Beispiel #1
0
static String String_create(TypeClass cls, Oid typeId)
{
	HeapTuple    typeTup = PgObject_getValidTuple(TYPEOID, typeId, "type");
	Form_pg_type pgType  = (Form_pg_type)GETSTRUCT(typeTup);
	String self = (String)TypeClass_allocInstance(cls, typeId);
	MemoryContext ctx = GetMemoryChunkContext(self);
	fmgr_info_cxt(pgType->typoutput, &self->textOutput, ctx);
	fmgr_info_cxt(pgType->typinput,  &self->textInput,  ctx);
	self->elementType = pgType->typelem;
	ReleaseSysCache(typeTup);
	return self;
}
char *ConvertToText( Datum value, Oid column_type, MemoryContext fn_mcxt, char** pbuf )
{
	bool typIsVarlena;
	Oid typiofunc;
	FmgrInfo	proc;
	char*		result;
//	FILE* log;

//	log = fopen("/var/lib/postgresql/serializer.log", "a");

	getTypeOutputInfo(column_type, &typiofunc, &typIsVarlena);
	fmgr_info_cxt( typiofunc, &proc, fn_mcxt );

//	fprintf(log, "Oid of function: %i\n", proc.fn_oid);

	result =  OutputFunctionCall( &proc, value );

	if((column_type != INT8OID) && (column_type != BOOLOID) &&
           (column_type != INT4OID) && (column_type != FLOAT8OID) &&
           (column_type != INT2OID) && (column_type != FLOAT4OID)) {
//		fprintf(log, "WELL WELL\n");
		result = json_escape_str(pbuf, result);
//		fprintf(log, "result: %s\n", result);
//		fclose(log);
		return result;
	}
//	fclose(log);
	return result;
}
Beispiel #3
0
/*
 * Convert a Python string to composite, using record_in.
 */
static Datum
PLyString_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray)
{
	char	   *str;

	/*
	 * Set up call data for record_in, if we didn't already.  (We can't just
	 * use DirectFunctionCall, because record_in needs a fn_extra field.)
	 */
	if (!OidIsValid(arg->u.tuple.recinfunc.fn_oid))
		fmgr_info_cxt(F_RECORD_IN, &arg->u.tuple.recinfunc, arg->mcxt);

	str = PLyObject_AsString(string);

	/*
	 * If we are parsing a composite type within an array, and the string
	 * isn't a valid record literal, there's a high chance that the function
	 * did something like:
	 *
	 * CREATE FUNCTION .. RETURNS comptype[] AS $$ return [['foo', 'bar']] $$
	 * LANGUAGE plpython;
	 *
	 * Before PostgreSQL 10, that was interpreted as a single-dimensional
	 * array, containing record ('foo', 'bar'). PostgreSQL 10 added support
	 * for multi-dimensional arrays, and it is now interpreted as a
	 * two-dimensional array, containing two records, 'foo', and 'bar'.
	 * record_in() will throw an error, because "foo" is not a valid record
	 * literal.
	 *
	 * To make that less confusing to users who are upgrading from older
	 * versions, try to give a hint in the typical instances of that. If we
	 * are parsing an array of composite types, and we see a string literal
	 * that is not a valid record literal, give a hint. We only want to give
	 * the hint in the narrow case of a malformed string literal, not any
	 * error from record_in(), so check for that case here specifically.
	 *
	 * This check better match the one in record_in(), so that we don't forbid
	 * literals that are actually valid!
	 */
	if (inarray)
	{
		char	   *ptr = str;

		/* Allow leading whitespace */
		while (*ptr && isspace((unsigned char) *ptr))
			ptr++;
		if (*ptr++ != '(')
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
					 errmsg("malformed record literal: \"%s\"", str),
					 errdetail("Missing left parenthesis."),
					 errhint("To return a composite type in an array, return the composite type as a Python tuple, e.g., \"[('foo',)]\".")));
	}

	return InputFunctionCall(&arg->u.tuple.recinfunc,
							 str,
							 arg->typoid,
							 arg->typmod);
}
Beispiel #4
0
void
init_prs(Oid id, WParserInfo * prs)
{
	Oid			arg[1];
	bool		isnull;
	Datum		pars[1];
	int			stat;
	void	   *plan;
	char		buf[1024],
			   *nsp;

	arg[0] = OIDOID;
	pars[0] = ObjectIdGetDatum(id);

	memset(prs, 0, sizeof(WParserInfo));
	SPI_connect();
	nsp = get_namespace(TSNSP_FunctionOid);
	sprintf(buf, "select prs_start, prs_nexttoken, prs_end, prs_lextype, prs_headline from %s.pg_ts_parser where oid = $1", nsp);
	pfree(nsp);
	plan = SPI_prepare(buf, 1, arg);
	if (!plan)
		ts_error(ERROR, "SPI_prepare() failed");

	stat = SPI_execp(plan, pars, " ", 1);
	if (stat < 0)
		ts_error(ERROR, "SPI_execp return %d", stat);
	if (SPI_processed > 0)
	{
		Oid			oid = InvalidOid;

		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 1, &isnull));
		fmgr_info_cxt(oid, &(prs->start_info), TopMemoryContext);
		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 2, &isnull));
		fmgr_info_cxt(oid, &(prs->getlexeme_info), TopMemoryContext);
		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 3, &isnull));
		fmgr_info_cxt(oid, &(prs->end_info), TopMemoryContext);
		prs->lextype = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 4, &isnull));
		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 5, &isnull));
		fmgr_info_cxt(oid, &(prs->headline_info), TopMemoryContext);
		prs->prs_id = id;
	}
	else
		ts_error(ERROR, "No parser with id %d", id);
	SPI_freeplan(plan);
	SPI_finish();
}
Beispiel #5
0
/*
 * Cache and return the procedure for the given strategy.
 */
FmgrInfo *
minmax_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
							 uint16 strategynum)
{
	MinmaxOpaque *opaque;

	Assert(strategynum >= 1 &&
		   strategynum <= BTMaxStrategyNumber);

	opaque = (MinmaxOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;

	/*
	 * We cache the procedures for the previous subtype in the opaque struct,
	 * to avoid repetitive syscache lookups.  If the subtype changed,
	 * invalidate all the cached entries.
	 */
	if (opaque->cached_subtype != subtype)
	{
		uint16		i;

		for (i = 1; i <= BTMaxStrategyNumber; i++)
			opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
		opaque->cached_subtype = subtype;
	}

	if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
	{
		Form_pg_attribute attr;
		HeapTuple	tuple;
		Oid			opfamily,
					oprid;
		bool		isNull;

		opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
		attr = bdesc->bd_tupdesc->attrs[attno - 1];
		tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
								ObjectIdGetDatum(attr->atttypid),
								ObjectIdGetDatum(subtype),
								Int16GetDatum(strategynum));

		if (!HeapTupleIsValid(tuple))
			elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
				 strategynum, attr->atttypid, subtype, opfamily);

		oprid = DatumGetObjectId(SysCacheGetAttr(AMOPSTRATEGY, tuple,
												 Anum_pg_amop_amopopr, &isNull));
		ReleaseSysCache(tuple);
		Assert(!isNull && RegProcedureIsValid(oprid));

		fmgr_info_cxt(get_opcode(oprid),
					  &opaque->strategy_procinfos[strategynum - 1],
					  bdesc->bd_context);
	}

	return &opaque->strategy_procinfos[strategynum - 1];
}
Beispiel #6
0
static Variant
variant_in_int(FunctionCallInfo fcinfo, char *input, int variant_typmod)
{
    VariantCache	*cache;
    bool					isnull;
    Oid						intTypeOid = InvalidOid;
    int32					typmod = 0;
    text					*orgType;
    text					*orgData;
    VariantInt		vi = palloc0(sizeof(*vi));

    /* Eventually getting rid of this crap, so segregate it */
    intTypeOid = getIntOid();

    FmgrInfo	 		proc;
    Datum						composite;
    HeapTupleHeader	composite_tuple;
    Oid							typioparam;
    Oid							typIoFunc;

    /* Cast input data to our internal composite type */
    getTypeInputInfo(intTypeOid, &typIoFunc, &typioparam);
    fmgr_info_cxt(typIoFunc, &proc, fcinfo->flinfo->fn_mcxt);
    composite=InputFunctionCall(&proc, input, typioparam, typmod);

    /* Extract data from internal composite type */
    composite_tuple=DatumGetHeapTupleHeader(composite);
    orgType = (text *) GetAttributeByNum( composite_tuple, 1, &isnull );
    if (isnull)
        elog(ERROR, "original_type of variant must not be NULL");
    orgData = (text *) GetAttributeByNum( composite_tuple, 2, &vi->isnull );
    /* End crap */

#ifdef LONG_PARSETYPE
    parseTypeString(text_to_cstring(orgType), &vi->typid, &vi->typmod, false);
#else
    parseTypeString(text_to_cstring(orgType), &vi->typid, &vi->typmod);
#endif

    /*
     * Verify we've been handed a valid typmod
     */
    variant_get_variant_name(variant_typmod, vi->typid, false);

    cache = get_cache(fcinfo, vi, IOFunc_input);

    if (!vi->isnull)
        /* Actually need to be using stringTypeDatum(Type tp, char *string, int32 atttypmod) */
        vi->data = InputFunctionCall(&cache->proc, text_to_cstring(orgData), cache->typioparam, vi->typmod);

    return make_variant(vi, fcinfo, IOFunc_input);
}
Beispiel #7
0
/*
 * get_cache: get/set cached info
 */
static VariantCache *
get_cache(FunctionCallInfo fcinfo, VariantInt vi, IOFuncSelector func)
{
    VariantCache *cache = (VariantCache *) fcinfo->flinfo->fn_extra;

    /* IO type should always be the same, so assert that. But if we're not an assert build just force a reset. */
    if (cache != NULL && cache->typid == vi->typid && cache->typmod == vi->typmod && cache->IOfunc != func)
    {
        Assert(false);
        cache->typid ^= vi->typid;
    }

    if (cache == NULL || cache->typid != vi->typid || cache->typmod != vi->typmod)
    {
        char						typDelim;
        Oid							typIoFunc;

        /*
         * We can get different OIDs in one call, so don't needlessly palloc
         */
        if (cache == NULL)
            cache = (VariantCache *) MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
                    sizeof(VariantCache));

        cache->typid = vi->typid;
        cache->typmod = vi->typmod;
        cache->IOfunc = func;

        get_type_io_data(cache->typid,
                         func,
                         &cache->typlen,
                         &cache->typbyval,
                         &cache->typalign,
                         &typDelim,
                         &cache->typioparam,
                         &typIoFunc);
        fmgr_info_cxt(typIoFunc, &cache->proc, fcinfo->flinfo->fn_mcxt);

        if (func == IOFunc_output || func == IOFunc_send)
        {
            cache->formatted_name = MemoryContextStrdup(fcinfo->flinfo->fn_mcxt,
                                    format_type_with_typemod(cache->typid, cache->typmod));
        }
        else
            cache->formatted_name="\0";

        fcinfo->flinfo->fn_extra = (void *) cache;
    }

    return cache;
}
/*
 * RelfilenodeMapInvalidateCallback
 *		Initialize cache, either on first use or after a reset.
 */
static void
InitializeRelfilenodeMap(void)
{
	HASHCTL		ctl;
	static bool	initial_init_done = false;
	int i;

	/* Make sure we've initialized CacheMemoryContext. */
	if (CacheMemoryContext == NULL)
		CreateCacheMemoryContext();

	/* Initialize the hash table. */
	MemSet(&ctl, 0, sizeof(ctl));
	ctl.keysize = sizeof(RelfilenodeMapKey);
	ctl.entrysize = sizeof(RelfilenodeMapEntry);
	ctl.hash = tag_hash;
	ctl.hcxt = CacheMemoryContext;

	RelfilenodeMapHash =
		hash_create("RelfilenodeMap cache", 1024, &ctl,
					HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);

	/*
	 * For complete resets we simply delete the entire hash, but there's no
	 * need to do the other stuff multiple times. Especially the initialization
	 * of the relcche invalidation should only be done once.
	 */
	if (initial_init_done)
		return;

	/* build skey */
	MemSet(&relfilenode_skey, 0, sizeof(relfilenode_skey));

	for (i = 0; i < 2; i++)
	{
		fmgr_info_cxt(F_OIDEQ,
					  &relfilenode_skey[i].sk_func,
					  CacheMemoryContext);
		relfilenode_skey[i].sk_strategy = BTEqualStrategyNumber;
		relfilenode_skey[i].sk_subtype = InvalidOid;
		relfilenode_skey[i].sk_collation = InvalidOid;
	}

	relfilenode_skey[0].sk_attno = Anum_pg_class_reltablespace;
	relfilenode_skey[1].sk_attno = Anum_pg_class_relfilenode;

	/* Watch for invalidation events. */
	CacheRegisterRelcacheCallback(RelfilenodeMapInvalidateCallback,
								  (Datum) 0);
	initial_init_done = true;
}
Beispiel #9
0
static int reg_hstore(lua_State *L, const char* pg_schema_name){

    MemoryContext mcxt;
    HeapTuple	type;
    Form_pg_type typeinfo;
    int oid;

    if (registered == 1) return hstore_oid;

    oid = get_hstore_oid(pg_schema_name);

    if (oid <= 0) return oid;


    init_delete_hstore_text(L, pg_schema_name);

    __newmetatable(L, hstore_type_name);
    luaP_register(L, regs);
    lua_pop(L, 1);

    type = SearchSysCache(TYPEOID, ObjectIdGetDatum(oid), 0, 0, 0);
    if (!HeapTupleIsValid(type))
        elog(ERROR, "[pllua]: cache lookup failed for type %u", oid);
    typeinfo = (Form_pg_type) GETSTRUCT(type);
    hs_type.len = typeinfo->typlen;
    hs_type.type = typeinfo->typtype;
    hs_type.align = typeinfo->typalign;
    hs_type.byval = typeinfo->typbyval;
    hs_type.elem = typeinfo->typelem;
    mcxt = get_common_ctx();
    fmgr_info_cxt(typeinfo->typinput, &hs_type.input, mcxt);
    fmgr_info_cxt(typeinfo->typoutput, &hs_type.output, mcxt);

    ReleaseSysCache(type);
    registered = 1;
    return oid;
}
Beispiel #10
0
/* ----------------
 *		index_getprocinfo
 *
 *		This routine allows index AMs to keep fmgr lookup info for
 *		support procs in the relcache.	As above, only the "default"
 *		functions for any particular indexed attribute are cached.
 *
 * Note: the return value points into cached data that will be lost during
 * any relcache rebuild!  Therefore, either use the callinfo right away,
 * or save it only after having acquired some type of lock on the index rel.
 * ----------------
 */
FmgrInfo *
index_getprocinfo(Relation irel,
				  AttrNumber attnum,
				  uint16 procnum)
{
	FmgrInfo   *locinfo;
	int			nproc;
	int			procindex;

	nproc = irel->rd_am->amsupport;

	Assert(procnum > 0 && procnum <= (uint16) nproc);

	procindex = (nproc * (attnum - 1)) + (procnum - 1);

	locinfo = irel->rd_supportinfo;

	Assert(locinfo != NULL);

	locinfo += procindex;

	/* Initialize the lookup info if first time through */
	if (locinfo->fn_oid == InvalidOid)
	{
		RegProcedure *loc = irel->rd_support;
		RegProcedure procId;

		Assert(loc != NULL);

		procId = loc[procindex];

		/*
		 * Complain if function was not found during IndexSupportInitialize.
		 * This should not happen unless the system tables contain bogus
		 * entries for the index opclass.  (If an AM wants to allow a support
		 * function to be optional, it can use index_getprocid.)
		 */
		if (!RegProcedureIsValid(procId))
			elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
				 procnum, attnum, RelationGetRelationName(irel));

		fmgr_info_cxt(procId, locinfo, irel->rd_indexcxt);
		fmgr_info_collation(irel->rd_index->indcollation.values[attnum-1],
							locinfo);
	}

	return locinfo;
}
Beispiel #11
0
void
init_dict(Oid id, DictInfo * dict)
{
	Oid			arg[1];
	bool		isnull;
	Datum		pars[1];
	int			stat;
	void	   *plan;
	char		buf[1024];
	char	   *nsp = get_namespace(TSNSP_FunctionOid);

	arg[0] = OIDOID;
	pars[0] = ObjectIdGetDatum(id);

	memset(dict, 0, sizeof(DictInfo));
	SPI_connect();
	sprintf(buf, "select dict_init, dict_initoption, dict_lexize from %s.pg_ts_dict where oid = $1", nsp);
	pfree(nsp);
	plan = SPI_prepare(buf, 1, arg);
	if (!plan)
		ts_error(ERROR, "SPI_prepare() failed");

	stat = SPI_execp(plan, pars, " ", 1);
	if (stat < 0)
		ts_error(ERROR, "SPI_execp return %d", stat);
	if (SPI_processed > 0)
	{
		Datum		opt;
		Oid			oid = InvalidOid;

		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 1, &isnull));
		if (!(isnull || oid == InvalidOid))
		{
			opt = SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 2, &isnull);
			dict->dictionary = (void *) DatumGetPointer(OidFunctionCall1(oid, opt));
		}
		oid = DatumGetObjectId(SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 3, &isnull));
		if (isnull || oid == InvalidOid)
			ts_error(ERROR, "Null dict_lexize for dictonary %d", id);
		fmgr_info_cxt(oid, &(dict->lexize_info), TopMemoryContext);
		dict->dict_id = id;
	}
	else
		ts_error(ERROR, "No dictionary with id %d", id);
	SPI_freeplan(plan);
	SPI_finish();
}
Beispiel #12
0
/*
 * RelfilenodeMapInvalidateCallback
 *		Initialize cache, either on first use or after a reset.
 */
static void
InitializeRelfilenodeMap(void)
{
	HASHCTL		ctl;
	int			i;

	/* Make sure we've initialized CacheMemoryContext. */
	if (CacheMemoryContext == NULL)
		CreateCacheMemoryContext();

	/* build skey */
	MemSet(&relfilenode_skey, 0, sizeof(relfilenode_skey));

	for (i = 0; i < 2; i++)
	{
		fmgr_info_cxt(F_OIDEQ,
					  &relfilenode_skey[i].sk_func,
					  CacheMemoryContext);
		relfilenode_skey[i].sk_strategy = BTEqualStrategyNumber;
		relfilenode_skey[i].sk_subtype = InvalidOid;
		relfilenode_skey[i].sk_collation = InvalidOid;
	}

	relfilenode_skey[0].sk_attno = Anum_pg_class_reltablespace;
	relfilenode_skey[1].sk_attno = Anum_pg_class_relfilenode;

	/* Initialize the hash table. */
	MemSet(&ctl, 0, sizeof(ctl));
	ctl.keysize = sizeof(RelfilenodeMapKey);
	ctl.entrysize = sizeof(RelfilenodeMapEntry);
	ctl.hash = tag_hash;
	ctl.hcxt = CacheMemoryContext;

	/*
	 * Only create the RelfilenodeMapHash now, so we don't end up partially
	 * initialized when fmgr_info_cxt() above ERRORs out with an out of memory
	 * error.
	 */
	RelfilenodeMapHash =
		hash_create("RelfilenodeMap cache", 1024, &ctl,
					HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);

	/* Watch for invalidation events. */
	CacheRegisterRelcacheCallback(RelfilenodeMapInvalidateCallback,
								  (Datum) 0);
}
Beispiel #13
0
/*
 * Set up a shim function to allow use of an old-style btree comparison
 * function as if it were a sort support comparator.
 */
void
PrepareSortSupportComparisonShim(Oid cmpFunc, SortSupport ssup)
{
	SortShimExtra *extra;

	extra = (SortShimExtra *) MemoryContextAlloc(ssup->ssup_cxt,
												 sizeof(SortShimExtra));

	/* Lookup the comparison function */
	fmgr_info_cxt(cmpFunc, &extra->flinfo, ssup->ssup_cxt);

	/* We can initialize the callinfo just once and re-use it */
	InitFunctionCallInfoData(extra->fcinfo, &extra->flinfo, 2,
							 ssup->ssup_collation, NULL, NULL);
	extra->fcinfo.argnull[0] = false;
	extra->fcinfo.argnull[1] = false;

	ssup->ssup_extra = extra;
	ssup->comparator = comparison_shim;
}
Beispiel #14
0
size_t append_datum(char* buf, Datum val, bool isnull, Oid typeoid)
{
    HeapTuple typeTup;
    Form_pg_type typeStruct;
    FmgrInfo tmp_flinfo;
    char *str;
    size_t len;

    typeTup = SearchSysCache(TYPEOID, ObjectIdGetDatum(typeoid), 0, 0, 0);
    if (!HeapTupleIsValid(typeTup)) {
        elog(ERROR, "Cache lookup failed for %u", typeoid);
    }
    typeStruct = (Form_pg_type)GETSTRUCT(typeTup);

    if (typeStruct->typtype != 'b') {
        // Non-basic type
        elog(ERROR, "Don't support non-basic types (%s)",
             format_type_be(typeoid));
    }

    fmgr_info_cxt(typeStruct->typoutput, &tmp_flinfo, CurTransactionContext);

    ReleaseSysCache(typeTup);
    
    if (!isnull) {
        if (typeoid == INT4OID) {
            *((int*)buf) = DatumGetInt32(val);
            return 4;
        }
        
        SPI_push();
        str = OutputFunctionCall(&tmp_flinfo, val);
        SPI_pop();
        len = strlen(str);
        strncpy(buf, str, len);
        return len;
    }

    return 0;
}
/*
 * record_send		- binary output routine for any composite type.
 */
Datum
record_send(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			validcols;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	/* And build the result string */
	pq_begintypsend(&buf);

	/* Need to scan to count nondeleted columns */
	validcols = 0;
	for (i = 0; i < ncolumns; i++)
	{
		if (!tupdesc->attrs[i]->attisdropped)
			validcols++;
	}
	pq_sendint(&buf, validcols, 4);

	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		bytea	   *outputbytes;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		pq_sendint(&buf, column_type, sizeof(Oid));

		if (nulls[i])
		{
			/* emit -1 data length to signify a NULL */
			pq_sendint(&buf, -1, 4);
			continue;
		}

		/*
		 * Convert the column value to binary
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeBinaryOutputInfo(column_type,
									&column_info->typiofunc,
									&typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		outputbytes = SendFunctionCall(&column_info->proc, values[i]);

		/* We assume the result will not have been toasted */
		pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4);
		pq_sendbytes(&buf, VARDATA(outputbytes),
					 VARSIZE(outputbytes) - VARHDRSZ);
		pfree(outputbytes);
	}

	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
 * record_recv		- binary input routine for any composite type.
 */
Datum
record_recv(PG_FUNCTION_ARGS)
{
	StringInfo	buf = (StringInfo) PG_GETARG_POINTER(0);
	Oid			tupType = PG_GETARG_OID(1);

#ifdef NOT_USED
	int32		typmod = PG_GETARG_INT32(2);
#endif
	HeapTupleHeader result;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTuple	tuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			usercols;
	int			validcols;
	int			i;
	Datum	   *values;
	bool	   *nulls;

	/*
	 * Use the passed type unless it's RECORD; we can't support input of
	 * anonymous types, mainly because there's no good way to figure out which
	 * anonymous type is wanted.  Note that for RECORD, what we'll probably
	 * actually get is RECORD's typelem, ie, zero.
	 */
	if (tupType == InvalidOid || tupType == RECORDOID)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
		   errmsg("input of anonymous composite types is not implemented")));
	tupTypmod = -1;				/* for all non-anonymous types */
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Fetch number of columns user thinks it has */
	usercols = pq_getmsgint(buf, 4);

	/* Need to scan to count nondeleted columns */
	validcols = 0;
	for (i = 0; i < ncolumns; i++)
	{
		if (!tupdesc->attrs[i]->attisdropped)
			validcols++;
	}
	if (usercols != validcols)
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("wrong number of columns: %d, expected %d",
						usercols, validcols)));

	/* Process each column */
	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		Oid			coltypoid;
		int			itemlen;
		StringInfoData item_buf;
		StringInfo	bufptr;
		char		csave;

		/* Ignore dropped columns in datatype, but fill with nulls */
		if (tupdesc->attrs[i]->attisdropped)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
			continue;
		}

		/* Verify column datatype */
		coltypoid = pq_getmsgint(buf, sizeof(Oid));
		if (coltypoid != column_type)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg("wrong data type: %u, expected %u",
							coltypoid, column_type)));

		/* Get and check the item length */
		itemlen = pq_getmsgint(buf, 4);
		if (itemlen < -1 || itemlen > (buf->len - buf->cursor))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
					 errmsg("insufficient data left in message")));

		if (itemlen == -1)
		{
			/* -1 length means NULL */
			bufptr = NULL;
			nulls[i] = true;
			csave = 0;			/* keep compiler quiet */
		}
		else
		{
			/*
			 * Rather than copying data around, we just set up a phony
			 * StringInfo pointing to the correct portion of the input buffer.
			 * We assume we can scribble on the input buffer so as to maintain
			 * the convention that StringInfos have a trailing null.
			 */
			item_buf.data = &buf->data[buf->cursor];
			item_buf.maxlen = itemlen + 1;
			item_buf.len = itemlen;
			item_buf.cursor = 0;

			buf->cursor += itemlen;

			csave = buf->data[buf->cursor];
			buf->data[buf->cursor] = '\0';

			bufptr = &item_buf;
			nulls[i] = false;
		}

		/* Now call the column's receiveproc */
		if (column_info->column_type != column_type)
		{
			getTypeBinaryInputInfo(column_type,
								   &column_info->typiofunc,
								   &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		values[i] = ReceiveFunctionCall(&column_info->proc,
										bufptr,
										column_info->typioparam,
										tupdesc->attrs[i]->atttypmod);

		if (bufptr)
		{
			/* Trouble if it didn't eat the whole buffer */
			if (item_buf.cursor != itemlen)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
						 errmsg("improper binary format in record column %d",
								i + 1)));

			buf->data[buf->cursor] = csave;
		}
	}

	tuple = heap_form_tuple(tupdesc, values, nulls);

	/*
	 * We cannot return tuple->t_data because heap_form_tuple allocates it as
	 * part of a larger chunk, and our caller may expect to be able to pfree
	 * our result.	So must copy the info into a new palloc chunk.
	 */
	result = (HeapTupleHeader) palloc(tuple->t_len);
	memcpy(result, tuple->t_data, tuple->t_len);

	heap_freetuple(tuple);
	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_HEAPTUPLEHEADER(result);
}
/*
 * record_out		- output routine for any composite type.
 */
Datum
record_out(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	bool		needComma = false;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	/* Extract type info from the tuple itself */
	tupType = HeapTupleHeaderGetTypeId(rec);
	tupTypmod = HeapTupleHeaderGetTypMod(rec);
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	/* And build the result string */
	initStringInfo(&buf);

	appendStringInfoChar(&buf, '(');

	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;
		char	   *tmp;
		bool		nq;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		if (needComma)
			appendStringInfoChar(&buf, ',');
		needComma = true;

		if (nulls[i])
		{
			/* emit nothing... */
			continue;
		}

		/*
		 * Convert the column value to text
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeOutputInfo(column_type,
							  &column_info->typiofunc,
							  &typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		value = OutputFunctionCall(&column_info->proc, values[i]);

		/* Detect whether we need double quotes for this value */
		nq = (value[0] == '\0');	/* force quotes for empty string */
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\' ||
				ch == '(' || ch == ')' || ch == ',' ||
				isspace((unsigned char) ch))
			{
				nq = true;
				break;
			}
		}

		/* And emit the string */
		if (nq)
			appendStringInfoChar(&buf, '"');
		for (tmp = value; *tmp; tmp++)
		{
			char		ch = *tmp;

			if (ch == '"' || ch == '\\')
				appendStringInfoChar(&buf, ch);
			appendStringInfoChar(&buf, ch);
		}
		if (nq)
			appendStringInfoChar(&buf, '"');
	}

	appendStringInfoChar(&buf, ')');

	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_CSTRING(buf.data);
}
Beispiel #18
0
Datum
hstore_populate_record(PG_FUNCTION_ARGS)
{
	Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
	HStore	   *hs;
	HEntry	   *entries;
	char	   *ptr;
	HeapTupleHeader rec;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	HeapTuple	rettuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;

	if (!type_is_rowtype(argtype))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("first argument must be a rowtype")));

	if (PG_ARGISNULL(0))
	{
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();

		rec = NULL;

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		if (PG_ARGISNULL(1))
			PG_RETURN_POINTER(rec);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	hs = PG_GETARG_HS(1);
	entries = ARRPTR(hs);
	ptr = STRPTR(hs);

	/*
	 * if the input hstore is empty, we can only skip the rest if we were
	 * passed in a non-null record, since otherwise there may be issues with
	 * domain nulls.
	 */

	if (HS_COUNT(hs) == 0 && rec)
		PG_RETURN_POINTER(rec);

	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		//tuple.t_tableOid = InvalidOid;
		tuple.t_data = rec;
	}

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (rec)
	{
		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;
		int			idx;
		int			vallen;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		idx = hstoreFindKey(hs, 0,
							NameStr(tupdesc->attrs[i]->attname),
							strlen(NameStr(tupdesc->attrs[i]->attname)));

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (idx < 0 && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		if (idx < 0 || HS_VALISNULL(entries, idx))
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			vallen = HS_VALLEN(entries, idx);
			value = palloc(1 + vallen);
			memcpy(value, HS_VAL(entries, ptr, idx), vallen);
			value[vallen] = 0;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));
}
Beispiel #19
0
Datum
hstore_from_record(PG_FUNCTION_ARGS)
{
	HeapTupleHeader rec;
	int4		buflen;
	HStore	   *out;
	Pairs	   *pairs;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i,
				j;
	Datum	   *values;
	bool	   *nulls;

	if (PG_ARGISNULL(0))
	{
		Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;

		rec = NULL;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	pairs = palloc(ncolumns * sizeof(Pairs));

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		//tuple.t_tableOid = InvalidOid;
		tuple.t_data = rec;

		values = (Datum *) palloc(ncolumns * sizeof(Datum));
		nulls = (bool *) palloc(ncolumns * sizeof(bool));

		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		values = NULL;
		nulls = NULL;
	}

	for (i = 0, j = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		pairs[j].key = NameStr(tupdesc->attrs[i]->attname);
		pairs[j].keylen = hstoreCheckKeyLen(strlen(NameStr(tupdesc->attrs[i]->attname)));

		if (!nulls || nulls[i])
		{
			pairs[j].val = NULL;
			pairs[j].vallen = 4;
			pairs[j].isnull = true;
			pairs[j].needfree = false;
			++j;
			continue;
		}

		/*
		 * Convert the column value to text
		 */
		if (column_info->column_type != column_type)
		{
			bool		typIsVarlena;

			getTypeOutputInfo(column_type,
							  &column_info->typiofunc,
							  &typIsVarlena);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		value = OutputFunctionCall(&column_info->proc, values[i]);

		pairs[j].val = value;
		pairs[j].vallen = hstoreCheckValLen(strlen(value));
		pairs[j].isnull = false;
		pairs[j].needfree = false;
		++j;
	}

	ncolumns = hstoreUniquePairs(pairs, j, &buflen);

	out = hstorePairs(pairs, ncolumns, buflen);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_POINTER(out);
}
Beispiel #20
0
/*
 * Reading quantiles from an input array, based mostly on
 * array_to_text_internal (it's a modified copy). This expects
 * to receive a single-dimensional float8 array as input, fails
 * otherwise.
 */
static double *
array_to_double(FunctionCallInfo fcinfo, ArrayType *v, int * len)
{
    double     *result;
    int         nitems,
               *dims,
                ndims;
    Oid         element_type;
    int         typlen;
    bool        typbyval;
    char        typalign;
    char       *p;
    int         i, idx = 0;
    
    ArrayMetaState *my_extra;

    ndims = ARR_NDIM(v);
    dims = ARR_DIMS(v);
    nitems = ArrayGetNItems(ndims, dims);
    
    /* this is a special-purpose function for single-dimensional arrays */
    if (ndims != 1) {
        elog(ERROR, "error, array_to_double expects a single-dimensional array"
                    "(dims = %d)", ndims);
    }

    /* if there are no elements, set the length to 0 and return NULL */
    if (nitems == 0) {
        (*len) = 0;
        return NULL;
    }
    
    element_type = ARR_ELEMTYPE(v);
    
    result = (double*)palloc(nitems * sizeof(double));

    /*
     * We arrange to look up info about element type, including its output
     * conversion proc, only once per series of calls, assuming the element
     * type doesn't change underneath us.
     */
    my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
    if (my_extra == NULL)
    {
        fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
                                                      sizeof(ArrayMetaState));
        my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
        my_extra->element_type = ~element_type;
    }

    if (my_extra->element_type != element_type)
    {
        /*
         * Get info about element type, including its output conversion proc
         */
        get_type_io_data(element_type, IOFunc_output,
                         &my_extra->typlen, &my_extra->typbyval,
                         &my_extra->typalign, &my_extra->typdelim,
                         &my_extra->typioparam, &my_extra->typiofunc);
        fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
                      fcinfo->flinfo->fn_mcxt);
        my_extra->element_type = element_type;
    }
    
    typlen = my_extra->typlen;
    typbyval = my_extra->typbyval;
    typalign = my_extra->typalign;
    
    p = ARR_DATA_PTR(v);

    for (i = 0; i < nitems; i++) {

        Datum itemvalue = fetch_att(p, typbyval, typlen);
        
        double val = DatumGetFloat8(itemvalue);
        
        result[idx++] = val;
        
        p = att_addlength_pointer(p, typlen, p);
        p = (char *) att_align_nominal(p, typalign);

    }
    
    (*len) = idx;

    return result;
}
Beispiel #21
0
static void
populate_recordset_object_end(void *state)
{
	PopulateRecordsetState _state = (PopulateRecordsetState) state;
	HTAB	   *json_hash = _state->json_hash;
	Datum	   *values;
	bool	   *nulls;
	char		fname[NAMEDATALEN];
	int			i;
	RecordIOData *my_extra = _state->my_extra;
	int			ncolumns = my_extra->ncolumns;
	TupleDesc	tupdesc = _state->ret_tdesc;
	JsonHashEntry hashentry;
	HeapTupleHeader rec = _state->rec;
	HeapTuple	rettuple;

	if (_state->lex->lex_level > 1)
		return;

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (_state->rec)
	{
		HeapTupleData tuple;

		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(_state->rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		tuple.t_data = _state->rec;

		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		memset(fname, 0, NAMEDATALEN);
		strncpy(fname, NameStr(tupdesc->attrs[i]->attname), NAMEDATALEN);
		hashentry = hash_search(json_hash, fname, HASH_FIND, NULL);

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (hashentry == NULL && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  _state->fn_mcxt);
			column_info->column_type = column_type;
		}
		if (hashentry == NULL || hashentry->isnull)
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			value = hashentry->val;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	tuplestore_puttuple(_state->tuple_store, rettuple);

	hash_destroy(json_hash);
}
Beispiel #22
0
/*
 * SQL function json_populate_record
 *
 * set fields in a record from the argument json
 *
 * Code adapted shamelessly from hstore's populate_record
 * which is in turn partly adapted from record_out.
 *
 * The json is decomposed into a hash table, in which each
 * field in the record is then looked up by name.
 */
Datum
json_populate_record(PG_FUNCTION_ARGS)
{
	Oid			argtype = get_fn_expr_argtype(fcinfo->flinfo, 0);
	text	   *json = PG_GETARG_TEXT_P(1);
	bool		use_json_as_text = PG_GETARG_BOOL(2);
	HTAB	   *json_hash;
	HeapTupleHeader rec;
	Oid			tupType;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTupleData tuple;
	HeapTuple	rettuple;
	RecordIOData *my_extra;
	int			ncolumns;
	int			i;
	Datum	   *values;
	bool	   *nulls;
	char		fname[NAMEDATALEN];
	JsonHashEntry hashentry;


	if (!type_is_rowtype(argtype))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
				 errmsg("first argument must be a rowtype")));

	if (PG_ARGISNULL(0))
	{
		if (PG_ARGISNULL(1))
			PG_RETURN_NULL();

		rec = NULL;

		/*
		 * have no tuple to look at, so the only source of type info is the
		 * argtype. The lookup_rowtype_tupdesc call below will error out if we
		 * don't have a known composite type oid here.
		 */
		tupType = argtype;
		tupTypmod = -1;
	}
	else
	{
		rec = PG_GETARG_HEAPTUPLEHEADER(0);

		if (PG_ARGISNULL(1))
			PG_RETURN_POINTER(rec);

		/* Extract type info from the tuple itself */
		tupType = HeapTupleHeaderGetTypeId(rec);
		tupTypmod = HeapTupleHeaderGetTypMod(rec);
	}

	json_hash = get_json_object_as_hash(json, "json_populate_record", use_json_as_text);

	/*
	 * if the input json is empty, we can only skip the rest if we were passed
	 * in a non-null record, since otherwise there may be issues with domain
	 * nulls.
	 */
	if (hash_get_num_entries(json_hash) == 0 && rec)
		PG_RETURN_POINTER(rec);


	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	if (rec)
	{
		/* Build a temporary HeapTuple control structure */
		tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
		ItemPointerSetInvalid(&(tuple.t_self));
		tuple.t_data = rec;
	}

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	if (rec)
	{
		/* Break down the tuple into fields */
		heap_deform_tuple(&tuple, tupdesc, values, nulls);
	}
	else
	{
		for (i = 0; i < ncolumns; ++i)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	for (i = 0; i < ncolumns; ++i)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *value;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
		{
			nulls[i] = true;
			continue;
		}

		memset(fname, 0, NAMEDATALEN);
		strncpy(fname, NameStr(tupdesc->attrs[i]->attname), NAMEDATALEN);
		hashentry = hash_search(json_hash, fname, HASH_FIND, NULL);

		/*
		 * we can't just skip here if the key wasn't found since we might have
		 * a domain to deal with. If we were passed in a non-null record
		 * datum, we assume that the existing values are valid (if they're
		 * not, then it's not our fault), but if we were passed in a null,
		 * then every field which we don't populate needs to be run through
		 * the input function just in case it's a domain type.
		 */
		if (hashentry == NULL && rec)
			continue;

		/*
		 * Prepare to convert the column value from text
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}
		if (hashentry == NULL || hashentry->isnull)
		{
			/*
			 * need InputFunctionCall to happen even for nulls, so that domain
			 * checks are done
			 */
			values[i] = InputFunctionCall(&column_info->proc, NULL,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = true;
		}
		else
		{
			value = hashentry->val;

			values[i] = InputFunctionCall(&column_info->proc, value,
										  column_info->typioparam,
										  tupdesc->attrs[i]->atttypmod);
			nulls[i] = false;
		}
	}

	rettuple = heap_form_tuple(tupdesc, values, nulls);

	ReleaseTupleDesc(tupdesc);

	PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));
}
Beispiel #23
0
static void
CatalogCacheInitializeCache(CatCache *cache)
{
	Relation	relation;
	MemoryContext oldcxt;
	TupleDesc	tupdesc;
	int			i;

	CatalogCacheInitializeCache_DEBUG1;

	relation = heap_open(cache->cc_reloid, AccessShareLock);

	/*
	 * switch to the cache context so our allocations do not vanish at the end
	 * of a transaction
	 */
	Assert(CacheMemoryContext != NULL);

	oldcxt = MemoryContextSwitchTo(CacheMemoryContext);

	/*
	 * copy the relcache's tuple descriptor to permanent cache storage
	 */
	tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));

	/*
	 * save the relation's name and relisshared flag, too (cc_relname is used
	 * only for debugging purposes)
	 */
	cache->cc_relname = pstrdup(RelationGetRelationName(relation));
	cache->cc_relisshared = RelationGetForm(relation)->relisshared;

	/*
	 * return to the caller's memory context and close the rel
	 */
	MemoryContextSwitchTo(oldcxt);

	heap_close(relation, AccessShareLock);

	CACHE3_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys",
				cache->cc_relname, cache->cc_nkeys);

	/*
	 * initialize cache's key information
	 */
	for (i = 0; i < cache->cc_nkeys; ++i)
	{
		Oid			keytype;
		RegProcedure eqfunc;

		CatalogCacheInitializeCache_DEBUG2;

		if (cache->cc_key[i] > 0)
			keytype = tupdesc->attrs[cache->cc_key[i] - 1]->atttypid;
		else
		{
			if (cache->cc_key[i] != ObjectIdAttributeNumber)
				elog(FATAL, "only sys attr supported in caches is OID");
			keytype = OIDOID;
		}

		GetCCHashEqFuncs(keytype,
						 &cache->cc_hashfunc[i],
						 &eqfunc);

		cache->cc_isname[i] = (keytype == NAMEOID);

		/*
		 * Do equality-function lookup (we assume this won't need a catalog
		 * lookup for any supported type)
		 */
		fmgr_info_cxt(eqfunc,
					  &cache->cc_skey[i].sk_func,
					  CacheMemoryContext);

		/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
		cache->cc_skey[i].sk_attno = cache->cc_key[i];

		/* Fill in sk_strategy as well --- always standard equality */
		cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber;
		cache->cc_skey[i].sk_subtype = InvalidOid;
		/* Currently, there are no catcaches on collation-aware data types */
		cache->cc_skey[i].sk_collation = InvalidOid;

		CACHE4_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p",
					cache->cc_relname,
					i,
					cache);
	}

	/*
	 * mark this cache fully initialized
	 */
	cache->cc_tupdesc = tupdesc;
}
Beispiel #24
0
/*
 * Fetch dictionary cache entry
 */
TSDictionaryCacheEntry *
lookup_ts_dictionary_cache(Oid dictId)
{
	TSDictionaryCacheEntry *entry;

	if (TSDictionaryCacheHash == NULL)
	{
		/* First time through: initialize the hash table */
		HASHCTL		ctl;

		MemSet(&ctl, 0, sizeof(ctl));
		ctl.keysize = sizeof(Oid);
		ctl.entrysize = sizeof(TSDictionaryCacheEntry);
		TSDictionaryCacheHash = hash_create("Tsearch dictionary cache", 8,
											&ctl, HASH_ELEM | HASH_BLOBS);
		/* Flush cache on pg_ts_dict and pg_ts_template changes */
		CacheRegisterSyscacheCallback(TSDICTOID, InvalidateTSCacheCallBack,
									  PointerGetDatum(TSDictionaryCacheHash));
		CacheRegisterSyscacheCallback(TSTEMPLATEOID, InvalidateTSCacheCallBack,
									  PointerGetDatum(TSDictionaryCacheHash));

		/* Also make sure CacheMemoryContext exists */
		if (!CacheMemoryContext)
			CreateCacheMemoryContext();
	}

	/* Check single-entry cache */
	if (lastUsedDictionary && lastUsedDictionary->dictId == dictId &&
		lastUsedDictionary->isvalid)
		return lastUsedDictionary;

	/* Try to look up an existing entry */
	entry = (TSDictionaryCacheEntry *) hash_search(TSDictionaryCacheHash,
												   (void *) &dictId,
												   HASH_FIND, NULL);
	if (entry == NULL || !entry->isvalid)
	{
		/*
		 * If we didn't find one, we want to make one. But first look up the
		 * object to be sure the OID is real.
		 */
		HeapTuple	tpdict,
					tptmpl;
		Form_pg_ts_dict dict;
		Form_pg_ts_template ctemplate;
		MemoryContext saveCtx;

		tpdict = SearchSysCache1(TSDICTOID, ObjectIdGetDatum(dictId));
		if (!HeapTupleIsValid(tpdict))
			elog(ERROR, "cache lookup failed for text search dictionary %u",
				 dictId);
		dict = (Form_pg_ts_dict) GETSTRUCT(tpdict);

		/*
		 * Sanity checks
		 */
		if (!OidIsValid(dict->dicttemplate))
			elog(ERROR, "text search dictionary %u has no ctemplate", dictId);

		/*
		 * Retrieve dictionary's ctemplate
		 */
		tptmpl = SearchSysCache1(TSTEMPLATEOID,
								 ObjectIdGetDatum(dict->dicttemplate));
		if (!HeapTupleIsValid(tptmpl))
			elog(ERROR, "cache lookup failed for text search ctemplate %u",
				 dict->dicttemplate);
		ctemplate = (Form_pg_ts_template) GETSTRUCT(tptmpl);

		/*
		 * Sanity checks
		 */
		if (!OidIsValid(ctemplate->tmpllexize))
			elog(ERROR, "text search ctemplate %u has no lexize method",
				 ctemplate->tmpllexize);

		if (entry == NULL)
		{
			bool		found;

			/* Now make the cache entry */
			entry = (TSDictionaryCacheEntry *)
				hash_search(TSDictionaryCacheHash,
							(void *) &dictId,
							HASH_ENTER, &found);
			Assert(!found);		/* it wasn't there a moment ago */

			/* Create private___ memory context the first time through */
			saveCtx = AllocSetContextCreate(CacheMemoryContext,
			                                NameStr(dict->dictname),
			                                ALLOCSET_SMALL_MINSIZE,
			                                ALLOCSET_SMALL_INITSIZE,
			                                ALLOCSET_SMALL_MAXSIZE);
		}
		else
		{
			/* Clear the existing entry's private___ context */
			saveCtx = entry->dictCtx;
			MemoryContextResetAndDeleteChildren(saveCtx);
		}

		MemSet(entry, 0, sizeof(TSDictionaryCacheEntry));
		entry->dictId = dictId;
		entry->dictCtx = saveCtx;

		entry->lexizeOid = ctemplate->tmpllexize;

		if (OidIsValid(ctemplate->tmplinit))
		{
			List	   *dictoptions;
			Datum		opt;
			bool		isnull;
			MemoryContext oldcontext;

			/*
			 * Init method runs in dictionary's private___ memory context, and we
			 * make sure the options are stored there too
			 */
			oldcontext = MemoryContextSwitchTo(entry->dictCtx);

			opt = SysCacheGetAttr(TSDICTOID, tpdict,
								  Anum_pg_ts_dict_dictinitoption,
								  &isnull);
			if (isnull)
				dictoptions = NIL;
			else
				dictoptions = deserialize_deflist(opt);

			entry->dictData =
				DatumGetPointer(OidFunctionCall1(ctemplate->tmplinit,
											  PointerGetDatum(dictoptions)));

			MemoryContextSwitchTo(oldcontext);
		}

		ReleaseSysCache(tptmpl);
		ReleaseSysCache(tpdict);

		fmgr_info_cxt(entry->lexizeOid, &entry->lexize, entry->dictCtx);

		entry->isvalid = true;
	}

	lastUsedDictionary = entry;

	return entry;
}
Beispiel #25
0
/*
 * array_position_common
 *		Common code for array_position and array_position_start
 *
 * These are separate wrappers for the sake of opr_sanity regression test.
 * They are not strict so we have to test for null inputs explicitly.
 */
static Datum
array_position_common(FunctionCallInfo fcinfo)
{
	ArrayType  *array;
	Oid			collation = PG_GET_COLLATION();
	Oid			element_type;
	Datum		searched_element,
				value;
	bool		isnull;
	int			position,
				position_min;
	bool		found = false;
	TypeCacheEntry *typentry;
	ArrayMetaState *my_extra;
	bool		null_search;
	ArrayIterator array_iterator;

	if (PG_ARGISNULL(0))
		PG_RETURN_NULL();

	array = PG_GETARG_ARRAYTYPE_P(0);
	element_type = ARR_ELEMTYPE(array);

	/*
	 * We refuse to search for elements in multi-dimensional arrays, since we
	 * have no good way to report the element's location in the array.
	 */
	if (ARR_NDIM(array) > 1)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("searching for elements in multidimensional arrays is not supported")));

	if (PG_ARGISNULL(1))
	{
		/* fast return when the array doesn't have nulls */
		if (!array_contains_nulls(array))
			PG_RETURN_NULL();
		searched_element = (Datum) 0;
		null_search = true;
	}
	else
	{
		searched_element = PG_GETARG_DATUM(1);
		null_search = false;
	}

	position = (ARR_LBOUND(array))[0] - 1;

	/* figure out where to start */
	if (PG_NARGS() == 3)
	{
		if (PG_ARGISNULL(2))
			ereport(ERROR,
					(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
					 errmsg("initial position must not be null")));

		position_min = PG_GETARG_INT32(2);
	}
	else
		position_min = (ARR_LBOUND(array))[0];

	/*
	 * We arrange to look up type info for array_create_iterator only once per
	 * series of calls, assuming the element type doesn't change underneath
	 * us.
	 */
	my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL)
	{
		fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
													  sizeof(ArrayMetaState));
		my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
		my_extra->element_type = ~element_type;
	}

	if (my_extra->element_type != element_type)
	{
		get_typlenbyvalalign(element_type,
							 &my_extra->typlen,
							 &my_extra->typbyval,
							 &my_extra->typalign);

		typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO);

		if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
			ereport(ERROR,
					(errcode(ERRCODE_UNDEFINED_FUNCTION),
				errmsg("could not identify an equality operator for type %s",
					   format_type_be(element_type))));

		my_extra->element_type = element_type;
		fmgr_info_cxt(typentry->eq_opr_finfo.fn_oid, &my_extra->proc,
					  fcinfo->flinfo->fn_mcxt);
	}

	/* Examine each array element until we find a match. */
	array_iterator = array_create_iterator(array, 0, my_extra);
	while (array_iterate(array_iterator, &value, &isnull))
	{
		position++;

		/* skip initial elements if caller requested so */
		if (position < position_min)
			continue;

		/*
		 * Can't look at the array element's value if it's null; but if we
		 * search for null, we have a hit and are done.
		 */
		if (isnull || null_search)
		{
			if (isnull && null_search)
			{
				found = true;
				break;
			}
			else
				continue;
		}

		/* not nulls, so run the operator */
		if (DatumGetBool(FunctionCall2Coll(&my_extra->proc, collation,
										   searched_element, value)))
		{
			found = true;
			break;
		}
	}

	array_free_iterator(array_iterator);

	/* Avoid leaking memory when handed toasted input */
	PG_FREE_IF_COPY(array, 0);

	if (!found)
		PG_RETURN_NULL();

	PG_RETURN_INT32(position);
}
Beispiel #26
0
/*-----------------------------------------------------------------------------
 * array_positions :
 *			return an array of positions of a value in an array.
 *
 * IS NOT DISTINCT FROM semantics are used for comparisons.  Returns NULL when
 * the input array is NULL.  When the value is not found in the array, returns
 * an empty array.
 *
 * This is not strict so we have to test for null inputs explicitly.
 *-----------------------------------------------------------------------------
 */
Datum
array_positions(PG_FUNCTION_ARGS)
{
	ArrayType  *array;
	Oid			collation = PG_GET_COLLATION();
	Oid			element_type;
	Datum		searched_element,
				value;
	bool		isnull;
	int			position;
	TypeCacheEntry *typentry;
	ArrayMetaState *my_extra;
	bool		null_search;
	ArrayIterator array_iterator;
	ArrayBuildState *astate = NULL;

	if (PG_ARGISNULL(0))
		PG_RETURN_NULL();

	array = PG_GETARG_ARRAYTYPE_P(0);
	element_type = ARR_ELEMTYPE(array);

	position = (ARR_LBOUND(array))[0] - 1;

	/*
	 * We refuse to search for elements in multi-dimensional arrays, since we
	 * have no good way to report the element's location in the array.
	 */
	if (ARR_NDIM(array) > 1)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("searching for elements in multidimensional arrays is not supported")));

	astate = initArrayResult(INT4OID, CurrentMemoryContext, false);

	if (PG_ARGISNULL(1))
	{
		/* fast return when the array doesn't have nulls */
		if (!array_contains_nulls(array))
			PG_RETURN_DATUM(makeArrayResult(astate, CurrentMemoryContext));
		searched_element = (Datum) 0;
		null_search = true;
	}
	else
	{
		searched_element = PG_GETARG_DATUM(1);
		null_search = false;
	}

	/*
	 * We arrange to look up type info for array_create_iterator only once per
	 * series of calls, assuming the element type doesn't change underneath
	 * us.
	 */
	my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL)
	{
		fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
													  sizeof(ArrayMetaState));
		my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
		my_extra->element_type = ~element_type;
	}

	if (my_extra->element_type != element_type)
	{
		get_typlenbyvalalign(element_type,
							 &my_extra->typlen,
							 &my_extra->typbyval,
							 &my_extra->typalign);

		typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO);

		if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
			ereport(ERROR,
					(errcode(ERRCODE_UNDEFINED_FUNCTION),
				errmsg("could not identify an equality operator for type %s",
					   format_type_be(element_type))));

		my_extra->element_type = element_type;
		fmgr_info_cxt(typentry->eq_opr_finfo.fn_oid, &my_extra->proc,
					  fcinfo->flinfo->fn_mcxt);
	}

	/*
	 * Accumulate each array position iff the element matches the given
	 * element.
	 */
	array_iterator = array_create_iterator(array, 0, my_extra);
	while (array_iterate(array_iterator, &value, &isnull))
	{
		position += 1;

		/*
		 * Can't look at the array element's value if it's null; but if we
		 * search for null, we have a hit.
		 */
		if (isnull || null_search)
		{
			if (isnull && null_search)
				astate =
					accumArrayResult(astate, Int32GetDatum(position), false,
									 INT4OID, CurrentMemoryContext);

			continue;
		}

		/* not nulls, so run the operator */
		if (DatumGetBool(FunctionCall2Coll(&my_extra->proc, collation,
										   searched_element, value)))
			astate =
				accumArrayResult(astate, Int32GetDatum(position), false,
								 INT4OID, CurrentMemoryContext);
	}

	array_free_iterator(array_iterator);

	/* Avoid leaking memory when handed toasted input */
	PG_FREE_IF_COPY(array, 0);

	PG_RETURN_DATUM(makeArrayResult(astate, CurrentMemoryContext));
}
/*
 * record_in		- input routine for any composite type.
 */
Datum
record_in(PG_FUNCTION_ARGS)
{
	char	   *string = PG_GETARG_CSTRING(0);
	Oid			tupType = PG_GETARG_OID(1);

#ifdef NOT_USED
	int32		typmod = PG_GETARG_INT32(2);
#endif
	HeapTupleHeader result;
	int32		tupTypmod;
	TupleDesc	tupdesc;
	HeapTuple	tuple;
	RecordIOData *my_extra;
	bool		needComma = false;
	int			ncolumns;
	int			i;
	char	   *ptr;
	Datum	   *values;
	bool	   *nulls;
	StringInfoData buf;

	/*
	 * Use the passed type unless it's RECORD; we can't support input of
	 * anonymous types, mainly because there's no good way to figure out which
	 * anonymous type is wanted.  Note that for RECORD, what we'll probably
	 * actually get is RECORD's typelem, ie, zero.
	 */
	if (tupType == InvalidOid || tupType == RECORDOID)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
		   errmsg("input of anonymous composite types is not implemented")));
	tupTypmod = -1;				/* for all non-anonymous types */

	/*
	 * This comes from the composite type's pg_type.oid and stores system oids
	 * in user tables, specifically DatumTupleFields. This oid must be
	 * preserved by binary upgrades.
	 */
	tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	ncolumns = tupdesc->natts;

	/*
	 * We arrange to look up the needed I/O info just once per series of
	 * calls, assuming the record type doesn't change underneath us.
	 */
	my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
	if (my_extra == NULL ||
		my_extra->ncolumns != ncolumns)
	{
		fcinfo->flinfo->fn_extra =
			MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
							   sizeof(RecordIOData) - sizeof(ColumnIOData)
							   + ncolumns * sizeof(ColumnIOData));
		my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra;
		my_extra->record_type = InvalidOid;
		my_extra->record_typmod = 0;
	}

	if (my_extra->record_type != tupType ||
		my_extra->record_typmod != tupTypmod)
	{
		MemSet(my_extra, 0,
			   sizeof(RecordIOData) - sizeof(ColumnIOData)
			   + ncolumns * sizeof(ColumnIOData));
		my_extra->record_type = tupType;
		my_extra->record_typmod = tupTypmod;
		my_extra->ncolumns = ncolumns;
	}

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/*
	 * Scan the string.  We use "buf" to accumulate the de-quoted data for
	 * each column, which is then fed to the appropriate input converter.
	 */
	ptr = string;
	/* Allow leading whitespace */
	while (*ptr && isspace((unsigned char) *ptr))
		ptr++;
	if (*ptr++ != '(')
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("malformed record literal: \"%s\"", string),
				 errdetail("Missing left parenthesis.")));

	initStringInfo(&buf);

	for (i = 0; i < ncolumns; i++)
	{
		ColumnIOData *column_info = &my_extra->columns[i];
		Oid			column_type = tupdesc->attrs[i]->atttypid;
		char	   *column_data;

		/* Ignore dropped columns in datatype, but fill with nulls */
		if (tupdesc->attrs[i]->attisdropped)
		{
			values[i] = (Datum) 0;
			nulls[i] = true;
			continue;
		}

		if (needComma)
		{
			/* Skip comma that separates prior field from this one */
			if (*ptr == ',')
				ptr++;
			else
				/* *ptr must be ')' */
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
						 errmsg("malformed record literal: \"%s\"", string),
						 errdetail("Too few columns.")));
		}

		/* Check for null: completely empty input means null */
		if (*ptr == ',' || *ptr == ')')
		{
			column_data = NULL;
			nulls[i] = true;
		}
		else
		{
			/* Extract string for this column */
			bool		inquote = false;

			resetStringInfo(&buf);
			while (inquote || !(*ptr == ',' || *ptr == ')'))
			{
				char		ch = *ptr++;

				if (ch == '\0')
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
							 errmsg("malformed record literal: \"%s\"",
									string),
							 errdetail("Unexpected end of input.")));
				if (ch == '\\')
				{
					if (*ptr == '\0')
						ereport(ERROR,
								(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
								 errmsg("malformed record literal: \"%s\"",
										string),
								 errdetail("Unexpected end of input.")));
					appendStringInfoChar(&buf, *ptr++);
				}
				else if (ch == '\"')
				{
					if (!inquote)
						inquote = true;
					else if (*ptr == '\"')
					{
						/* doubled quote within quote sequence */
						appendStringInfoChar(&buf, *ptr++);
					}
					else
						inquote = false;
				}
				else
					appendStringInfoChar(&buf, ch);
			}

			column_data = buf.data;
			nulls[i] = false;
		}

		/*
		 * Convert the column value
		 */
		if (column_info->column_type != column_type)
		{
			getTypeInputInfo(column_type,
							 &column_info->typiofunc,
							 &column_info->typioparam);
			fmgr_info_cxt(column_info->typiofunc, &column_info->proc,
						  fcinfo->flinfo->fn_mcxt);
			column_info->column_type = column_type;
		}

		values[i] = InputFunctionCall(&column_info->proc,
									  column_data,
									  column_info->typioparam,
									  tupdesc->attrs[i]->atttypmod);

		/*
		 * Prep for next column
		 */
		needComma = true;
	}

	if (*ptr++ != ')')
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("malformed record literal: \"%s\"", string),
				 errdetail("Too many columns.")));
	/* Allow trailing whitespace */
	while (*ptr && isspace((unsigned char) *ptr))
		ptr++;
	if (*ptr)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("malformed record literal: \"%s\"", string),
				 errdetail("Junk after right parenthesis.")));

	tuple = heap_form_tuple(tupdesc, values, nulls);

	/*
	 * We cannot return tuple->t_data because heap_form_tuple allocates it as
	 * part of a larger chunk, and our caller may expect to be able to pfree
	 * our result.	So must copy the info into a new palloc chunk.
	 */
	result = (HeapTupleHeader) palloc(tuple->t_len);
	memcpy(result, tuple->t_data, tuple->t_len);

	heap_freetuple(tuple);
	pfree(buf.data);
	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

	PG_RETURN_HEAPTUPLEHEADER(result);
}
Beispiel #28
0
/*
 * Fetch parser cache entry
 */
TSParserCacheEntry *
lookup_ts_parser_cache(Oid prsId)
{
	TSParserCacheEntry *entry;

	if (TSParserCacheHash == NULL)
	{
		/* First time through: initialize the hash table */
		HASHCTL		ctl;

		MemSet(&ctl, 0, sizeof(ctl));
		ctl.keysize = sizeof(Oid);
		ctl.entrysize = sizeof(TSParserCacheEntry);
		ctl.hash = oid_hash;
		TSParserCacheHash = hash_create("Tsearch parser cache", 4,
										&ctl, HASH_ELEM | HASH_FUNCTION);
		/* Flush cache on pg_ts_parser changes */
		CacheRegisterSyscacheCallback(TSPARSEROID, InvalidateTSCacheCallBack,
									  PointerGetDatum(TSParserCacheHash));

		/* Also make sure CacheMemoryContext exists */
		if (!CacheMemoryContext)
			CreateCacheMemoryContext();
	}

	/* Check single-entry cache */
	if (lastUsedParser && lastUsedParser->prsId == prsId &&
		lastUsedParser->isvalid)
		return lastUsedParser;

	/* Try to look up an existing entry */
	entry = (TSParserCacheEntry *) hash_search(TSParserCacheHash,
											   (void *) &prsId,
											   HASH_FIND, NULL);
	if (entry == NULL || !entry->isvalid)
	{
		/*
		 * If we didn't find one, we want to make one. But first look up the
		 * object to be sure the OID is real.
		 */
		HeapTuple	tp;
		Form_pg_ts_parser prs;

		tp = SearchSysCache1(TSPARSEROID, ObjectIdGetDatum(prsId));
		if (!HeapTupleIsValid(tp))
			elog(ERROR, "cache lookup failed for text search parser %u",
				 prsId);
		prs = (Form_pg_ts_parser) GETSTRUCT(tp);

		/*
		 * Sanity checks
		 */
		if (!OidIsValid(prs->prsstart))
			elog(ERROR, "text search parser %u has no prsstart method", prsId);
		if (!OidIsValid(prs->prstoken))
			elog(ERROR, "text search parser %u has no prstoken method", prsId);
		if (!OidIsValid(prs->prsend))
			elog(ERROR, "text search parser %u has no prsend method", prsId);

		if (entry == NULL)
		{
			bool		found;

			/* Now make the cache entry */
			entry = (TSParserCacheEntry *)
				hash_search(TSParserCacheHash,
							(void *) &prsId,
							HASH_ENTER, &found);
			Assert(!found);		/* it wasn't there a moment ago */
		}

		MemSet(entry, 0, sizeof(TSParserCacheEntry));
		entry->prsId = prsId;
		entry->startOid = prs->prsstart;
		entry->tokenOid = prs->prstoken;
		entry->endOid = prs->prsend;
		entry->headlineOid = prs->prsheadline;
		entry->lextypeOid = prs->prslextype;

		ReleaseSysCache(tp);

		fmgr_info_cxt(entry->startOid, &entry->prsstart, CacheMemoryContext);
		fmgr_info_cxt(entry->tokenOid, &entry->prstoken, CacheMemoryContext);
		fmgr_info_cxt(entry->endOid, &entry->prsend, CacheMemoryContext);
		if (OidIsValid(entry->headlineOid))
			fmgr_info_cxt(entry->headlineOid, &entry->prsheadline,
						  CacheMemoryContext);

		entry->isvalid = true;
	}

	lastUsedParser = entry;

	return entry;
}
Beispiel #29
0
/*
 * This routine is a crock, and so is everyplace that calls it.  The problem
 * is that the cached form of plperl functions/queries is allocated permanently
 * (mostly via malloc()) and never released until backend exit.  Subsidiary
 * data structures such as fmgr info records therefore must live forever
 * as well.  A better implementation would store all this stuff in a per-
 * function memory context that could be reclaimed at need.  In the meantime,
 * fmgr_info_cxt must be called specifying TopMemoryContext so that whatever
 * it might allocate, and whatever the eventual function might allocate using
 * fn_mcxt, will live forever too.
 */
static void
perm_fmgr_info(Oid functionId, FmgrInfo *finfo)
{
	fmgr_info_cxt(functionId, finfo, TopMemoryContext);
}
Beispiel #30
0
/*
 * init_sexpr - initialize a SetExprState node during first use
 */
static void
init_sexpr(Oid foid, Oid input_collation, Expr *node,
		   SetExprState *sexpr, PlanState *parent,
		   MemoryContext sexprCxt, bool allowSRF, bool needDescForSRF)
{
	AclResult	aclresult;

	/* Check permission to call function */
	aclresult = pg_proc_aclcheck(foid, GetUserId(), ACL_EXECUTE);
	if (aclresult != ACLCHECK_OK)
		aclcheck_error(aclresult, OBJECT_FUNCTION, get_func_name(foid));
	InvokeFunctionExecuteHook(foid);

	/*
	 * Safety check on nargs.  Under normal circumstances this should never
	 * fail, as parser should check sooner.  But possibly it might fail if
	 * server has been compiled with FUNC_MAX_ARGS smaller than some functions
	 * declared in pg_proc?
	 */
	if (list_length(sexpr->args) > FUNC_MAX_ARGS)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
				 errmsg_plural("cannot pass more than %d argument to a function",
							   "cannot pass more than %d arguments to a function",
							   FUNC_MAX_ARGS,
							   FUNC_MAX_ARGS)));

	/* Set up the primary fmgr lookup information */
	fmgr_info_cxt(foid, &(sexpr->func), sexprCxt);
	fmgr_info_set_expr((Node *) sexpr->expr, &(sexpr->func));

	/* Initialize the function call parameter struct as well */
	InitFunctionCallInfoData(sexpr->fcinfo_data, &(sexpr->func),
							 list_length(sexpr->args),
							 input_collation, NULL, NULL);

	/* If function returns set, check if that's allowed by caller */
	if (sexpr->func.fn_retset && !allowSRF)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("set-valued function called in context that cannot accept a set"),
				 parent ? executor_errposition(parent->state,
											   exprLocation((Node *) node)) : 0));

	/* Otherwise, caller should have marked the sexpr correctly */
	Assert(sexpr->func.fn_retset == sexpr->funcReturnsSet);

	/* If function returns set, prepare expected tuple descriptor */
	if (sexpr->func.fn_retset && needDescForSRF)
	{
		TypeFuncClass functypclass;
		Oid			funcrettype;
		TupleDesc	tupdesc;
		MemoryContext oldcontext;

		functypclass = get_expr_result_type(sexpr->func.fn_expr,
											&funcrettype,
											&tupdesc);

		/* Must save tupdesc in sexpr's context */
		oldcontext = MemoryContextSwitchTo(sexprCxt);

		if (functypclass == TYPEFUNC_COMPOSITE ||
			functypclass == TYPEFUNC_COMPOSITE_DOMAIN)
		{
			/* Composite data type, e.g. a table's row type */
			Assert(tupdesc);
			/* Must copy it out of typcache for safety */
			sexpr->funcResultDesc = CreateTupleDescCopy(tupdesc);
			sexpr->funcReturnsTuple = true;
		}
		else if (functypclass == TYPEFUNC_SCALAR)
		{
			/* Base data type, i.e. scalar */
			tupdesc = CreateTemplateTupleDesc(1, false);
			TupleDescInitEntry(tupdesc,
							   (AttrNumber) 1,
							   NULL,
							   funcrettype,
							   -1,
							   0);
			sexpr->funcResultDesc = tupdesc;
			sexpr->funcReturnsTuple = false;
		}
		else if (functypclass == TYPEFUNC_RECORD)
		{
			/* This will work if function doesn't need an expectedDesc */
			sexpr->funcResultDesc = NULL;
			sexpr->funcReturnsTuple = true;
		}
		else
		{
			/* Else, we will fail if function needs an expectedDesc */
			sexpr->funcResultDesc = NULL;
		}

		MemoryContextSwitchTo(oldcontext);
	}
	else
		sexpr->funcResultDesc = NULL;

	/* Initialize additional state */
	sexpr->funcResultStore = NULL;
	sexpr->funcResultSlot = NULL;
	sexpr->shutdown_reg = false;
}