuilder cdb; cdb.append(codelem(e1, ®s, FALSE)); unsigned reg = findreg(regs); if (reg >= XMM0) reg -= XMM0; else if (zx) { assert(I64); cdb.append(getregs(regs)); cdb.append(genregs(CNIL,STO,reg,reg)); // MOV reg,reg to zero upper 32-bit code_orflag(cdb.last(),CFvolatile); } unsigned retregs = *pretregs; if (tyxmmreg(ty)) // target is XMM { if (!(*pretregs & XMMREGS)) retregs = XMMREGS; } else // source is XMM { assert(regs & XMMREGS); if (!(retregs & ALLREGS)) retregs = ALLREGS; } unsigned rreg; cdb.append(allocreg(&retregs,&rreg,ty)); if (rreg >= XMM0) rreg -= XMM0; cdb.gen2(op, modregxrmx(3,rreg,reg)); assert(I64 || !rex); if (rex) code_orrex(cdb.last(), rex); if (*pretregs != retregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
code *xmmeq(elem *e, unsigned op, elem *e1, elem *e2,regm_t *pretregs) { tym_t tymll; unsigned reg; int i; code cs; elem *e11; bool regvar; /* TRUE means evaluate into register variable */ regm_t varregm; unsigned varreg; targ_int postinc; //printf("xmmeq(e1 = %p, e2 = %p, *pretregs = %s)\n", e1, e2, regm_str(*pretregs)); int e2oper = e2->Eoper; tym_t tyml = tybasic(e1->Ety); /* type of lvalue */ regm_t retregs = *pretregs; if (!(retregs & XMMREGS)) retregs = XMMREGS; // pick any XMM reg bool aligned = xmmIsAligned(e1); cs.Iop = (op == OPeq) ? xmmstore(tyml, aligned) : op; regvar = FALSE; varregm = 0; if (config.flags4 & CFG4optimized) { // Be careful of cases like (x = x+x+x). We cannot evaluate in // x if x is in a register. if (isregvar(e1,&varregm,&varreg) && // if lvalue is register variable doinreg(e1->EV.sp.Vsym,e2) && // and we can compute directly into it varregm & XMMREGS ) { regvar = TRUE; retregs = varregm; reg = varreg; /* evaluate directly in target register */ } } if (*pretregs & mPSW && !EOP(e1)) // if evaluating e1 couldn't change flags { // Be careful that this lines up with jmpopcode() retregs |= mPSW; *pretregs &= ~mPSW; } CodeBuilder cdb; cdb.append(scodelem(e2,&retregs,0,TRUE)); // get rvalue // Look for special case of (*p++ = ...), where p is a register variable if (e1->Eoper == OPind && ((e11 = e1->E1)->Eoper == OPpostinc || e11->Eoper == OPpostdec) && e11->E1->Eoper == OPvar && e11->E1->EV.sp.Vsym->Sfl == FLreg ) { postinc = e11->E2->EV.Vint; if (e11->Eoper == OPpostdec) postinc = -postinc; cdb.append(getlvalue(&cs,e11,RMstore | retregs)); freenode(e11->E2); } else { postinc = 0; cdb.append(getlvalue(&cs,e1,RMstore | retregs)); // get lvalue (cl == CNIL if regvar) } cdb.append(getregs_imm(regvar ? varregm : 0)); reg = findreg(retregs & XMMREGS); cs.Irm |= modregrm(0,(reg - XMM0) & 7,0); if ((reg - XMM0) & 8) cs.Irex |= REX_R; // Do not generate mov from register onto itself if (!(regvar && reg == XMM0 + ((cs.Irm & 7) | (cs.Irex & REX_B ? 8 : 0)))) { cdb.gen(&cs); // MOV EA+offset,reg if (op == OPeq) checkSetVex(cdb.last(), tyml); } if (e1->Ecount || // if lvalue is a CSE or regvar) // rvalue can't be a CSE { cdb.append(getregs_imm(retregs)); // necessary if both lvalue and // rvalue are CSEs (since a reg // can hold only one e at a time) cssave(e1,retregs,EOP(e1)); // if lvalue is a CSE } cdb.append(fixresult(e,retregs,pretregs)); Lp: if (postinc) { int reg = findreg(idxregm(&cs)); if (*pretregs & mPSW) { // Use LEA to avoid touching the flags unsigned rm = cs.Irm & 7; if (cs.Irex & REX_B) rm |= 8; cdb.genc1(0x8D,buildModregrm(2,reg,rm),FLconst,postinc); if (tysize(e11->E1->Ety) == 8) code_orrex(cdb.last(), REX_W); } else if (I64) { cdb.genc2(0x81,modregrmx(3,0,reg),postinc); if (tysize(e11->E1->Ety) == 8) code_orrex(cdb.last(), REX_W); } else { if (postinc == 1) cdb.gen1(0x40 + reg); // INC reg else if (postinc == -(targ_int)1) cdb.gen1(0x48 + reg); // DEC reg else { cdb.genc2(0x81,modregrm(3,0,reg),postinc); } } } freenode(e1); return cdb.finish(); }
/*************** * Generate code for OPvecfill (broadcast). * OPvecfill takes the single value in e1 and * fills the vector type with it. */ code *cdvecfill(elem *e, regm_t *pretregs) { //printf("cdvecfill(e = %p, *pretregs = %s)\n",e,regm_str(*pretregs)); regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; CodeBuilder cdb; code *c; code cs; elem *e1 = e->E1; #if 0 if ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar) { cr = getlvalue(&cs, e1, RMload | retregs); // get addressing mode } else { unsigned rretregs = XMMREGS & ~retregs; cr = scodelem(op2, &rretregs, retregs, TRUE); unsigned rreg = findreg(rretregs) - XMM0; cs.Irm = modregrm(3,0,rreg & 7); cs.Iflags = 0; cs.Irex = 0; if (rreg & 8) cs.Irex |= REX_B; } #endif unsigned reg; unsigned rreg; unsigned varreg; regm_t varregm; tym_t ty = tybasic(e->Ety); switch (ty) { case TYfloat4: case TYfloat8: if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg) ) { Lint: if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VBROADCASTSS XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode assert((cs.Irm & 0xC0) != 0xC0); // AVX1 doesn't have register source operands cdb.append(allocreg(&retregs,®,ty)); cs.Iop = VBROADCASTSS; cs.Irex &= ~REX_W; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { // SHUFPS XMM0,XMM0,0 0F C6 /r ib c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); reg = findreg(retregs) - XMM0; cdb.append(getregs(retregs)); cs.Iop = SHUFPS; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSS XMM,XMM cs.Iop = VBROADCASTSS; checkSetVex(&cs, ty); } cdb.gen(&cs); } break; case TYdouble2: case TYdouble4: if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg) ) { if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VBROADCASTSD XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode assert((cs.Irm & 0xC0) != 0xC0); // AVX1 doesn't have register source operands cdb.append(allocreg(&retregs,®,ty)); cs.Iop = VBROADCASTSD; cs.Irex &= ~REX_W; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { // UNPCKLPD XMM0,XMM0 66 0F 14 /r c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); reg = findreg(retregs) - XMM0; cdb.append(getregs(retregs)); cs.Iop = UNPCKLPD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSD XMM,XMM cs.Iop = VBROADCASTSD; checkSetVex(&cs, ty); } cdb.gen(&cs); } break; case TYschar16: case TYuchar16: case TYschar32: case TYuchar32: { /* MOVD XMM0,r * PUNPCKLBW XMM0,XMM0 * PUNPCKLWD XMM0,XMM0 * PSHUFD XMM0,XMM0,0 */ regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r checkSetVex(cdb.last(),TYschar16); cs.Iop = PUNPCKLBW; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); cs.Iop = PUNPCKLWD; cdb.gen(&cs); cs.Iop = PSHUFD; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; checkSetVex(&cs,TYschar16); cdb.gen(&cs); if (tysize(ty) == 32) { // VINSERTF128 YMM0,YMM0,XMM0,1 cs.Iop = VINSERTF128; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 1; checkSetVex(&cs,ty); cdb.gen(&cs); } break; } case TYshort8: case TYushort8: case TYshort16: case TYushort16: { regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); if (config.avx || tysize(ty) == 32) { /* * VPXOR XMM0,XMM0,XMM0 * VPINSRW XMM0,XMM0,r,0 * VPINSRW XMM0,XMM0,r,1 * VPINSRW XMM0,XMM0,r,2 * VPINSRW XMM0,XMM0,r,3 */ cdb.append(allocreg(&retregs,®, ty)); cdb.gen2(PXOR,modregxrmx(3,reg-XMM0,reg-XMM0)); checkSetVex(cdb.last(), TYshort8); for (int i = 0; i < tysize(ty) / 4; ++i) { cdb.genc2(PINSRW,modregxrmx(3,reg-XMM0,r),i); checkSetVex(cdb.last(), TYshort8); } if (tysize(ty) == 32) { // VINSERTF128 YMM0,YMM0,XMM0,1 cs.Iop = VINSERTF128; cs.Irm = modregxrmx(3,reg-XMM0,reg-XMM0); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 1; checkSetVex(&cs,ty); cdb.gen(&cs); } else { // VPSHUFD XMM0,XMM0,0 cs.Iop = PSHUFD; cs.Irm = modregxrmx(3,reg-XMM0,reg-XMM0); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; checkSetVex(&cs,ty); cdb.gen(&cs); } } else { /* MOVD XMM0,r * PUNPCKLWD XMM0,XMM0 * PSHUFD XMM0,XMM0,0 */ c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r checkSetVex(cdb.last(),e->Ety); cs.Iop = PUNPCKLWD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); cs.Iop = PSHUFD; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; cdb.gen(&cs); } break; } case TYlong8: case TYulong8: case TYlong4: case TYulong4: { if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg)) { goto Lint; } /* MOVD XMM1,r * PSHUFD XMM0,XMM1,0 */ regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r cs.Iop = PSHUFD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSS XMM,XMM cs.Iop = VBROADCASTSS; checkSetVex(&cs, ty); } cdb.gen(&cs); break; } case TYllong2: case TYullong2: case TYllong4: case TYullong4: if (config.avx || tysize(ty) >= 32) { if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VMOVDDUP XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode if ((cs.Irm & 0xC0) == 0xC0) { unsigned sreg = ((cs.Irm & 7) | (cs.Irex & REX_B ? 8 : 0)); regm_t sregm = XMMREGS; cdb.append(fixresult(e1, mask[sreg], &sregm)); unsigned rmreg = findreg(sregm); cs.Irm = (cs.Irm & ~7) | ((rmreg - XMM0) & 7); if ((rmreg - XMM0) & 8) cs.Irex |= REX_B; else cs.Irex &= ~REX_B; } cdb.append(allocreg(&retregs,®,ty)); if (config.avx >= 2 || tysize(ty) >= 32) { cs.Iop = VBROADCASTSD; cs.Irex &= ~REX_W; } else cs.Iop = MOVDDUP; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { /* MOVQ XMM0,mem128 * PUNPCKLQDQ XMM0,XMM0 */ c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); unsigned reg = findreg(retregs); reg -= XMM0; //cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVQ reg,r cs.Iop = PUNPCKLQDQ; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); } break; default: assert(0); } c = fixresult(e,retregs,pretregs); cdb.append(c); return cdb.finish(); }
code *cdvector(elem *e, regm_t *pretregs) { /* e should look like one of: * vector * | * param * / \ * param op2 * / \ * op op1 */ if (!config.fpxmmregs) { printf("SIMD operations not supported on this platform\n"); exit(1); } unsigned n = el_nparams(e->E1); elem **params = (elem **)malloc(n * sizeof(elem *)); assert(params); elem **tmp = params; el_paramArray(&tmp, e->E1); #if 0 printf("cdvector()\n"); for (int i = 0; i < n; i++) { printf("[%d]: ", i); elem_print(params[i]); } #endif if (*pretregs == 0) { /* Evaluate for side effects only */ CodeBuilder cdb; for (int i = 0; i < n; i++) { cdb.append(codelem(params[i], pretregs, FALSE)); *pretregs = 0; // in case they got set } return cdb.finish(); } assert(n >= 2 && n <= 4); elem *eop = params[0]; elem *op1 = params[1]; elem *op2 = NULL; tym_t ty2 = 0; if (n >= 3) { op2 = params[2]; ty2 = tybasic(op2->Ety); } unsigned op = el_tolong(eop); #ifdef DEBUG assert(!isXMMstore(op)); #endif tym_t ty1 = tybasic(op1->Ety); unsigned sz1 = _tysize[ty1]; // assert(sz1 == 16); // float or double regm_t retregs; CodeBuilder cdb; if (n == 3 && ty2 == TYuchar && op2->Eoper == OPconst) { // Handle: op xmm,imm8 retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; cdb.append(codelem(op1,&retregs,FALSE)); // eval left leaf unsigned reg = findreg(retregs); int r; switch (op) { case PSLLD: r = 6; op = 0x660F72; break; case PSLLQ: r = 6; op = 0x660F73; break; case PSLLW: r = 6; op = 0x660F71; break; case PSRAD: r = 4; op = 0x660F72; break; case PSRAW: r = 4; op = 0x660F71; break; case PSRLD: r = 2; op = 0x660F72; break; case PSRLQ: r = 2; op = 0x660F73; break; case PSRLW: r = 2; op = 0x660F71; break; case PSRLDQ: r = 3; op = 0x660F73; break; case PSLLDQ: r = 7; op = 0x660F73; break; default: printf("op = x%x\n", op); assert(0); break; } cdb.append(getregs(retregs)); cdb.genc2(op,modregrmx(3,r,reg-XMM0), el_tolong(op2)); } else if (n == 2) { /* Handle: op xmm,mem * where xmm is written only, not read */ code cs; if ((op1->Eoper == OPind && !op1->Ecount) || op1->Eoper == OPvar) { cdb.append(getlvalue(&cs, op1, RMload)); // get addressing mode } else { regm_t rretregs = XMMREGS; cdb.append(codelem(op1, &rretregs, FALSE)); unsigned rreg = findreg(rretregs) - XMM0; cs.Irm = modregrm(3,0,rreg & 7); cs.Iflags = 0; cs.Irex = 0; if (rreg & 8) cs.Irex |= REX_B; } retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; unsigned reg; cdb.append(allocreg(&retregs, ®, e->Ety)); code_newreg(&cs, reg - XMM0); cs.Iop = op; cdb.gen(&cs); } else if (n == 3 || n == 4) { /* Handle: * op xmm,mem // n = 3 * op xmm,mem,imm8 // n = 4 * Both xmm and mem are operands, evaluate xmm first. */ code cs; retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; cdb.append(codelem(op1,&retregs,FALSE)); // eval left leaf unsigned reg = findreg(retregs); if ((op2->Eoper == OPind && !op2->Ecount) || op2->Eoper == OPvar) { cdb.append(getlvalue(&cs, op2, RMload | retregs)); // get addressing mode } else { unsigned rretregs = XMMREGS & ~retregs; cdb.append(scodelem(op2, &rretregs, retregs, TRUE)); unsigned rreg = findreg(rretregs) - XMM0; cs.Irm = modregrm(3,0,rreg & 7); cs.Iflags = 0; cs.Irex = 0; if (rreg & 8) cs.Irex |= REX_B; } cdb.append(getregs(retregs)); if (n == 4) { switch (op) { case CMPPD: case CMPSS: case CMPSD: case CMPPS: case PSHUFD: case PSHUFHW: case PSHUFLW: case BLENDPD: case BLENDPS: case DPPD: case DPPS: case MPSADBW: case PBLENDW: case ROUNDPD: case ROUNDPS: case ROUNDSD: case ROUNDSS: case SHUFPD: case SHUFPS: break; default: printf("op = x%x\n", op); assert(0); break; } elem *imm8 = params[3]; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = el_tolong(imm8); } code_newreg(&cs, reg - XMM0); cs.Iop = op; cdb.gen(&cs); } else assert(0); cdb.append(fixresult(e,retregs,pretregs)); free(params); freenode(e); return cdb.finish(); }
code *xmmopass(elem *e,regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; tym_t ty1 = tybasic(e1->Ety); unsigned sz1 = tysize[ty1]; regm_t rretregs = XMMREGS & ~*pretregs; if (!rretregs) rretregs = XMMREGS; code *cr = codelem(e2,&rretregs,FALSE); // eval right leaf unsigned rreg = findreg(rretregs); code cs; code *cl,*cg; regm_t retregs; unsigned reg; bool regvar = FALSE; if (config.flags4 & CFG4optimized) { // Be careful of cases like (x = x+x+x). We cannot evaluate in // x if x is in a register. unsigned varreg; regm_t varregm; if (isregvar(e1,&varregm,&varreg) && // if lvalue is register variable doinreg(e1->EV.sp.Vsym,e2) // and we can compute directly into it ) { regvar = TRUE; retregs = varregm; reg = varreg; // evaluate directly in target register cl = NULL; cg = getregs(retregs); // destroy these regs } } if (!regvar) { cl = getlvalue(&cs,e1,rretregs); // get EA retregs = *pretregs & XMMREGS & ~rretregs; if (!retregs) retregs = XMMREGS & ~rretregs; cg = allocreg(&retregs,®,ty1); cs.Iop = xmmload(ty1); // MOVSD xmm,xmm_m64 code_newreg(&cs,reg - XMM0); cg = gen(cg,&cs); } unsigned op = xmmoperator(e1->Ety, e->Eoper); code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); if (!regvar) { cs.Iop = xmmstore(ty1); // reverse operand order of MOVS[SD] gen(co,&cs); } if (e1->Ecount || // if lvalue is a CSE or regvar) // rvalue can't be a CSE { cl = cat(cl,getregs_imm(retregs)); // necessary if both lvalue and // rvalue are CSEs (since a reg // can hold only one e at a time) cssave(e1,retregs,EOP(e1)); // if lvalue is a CSE } co = cat(co,fixresult(e,retregs,pretregs)); freenode(e1); return cat4(cr,cl,cg,co); }