void ep_rhs(fp_t rhs, const ep_t p) { fp_t t0; fp_t t1; fp_null(t0); fp_null(t1); TRY { fp_new(t0); fp_new(t1); /* t0 = x1^2. */ fp_sqr(t0, p->x); /* t1 = x1^3. */ fp_mul(t1, t0, p->x); /* t1 = x1^3 + a * x1 + b. */ switch (ep_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fp_add(t1, t1, p->x); break; #if FP_RDC != MONTY case OPT_DIGIT: fp_mul_dig(t0, p->x, ep_curve_get_a()[0]); fp_add(t1, t1, t0); break; #endif default: fp_mul(t0, p->x, ep_curve_get_a()); fp_add(t1, t1, t0); break; } switch (ep_curve_opt_b()) { case OPT_ZERO: break; case OPT_ONE: fp_add_dig(t1, t1, 1); break; #if FP_RDC != MONTY case OPT_DIGIT: fp_add_dig(t1, t1, ep_curve_get_b()[0]); break; #endif default: fp_add(t1, t1, ep_curve_get_b()); break; } fp_copy(rhs, t1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); } }
int fp2_srt(fp2_t c, fp2_t a) { int r = 0; fp_t t1; fp_t t2; fp_t t3; fp_null(t1); fp_null(t2); fp_null(t3); TRY { fp_new(t1); fp_new(t2); fp_new(t3); /* t1 = a[0]^2 - u^2 * a[1]^2 */ fp_sqr(t1, a[0]); fp_sqr(t2, a[1]); for (int i = -1; i > fp_prime_get_qnr(); i--) { fp_add(t1, t1, t2); } for (int i = 0; i <= fp_prime_get_qnr(); i++) { fp_sub(t1, t1, t2); } fp_add(t1, t1, t2); if (fp_srt(t2, t1)) { /* t1 = (a_0 + sqrt(t1)) / 2 */ fp_add(t1, a[0], t2); fp_set_dig(t3, 2); fp_inv(t3, t3); fp_mul(t1, t1, t3); if (!fp_srt(t3, t1)) { /* t1 = (a_0 - sqrt(t1)) / 2 */ fp_sub(t1, a[0], t2); fp_set_dig(t3, 2); fp_inv(t3, t3); fp_mul(t1, t1, t3); fp_srt(t3, t1); } /* c_0 = sqrt(t1) */ fp_copy(c[0], t3); /* c_1 = a_1 / (2 * sqrt(t1)) */ fp_dbl(t3, t3); fp_inv(t3, t3); fp_mul(c[1], a[1], t3); r = 1; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t1); fp_free(t2); fp_free(t3); } return r; }
/** * Normalizes a point represented in projective coordinates. * * @param r - the result. * @param p - the point to normalize. */ static void ep_norm_imp(ep_t r, const ep_t p, int inverted) { if (!p->norm) { fp_t t0, t1; fp_null(t0); fp_null(t1); TRY { fp_new(t0); fp_new(t1); if (inverted) { fp_copy(t1, p->z); } else { fp_inv(t1, p->z); } fp_sqr(t0, t1); fp_mul(r->x, p->x, t0); fp_mul(t0, t0, t1); fp_mul(r->y, p->y, t0); fp_set_dig(r->z, 1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); } }
void fp2_sqr_basic(fp2_t c, fp2_t a) { fp_t t0, t1, t2; fp_null(t0); fp_null(t1); fp_null(t2); TRY { fp_new(t0); fp_new(t1); fp_new(t2); /* t0 = (a_0 + a_1). */ fp_add(t0, a[0], a[1]); /* t1 = (a_0 - a_1). */ fp_sub(t1, a[0], a[1]); /* t1 = a_0 + u^2 * a_1. */ for (int i = -1; i > fp_prime_get_qnr(); i--) { fp_sub(t1, t1, a[1]); } for (int i = 0; i <= fp_prime_get_qnr(); i++) { fp_add(t1, t1, a[1]); } if (fp_prime_get_qnr() == -1) { /* t2 = 2 * a_0. */ fp_dbl(t2, a[0]); /* c_1 = 2 * a_0 * a_1. */ fp_mul(c[1], t2, a[1]); /* c_0 = a_0^2 + a_1^2 * u^2. */ fp_mul(c[0], t0, t1); } else { /* c_1 = a_0 * a_1. */ fp_mul(c[1], a[0], a[1]); /* c_0 = a_0^2 + a_1^2 * u^2. */ fp_mul(c[0], t0, t1); for (int i = -1; i > fp_prime_get_qnr(); i--) { fp_add(c[0], c[0], c[1]); } for (int i = 0; i <= fp_prime_get_qnr(); i++) { fp_sub(c[0], c[0], c[1]); } /* c_1 = 2 * a_0 * a_1. */ fp_dbl(c[1], c[1]); } /* c = c_0 + c_1 * u. */ } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); } }
void fp2_inv(fp2_t c, fp2_t a) { fp_t t0, t1; fp_null(t0); fp_null(t1); TRY { fp_new(t0); fp_new(t1); /* t0 = a_0^2, t1 = a_1^2. */ fp_sqr(t0, a[0]); fp_sqr(t1, a[1]); /* t1 = 1/(a_0^2 + a_1^2). */ #ifndef FP_QNRES if (fp_prime_get_qnr() != -1) { if (fp_prime_get_qnr() == -2) { fp_dbl(t1, t1); fp_add(t0, t0, t1); } else { if (fp_prime_get_qnr() < 0) { fp_mul_dig(t1, t1, -fp_prime_get_qnr()); fp_add(t0, t0, t1); } else { fp_mul_dig(t1, t1, fp_prime_get_qnr()); fp_sub(t0, t0, t1); } } } else { fp_add(t0, t0, t1); } #else fp_add(t0, t0, t1); #endif fp_inv(t1, t0); /* c_0 = a_0/(a_0^2 + a_1^2). */ fp_mul(c[0], a[0], t1); /* c_1 = - a_1/(a_0^2 + a_1^2). */ fp_mul(c[1], a[1], t1); fp_neg(c[1], c[1]); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); } }
void ed_norm_sim(ed_t *r, const ed_t *t, int n) { int i; fp_t a[n]; for (i = 0; i < n; i++) { fp_null(a[i]); } TRY { for (i = 0; i < n; i++) { fp_new(a[i]); fp_copy(a[i], t[i]->z); } fp_inv_sim(a, (const fp_t *)a, n); for (i = 0; i < n; i++) { fp_mul(r[i]->x, t[i]->x, a[i]); fp_mul(r[i]->y, t[i]->y, a[i]); #if ED_ADD == EXTND fp_mul(r[i]->t, t[i]->t, a[i]); #endif fp_set_dig(r[i]->z, 1); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { for (i = 0; i < n; i++) { fp_free(a[i]); } } }
int fp_cmp_dig(const fp_t a, dig_t b) { #if FP_RDC == MONTY fp_t t; int r = CMP_EQ; fp_null(t); TRY { fp_new(t); fp_prime_conv_dig(t, b); r = fp_cmp(a, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } return r; #else for (int i = 1; i < FP_DIGS; i++) { if (a[i] > 0) { return CMP_GT; } } return fp_cmp1_low(a[0], b); #endif }
int ep_upk(ep_t r, const ep_t p) { fp_t t; int result = 0; fp_null(t); TRY { fp_new(t); ep_rhs(t, p); /* t0 = sqrt(x1^3 + a * x1 + b). */ result = fp_srt(t, t); if (result) { /* Verify if least significant bit of the result matches the * compressed y-coordinate. */ if (fp_get_bit(t, 0) != fp_get_bit(p->y, 0)) { fp_neg(t, t); } fp_copy(r->x, p->x); fp_copy(r->y, t); fp_set_dig(r->z, 1); r->norm = 1; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } return result; }
void fp2_mul_art(fp2_t c, fp2_t a) { fp_t t; fp_null(t); TRY { fp_new(t); #ifdef FP_QNRES /* (a_0 + a_1 * i) * i = -a_1 + a_0 * i. */ fp_copy(t, a[0]); fp_neg(c[0], a[1]); fp_copy(c[1], t); #else /* (a_0 + a_1 * u) * u = (a_1 * u^2) + a_0 * u. */ fp_copy(t, a[0]); fp_neg(c[0], a[1]); for (int i = -1; i > fp_prime_get_qnr(); i--) { fp_sub(c[0], c[0], a[1]); } fp_copy(c[1], t); #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
/** * Normalizes a point represented in projective coordinates. * * @param r - the result. * @param p - the point to normalize. */ void ed_norm(ed_t r, const ed_t p) { if (ed_is_infty(p)) { ed_set_infty(r); return; } if (fp_cmp_dig(p->z, 1) == CMP_EQ) { /* If the point is represented in affine coordinates, we just copy it. */ ed_copy(r, p); } else { fp_t z_inv; fp_null(z_inv); fp_new(z_inv); fp_inv(z_inv, p->z); fp_mul(r->x, p->x, z_inv); fp_mul(r->y, p->y, z_inv); #if ED_ADD == EXTND fp_mul(r->t, p->t, z_inv); #endif fp_set_dig(r->z, 1); fp_free(z_inv); } }
int fp2_upk(fp2_t c, fp2_t a) { int result, b = fp_get_bit(a[1], 0); fp_t t; fp_null(t); TRY { fp_new(t); /* a_0^2 + a_1^2 = 1, thus a_1^2 = 1 - a_0^2. */ fp_sqr(t, a[0]); fp_sub_dig(t, t, 1); fp_neg(t, t); /* a1 = sqrt(a_0^2). */ result = fp_srt(t, t); if (result) { /* Verify if least significant bit of the result matches the * compressed second coordinate. */ if (fp_get_bit(t, 0) != b) { fp_neg(t, t); } fp_copy(c[0], a[0]); fp_copy(c[1], t); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } return result; }
void fp_exp_monty(fp_t c, const fp_t a, const bn_t b) { fp_t t[2]; fp_null(t[0]); fp_null(t[1]); if (bn_is_zero(b)) { fp_set_dig(c, 1); return; } TRY { fp_new(t[0]); fp_new(t[1]); fp_set_dig(t[0], 1); fp_copy(t[1], a); for (int i = bn_bits(b) - 1; i >= 0; i--) { int j = bn_get_bit(b, i); dv_swap_cond(t[0], t[1], FP_DIGS, j ^ 1); fp_mul(t[0], t[0], t[1]); fp_sqr(t[1], t[1]); dv_swap_cond(t[0], t[1], FP_DIGS, j ^ 1); } if (bn_sign(b) == BN_NEG) { fp_inv(c, t[0]); } else { fp_copy(c, t[0]); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t[1]); fp_free(t[0]); } }
int ed_affine_is_valid(const fp_t x, const fp_t y) { fp_t tmpFP0; fp_t tmpFP1; fp_t tmpFP2; fp_null(tmpFP0); fp_null(tmpFP1); fp_null(tmpFP2); int r = 0; TRY { fp_new(tmpFP0); fp_new(tmpFP1); fp_new(tmpFP2); // a * X^2 + Y^2 - 1 - d * X^2 * Y^2 =?= 0 fp_sqr(tmpFP0, x); fp_mul(tmpFP0, core_get()->ed_a, tmpFP0); fp_sqr(tmpFP1, y); fp_add(tmpFP1, tmpFP0, tmpFP1); fp_sub_dig(tmpFP1, tmpFP1, 1); fp_sqr(tmpFP0, x); fp_mul(tmpFP0, core_get()->ed_d, tmpFP0); fp_sqr(tmpFP2, y); fp_mul(tmpFP2, tmpFP0, tmpFP2); fp_sub(tmpFP0, tmpFP1, tmpFP2); r = fp_is_zero(tmpFP0); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(tmpFP0); fp_free(tmpFP1); fp_free(tmpFP2); } return r; }
int ed_is_valid(const ed_t p) { ed_t t; #if ED_ADD == EXTND fp_t x_times_y; #endif int r = 0; ed_null(t); #if ED_ADD == EXTND fp_null(x_times_y); #endif if (fp_is_zero(p->z)) { r = 0; } else { TRY { #if ED_ADD == EXTND fp_new(x_times_y); #endif ed_new(t); ed_norm(t, p); // check t coordinate #if ED_ADD == PROJC r = ed_affine_is_valid(t->x, t->y); #elif ED_ADD == EXTND fp_mul(x_times_y, t->x, t->y); if (fp_cmp(x_times_y, t->t) != CMP_EQ) { r = 0; } else { r = ed_affine_is_valid(t->x, t->y); } #endif // if (r == 0) { // util_printf("\n\n(X, Y, T, Z) = \n"); // ed_print(p); // } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { #if ED_ADD == EXTND fp_free(x_times_y); #endif ed_free(t); } } return r; }
int fp_cmp_dig(const fp_t a, dig_t b) { fp_t t; int r = RLC_EQ; fp_null(t); TRY { fp_new(t); fp_prime_conv_dig(t, b); r = fp_cmp(a, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } return r; }
int ed_is_infty(const ed_t p) { assert(!fp_is_zero(p->z)); int ret = 0; fp_t norm_y; fp_null(norm_y); fp_new(norm_y); fp_inv(norm_y, p->z); fp_mul(norm_y, p->y, norm_y); if (fp_cmp_dig(norm_y, 1) == CMP_EQ && fp_is_zero(p->x)) { ret = 1; } fp_free(norm_y); return ret; }
/** * Detects an optimization based on the curve coefficients. * * @param[out] opt - the resulting optimization. * @param[in] a - the curve coefficient. */ static void detect_opt(int *opt, fp_t a) { fp_t t; fp_null(t); TRY { fp_new(t); fp_prime_conv_dig(t, 3); fp_neg(t, t); if (fp_cmp(a, t) == CMP_EQ) { *opt = OPT_MINUS3; } else { if (fp_is_zero(a)) { *opt = OPT_ZERO; } else { fp_set_dig(t, 1); if (fp_cmp_dig(a, 1) == CMP_EQ) { *opt = OPT_ONE; } else { if (fp_cmp_dig(a, 2) == CMP_EQ) { *opt = OPT_TWO; } else { if (fp_bits(a) <= FP_DIGIT) { *opt = OPT_DIGIT; } else { *opt = RELIC_OPT_NONE; } } } } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
void fp3_mul_art(fp3_t c, fp3_t a) { fp_t t; fp_null(t); TRY { fp_new(t); /* (a_0 + a_1 * u + a_1 * u^2) * u = a_0 * u + a_1 * u^2 + a_1 * u^3. */ fp_copy(t, a[0]); fp_dbl(c[0], a[2]); fp_neg(c[0], c[0]); fp_copy(c[2], a[1]); fp_copy(c[1], t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
void fp_exp_basic(fp_t c, const fp_t a, const bn_t b) { int i, l; fp_t r; fp_null(r); if (bn_is_zero(b)) { fp_set_dig(c, 1); return; } TRY { fp_new(r); l = bn_bits(b); fp_copy(r, a); for (i = l - 2; i >= 0; i--) { fp_sqr(r, r); if (bn_get_bit(b, i)) { fp_mul(r, r, a); } } if (bn_sign(b) == BN_NEG) { fp_inv(c, r); } else { fp_copy(c, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(r); } }
void pp_dbl_k2_basic(fp2_t l, ep_t r, ep_t p, ep_t q) { fp_t s; ep_t t; fp_null(s); ep_null(t); TRY { fp_new(s); ep_new(t); ep_copy(t, p); ep_dbl_slp_basic(r, s, p); fp_add(l[0], t->x, q->x); fp_mul(l[0], l[0], s); fp_sub(l[0], t->y, l[0]); fp_copy(l[1], q->y); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(s); ep_free(t); } }
void fp_exp_slide(fp_t c, const fp_t a, const bn_t b) { fp_t t[1 << (FP_WIDTH - 1)], r; int i, j, l; uint8_t win[FP_BITS + 1]; fp_null(r); if (bn_is_zero(b)) { fp_set_dig(c, 1); return; } /* Initialize table. */ for (i = 0; i < (1 << (FP_WIDTH - 1)); i++) { fp_null(t[i]); } TRY { for (i = 0; i < (1 << (FP_WIDTH - 1)); i ++) { fp_new(t[i]); } fp_new(r); fp_copy(t[0], a); fp_sqr(r, a); /* Create table. */ for (i = 1; i < 1 << (FP_WIDTH - 1); i++) { fp_mul(t[i], t[i - 1], r); } fp_set_dig(r, 1); l = FP_BITS + 1; bn_rec_slw(win, &l, b, FP_WIDTH); for (i = 0; i < l; i++) { if (win[i] == 0) { fp_sqr(r, r); } else { for (j = 0; j < util_bits_dig(win[i]); j++) { fp_sqr(r, r); } fp_mul(r, r, t[win[i] >> 1]); } } if (bn_sign(b) == BN_NEG) { fp_inv(c, r); } else { fp_copy(c, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { for (i = 0; i < (1 << (FP_WIDTH - 1)); i++) { fp_free(t[i]); } fp_free(r); } }
/** * Adds two points represented in affine coordinates on an ordinary prime * elliptic curve. * * @param[out] r - the result. * @param[out] s - the slope. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void ep_add_basic_imp(ep_t r, fp_t s, const ep_t p, const ep_t q) { fp_t t0, t1, t2; fp_null(t0); fp_null(t1); fp_null(t2); TRY { fp_new(t0); fp_new(t1); fp_new(t2); /* t0 = x2 - x1. */ fp_sub(t0, q->x, p->x); /* t1 = y2 - y1. */ fp_sub(t1, q->y, p->y); /* If t0 is zero. */ if (fp_is_zero(t0)) { if (fp_is_zero(t1)) { /* If t1 is zero, q = p, should have doubled. */ ep_dbl_basic(r, p); } else { /* If t1 is not zero and t0 is zero, q = -p and r = infinity. */ ep_set_infty(r); } } else { /* t2 = 1/(x2 - x1). */ fp_inv(t2, t0); /* t2 = lambda = (y2 - y1)/(x2 - x1). */ fp_mul(t2, t1, t2); /* x3 = lambda^2 - x2 - x1. */ fp_sqr(t1, t2); fp_sub(t0, t1, p->x); fp_sub(t0, t0, q->x); /* y3 = lambda * (x1 - x3) - y1. */ fp_sub(t1, p->x, t0); fp_mul(t1, t2, t1); fp_sub(r->y, t1, p->y); fp_copy(r->x, t0); fp_copy(r->z, p->z); if (s != NULL) { fp_copy(s, t2); } r->norm = 1; } fp_free(t0); fp_free(t1); fp_free(t2); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); } }
void pp_dbl_k2_projc_lazyr(fp2_t l, ep_t r, ep_t p, ep_t q) { fp_t t0, t1, t2, t3, t4, t5; dv_t u0, u1; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); dv_null(u0); dv_null(u1); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); dv_new(u0); dv_new(u1); /* For these curves, we always can choose a = -3. */ /* dbl-2001-b formulas: 3M + 5S + 8add + 1*4 + 2*8 + 1*3 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b */ /* t0 = delta = z1^2. */ fp_sqr(t0, p->z); /* t1 = gamma = y1^2. */ fp_sqr(t1, p->y); /* t2 = beta = x1 * y1^2. */ fp_mul(t2, p->x, t1); /* t3 = alpha = 3 * (x1 - z1^2) * (x1 + z1^2). */ fp_sub(t3, p->x, t0); fp_add(t4, p->x, t0); fp_mul(t4, t3, t4); fp_dbl(t3, t4); fp_add(t3, t3, t4); /* t2 = 4 * beta. */ fp_dbl(t2, t2); fp_dbl(t2, t2); /* z3 = (y1 + z1)^2 - gamma - delta. */ fp_add(r->z, p->y, p->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t1); fp_sub(r->z, r->z, t0); /* l0 = 2 * gamma - alpha * (delta * xq + x1). */ fp_dbl(t1, t1); fp_mul(t5, t0, q->x); fp_add(t5, t5, p->x); fp_mul(t5, t5, t3); fp_sub(l[0], t1, t5); /* x3 = alpha^2 - 8 * beta. */ fp_dbl(t5, t2); fp_sqr(r->x, t3); fp_sub(r->x, r->x, t5); /* y3 = alpha * (4 * beta - x3) - 8 * gamma^2. */ fp_sqrn_low(u0, t1); fp_addc_low(u0, u0, u0); fp_subm_low(r->y, t2, r->x); fp_muln_low(u1, r->y, t3); fp_subc_low(u1, u1, u0); fp_rdcn_low(r->y, u1); /* l1 = - z3 * delta * yq. */ fp_mul(l[1], r->z, t0); fp_mul(l[1], l[1], q->y); r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); dv_free(u0); dv_free(u1); } }
int fp_srt(fp_t c, const fp_t a) { bn_t e; fp_t t0; fp_t t1; int r = 0; bn_null(e); fp_null(t0); fp_null(t1); TRY { bn_new(e); fp_new(t0); fp_new(t1); /* Make e = p. */ e->used = FP_DIGS; dv_copy(e->dp, fp_prime_get(), FP_DIGS); if (fp_prime_get_mod8() == 3 || fp_prime_get_mod8() == 7) { /* Easy case, compute a^((p + 1)/4). */ bn_add_dig(e, e, 1); bn_rsh(e, e, 2); fp_exp(t0, a, e); fp_sqr(t1, t0); r = (fp_cmp(t1, a) == CMP_EQ); fp_copy(c, t0); } else { int f = 0, m = 0; /* First, check if there is a root. Compute t1 = a^((p - 1)/2). */ bn_rsh(e, e, 1); fp_exp(t0, a, e); if (fp_cmp_dig(t0, 1) != CMP_EQ) { /* Nope, there is no square root. */ r = 0; } else { r = 1; /* Find a quadratic non-residue modulo p, that is a number t2 * such that (t2 | p) = t2^((p - 1)/2)!= 1. */ do { fp_rand(t1); fp_exp(t0, t1, e); } while (fp_cmp_dig(t0, 1) == CMP_EQ); /* Write p - 1 as (e * 2^f), odd e. */ bn_lsh(e, e, 1); while (bn_is_even(e)) { bn_rsh(e, e, 1); f++; } /* Compute t2 = t2^e. */ fp_exp(t1, t1, e); /* Compute t1 = a^e, c = a^((e + 1)/2) = a^(e/2 + 1), odd e. */ bn_rsh(e, e, 1); fp_exp(t0, a, e); fp_mul(e->dp, t0, a); fp_sqr(t0, t0); fp_mul(t0, t0, a); fp_copy(c, e->dp); while (1) { if (fp_cmp_dig(t0, 1) == CMP_EQ) { break; } fp_copy(e->dp, t0); for (m = 0; (m < f) && (fp_cmp_dig(t0, 1) != CMP_EQ); m++) { fp_sqr(t0, t0); } fp_copy(t0, e->dp); for (int i = 0; i < f - m - 1; i++) { fp_sqr(t1, t1); } fp_mul(c, c, t1); fp_sqr(t1, t1); fp_mul(t0, t0, t1); f = m; } } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(e); fp_free(t0); fp_free(t1); } return r; }
/** * Adds two points represented in projective coordinates on an ordinary prime * elliptic curve. * * @param[out] r - the result. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void ep_add_projc_imp(ep_t r, const ep_t p, const ep_t q) { #if defined(EP_MIXED) && defined(STRIP) /* If code size is a problem, leave only the mixed version. */ ep_add_projc_mix(r, p, q); #else /* General addition. */ #if defined(EP_MIXED) || !defined(STRIP) /* Test if z2 = 1 only if mixed coordinates are turned on. */ if (q->norm) { ep_add_projc_mix(r, p, q); return; } #endif fp_t t0, t1, t2, t3, t4, t5, t6; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); fp_null(t6); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); fp_new(t6); /* add-2007-bl formulas: 11M + 5S + 9add + 4*2 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl */ /* t0 = z1^2. */ fp_sqr(t0, p->z); /* t1 = z2^2. */ fp_sqr(t1, q->z); /* t2 = U1 = x1 * z2^2. */ fp_mul(t2, p->x, t1); /* t3 = U2 = x2 * z1^2. */ fp_mul(t3, q->x, t0); /* t6 = z1^2 + z2^2. */ fp_add(t6, t0, t1); /* t0 = S2 = y2 * z1^3. */ fp_mul(t0, t0, p->z); fp_mul(t0, t0, q->y); /* t1 = S1 = y1 * z2^3. */ fp_mul(t1, t1, q->z); fp_mul(t1, t1, p->y); /* t3 = H = U2 - U1. */ fp_sub(t3, t3, t2); /* t0 = R = 2 * (S2 - S1). */ fp_sub(t0, t0, t1); fp_dbl(t0, t0); /* If E is zero. */ if (fp_is_zero(t3)) { if (fp_is_zero(t0)) { /* If I is zero, p = q, should have doubled. */ ep_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ ep_set_infty(r); } } else { /* t4 = I = (2*H)^2. */ fp_dbl(t4, t3); fp_sqr(t4, t4); /* t5 = J = H * I. */ fp_mul(t5, t3, t4); /* t4 = V = U1 * I. */ fp_mul(t4, t2, t4); /* x3 = R^2 - J - 2 * V. */ fp_sqr(r->x, t0); fp_sub(r->x, r->x, t5); fp_dbl(t2, t4); fp_sub(r->x, r->x, t2); /* y3 = R * (V - x3) - 2 * S1 * J. */ fp_sub(t4, t4, r->x); fp_mul(t4, t4, t0); fp_mul(t1, t1, t5); fp_dbl(t1, t1); fp_sub(r->y, t4, t1); /* z3 = ((z1 + z2)^2 - z1^2 - z2^2) * H. */ fp_add(r->z, p->z, q->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t6); fp_mul(r->z, r->z, t3); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); fp_free(t6); } #endif }
void pp_dbl_lit_k12(fp12_t l, ep_t r, ep_t p, ep2_t q) { fp_t t0, t1, t2, t3, t4, t5, t6; int one = 1, zero = 0; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); fp_null(t6); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); fp_new(t6); fp_sqr(t0, p->x); fp_sqr(t1, p->y); fp_sqr(t2, p->z); fp_mul(t4, ep_curve_get_b(), t2); fp_dbl(t3, t4); fp_add(t3, t3, t4); fp_add(t4, p->x, p->y); fp_sqr(t4, t4); fp_sub(t4, t4, t0); fp_sub(t4, t4, t1); fp_add(t5, p->y, p->z); fp_sqr(t5, t5); fp_sub(t5, t5, t1); fp_sub(t5, t5, t2); fp_dbl(t6, t3); fp_add(t6, t6, t3); fp_sub(r->x, t1, t6); fp_mul(r->x, r->x, t4); fp_add(r->y, t1, t6); fp_sqr(r->y, r->y); fp_sqr(t4, t3); fp_dbl(t6, t4); fp_add(t6, t6, t4); fp_dbl(t6, t6); fp_dbl(t6, t6); fp_sub(r->y, r->y, t6); fp_mul(r->z, t1, t5); fp_dbl(r->z, r->z); fp_dbl(r->z, r->z); r->norm = 0; if (ep2_curve_is_twist() == EP_MTYPE) { one ^= 1; zero ^= 1; } fp2_dbl(l[zero][one], q->x); fp2_add(l[zero][one], l[zero][one], q->x); fp_mul(l[zero][one][0], l[zero][one][0], t0); fp_mul(l[zero][one][1], l[zero][one][1], t0); fp_sub(l[zero][zero][0], t3, t1); fp_zero(l[zero][zero][1]); fp_mul(l[one][one][0], q->y[0], t5); fp_mul(l[one][one][1], q->y[1], t5); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); fp_free(t6); } }
/** * Doubles a point represented in projective coordinates on an ordinary prime * elliptic curve. * * @param r - the result. * @param p - the point to double. */ static void ep_dbl_projc_imp(ep_t r, const ep_t p) { fp_t t0, t1, t2, t3, t4, t5; fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); if (!p->norm && ep_curve_opt_a() == OPT_MINUS3) { /* dbl-2001-b formulas: 3M + 5S + 8add + 1*4 + 2*8 + 1*3 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b */ /* t0 = delta = z1^2. */ fp_sqr(t0, p->z); /* t1 = gamma = y1^2. */ fp_sqr(t1, p->y); /* t2 = beta = x1 * y1^2. */ fp_mul(t2, p->x, t1); /* t3 = alpha = 3 * (x1 - z1^2) * (x1 + z1^2). */ fp_sub(t3, p->x, t0); fp_add(t4, p->x, t0); fp_mul(t4, t3, t4); fp_dbl(t3, t4); fp_add(t3, t3, t4); /* x3 = alpha^2 - 8 * beta. */ fp_dbl(t2, t2); fp_dbl(t2, t2); fp_dbl(t5, t2); fp_sqr(r->x, t3); fp_sub(r->x, r->x, t5); /* z3 = (y1 + z1)^2 - gamma - delta. */ fp_add(r->z, p->y, p->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t1); fp_sub(r->z, r->z, t0); /* y3 = alpha * (4 * beta - x3) - 8 * gamma^2. */ fp_dbl(t1, t1); fp_sqr(t1, t1); fp_dbl(t1, t1); fp_sub(r->y, t2, r->x); fp_mul(r->y, r->y, t3); fp_sub(r->y, r->y, t1); } else if (ep_curve_opt_a() == OPT_ZERO) { /* dbl-2009-l formulas: 2M + 5S + 6add + 1*8 + 3*2 + 1*3. */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */ /* A = X1^2 */ fp_sqr(t0, p->x); /* B = Y1^2 */ fp_sqr(t1, p->y); /* C = B^2 */ fp_sqr(t2, t1); /* D = 2*((X1+B)^2-A-C) */ fp_add(t1, t1, p->x); fp_sqr(t1, t1); fp_sub(t1, t1, t0); fp_sub(t1, t1, t2); fp_dbl(t1, t1); /* E = 3*A */ fp_dbl(t3, t0); fp_add(t0, t3, t0); /* F = E^2 */ fp_sqr(t3, t0); /* Z3 = 2*Y1*Z1 */ fp_mul(r->z, p->y, p->z); fp_dbl(r->z, r->z); /* X3 = F-2*D */ fp_sub(r->x, t3, t1); fp_sub(r->x, r->x, t1); /* Y3 = E*(D-X3)-8*C */ fp_sub(r->y, t1, r->x); fp_mul(r->y, r->y, t0); fp_dbl(t2, t2); fp_dbl(t2, t2); fp_dbl(t2, t2); fp_sub(r->y, r->y, t2); } else { /* dbl-2007-bl formulas: 1M + 8S + 1*a + 10add + 1*8 + 2*2 + 1*3 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl */ /* t0 = x1^2, t1 = y1^2, t2 = y1^4. */ fp_sqr(t0, p->x); fp_sqr(t1, p->y); fp_sqr(t2, t1); if (!p->norm) { /* t3 = z1^2. */ fp_sqr(t3, p->z); if (ep_curve_get_a() == OPT_ZERO) { /* z3 = 2 * y1 * z1. */ fp_mul(r->z, p->y, p->z); fp_dbl(r->z, r->z); } else { /* z3 = (y1 + z1)^2 - y1^2 - z1^2. */ fp_add(r->z, p->y, p->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t1); fp_sub(r->z, r->z, t3); } } else { /* z3 = 2 * y1. */ fp_dbl(r->z, p->y); } /* t4 = S = 2*((x1 + y1^2)^2 - x1^2 - y1^4). */ fp_add(t4, p->x, t1); fp_sqr(t4, t4); fp_sub(t4, t4, t0); fp_sub(t4, t4, t2); fp_dbl(t4, t4); /* t5 = M = 3 * x1^2 + a * z1^4. */ fp_dbl(t5, t0); fp_add(t5, t5, t0); if (!p->norm) { fp_sqr(t3, t3); switch (ep_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fp_add(t5, t5, ep_curve_get_a()); break; case OPT_DIGIT: fp_mul_dig(t1, t3, ep_curve_get_a()[0]); fp_add(t5, t5, t1); break; default: fp_mul(t1, ep_curve_get_a(), t3); fp_add(t5, t5, t1); break; } } else { switch (ep_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fp_add_dig(t5, t5, (dig_t)1); break; case OPT_DIGIT: fp_add_dig(t5, t5, ep_curve_get_a()[0]); break; default: fp_add(t5, t5, ep_curve_get_a()); break; } } /* x3 = T = M^2 - 2 * S. */ fp_sqr(r->x, t5); fp_dbl(t1, t4); fp_sub(r->x, r->x, t1); /* y3 = M * (S - T) - 8 * y1^4. */ fp_dbl(t2, t2); fp_dbl(t2, t2); fp_dbl(t2, t2); fp_sub(t4, t4, r->x); fp_mul(t5, t5, t4); fp_sub(r->y, t5, t2); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); } }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param[out] r - the result. * @param[in] p - the projective point. * @param[in] q - the affine point. */ static void ep_add_projc_mix(ep_t r, const ep_t p, const ep_t q) { fp_t t0, t1, t2, t3, t4, t5, t6; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); fp_null(t6); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); fp_new(t6); /* madd-2007-bl formulas: 7M + 4S + 9add + 1*4 + 3*2. */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-madd-2007-bl */ if (!p->norm) { /* t0 = z1^2. */ fp_sqr(t0, p->z); /* t3 = U2 = x2 * z1^2. */ fp_mul(t3, q->x, t0); /* t1 = S2 = y2 * z1^3. */ fp_mul(t1, t0, p->z); fp_mul(t1, t1, q->y); /* t3 = H = U2 - x1. */ fp_sub(t3, t3, p->x); /* t1 = R = 2 * (S2 - y1). */ fp_sub(t1, t1, p->y); fp_dbl(t1, t1); } else { /* H = x2 - x1. */ fp_sub(t3, q->x, p->x); /* t1 = R = 2 * (y2 - y1). */ fp_sub(t1, q->y, p->y); fp_dbl(t1, t1); } /* t2 = HH = H^2. */ fp_sqr(t2, t3); /* If E is zero. */ if (fp_is_zero(t3)) { if (fp_is_zero(t1)) { /* If I is zero, p = q, should have doubled. */ ep_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ ep_set_infty(r); } } else { /* t4 = I = 4*HH. */ fp_dbl(t4, t2); fp_dbl(t4, t4); /* t5 = J = H * I. */ fp_mul(t5, t3, t4); /* t4 = V = x1 * I. */ fp_mul(t4, p->x, t4); /* x3 = R^2 - J - 2 * V. */ fp_sqr(r->x, t1); fp_sub(r->x, r->x, t5); fp_dbl(t6, t4); fp_sub(r->x, r->x, t6); /* y3 = R * (V - x3) - 2 * Y1 * J. */ fp_sub(t4, t4, r->x); fp_mul(t4, t4, t1); fp_mul(t1, p->y, t5); fp_dbl(t1, t1); fp_sub(r->y, t4, t1); if (!p->norm) { /* z3 = (z1 + H)^2 - z1^2 - HH. */ fp_add(r->z, p->z, t3); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t0); fp_sub(r->z, r->z, t2); } else { /* z3 = 2 * H. */ fp_dbl(r->z, t3); } } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); fp_free(t6); } }
void ep_param_set(int param) { int plain = 0, endom = 0, super = 0; char str[2 * FP_BYTES + 2]; fp_t a, b, beta; ep_t g; bn_t r, h, lamb; fp_null(a); fp_null(b); fp_null(beta); bn_null(lamb); ep_null(g); bn_null(r); bn_null(h); TRY { fp_new(a); fp_new(b); fp_new(beta); bn_new(lamb); ep_new(g); bn_new(r); bn_new(h); core_get()->ep_id = 0; switch (param) { #if defined(EP_ENDOM) && FP_PRIME == 158 case BN_P158: ASSIGNK(BN_P158, BN_158); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 160 case SECG_P160: ASSIGN(SECG_P160, SECG_160); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 160 case SECG_K160: ASSIGNK(SECG_K160, SECG_160D); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 192 case NIST_P192: ASSIGN(NIST_P192, NIST_192); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 192 case SECG_K192: ASSIGNK(SECG_K192, SECG_192); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 221 case CURVE_22103: ASSIGN(CURVE_22103, PRIME_22103); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 224 case NIST_P224: ASSIGN(NIST_P224, NIST_224); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 224 case SECG_K224: ASSIGNK(SECG_K224, SECG_224); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 226 case CURVE_4417: ASSIGN(CURVE_4417, PRIME_22605); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 254 case BN_P254: ASSIGNK(BN_P254, BN_254); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 251 case CURVE_1174: ASSIGN(CURVE_1174, PRIME_25109); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 255 case CURVE_25519: ASSIGN(CURVE_25519, PRIME_25519); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 256 case NIST_P256: ASSIGN(NIST_P256, NIST_256); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 256 case SECG_K256: ASSIGNK(SECG_K256, SECG_256); endom = 1; break; case BN_P256: ASSIGNK(BN_P256, BN_256); endom = 1; break; #endif #if defined(EP_PLAIN) & FP_PRIME == 382 case CURVE_67254: ASSIGN(CURVE_67254, PRIME_382105); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 383 case CURVE_383187: ASSIGN(CURVE_383187, PRIME_383187); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 384 case NIST_P384: ASSIGN(NIST_P384, NIST_384); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 477 case B24_P477: ASSIGN(B24_P477, B24_477); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 508 case KSS_P508: ASSIGNK(KSS_P508, KSS_508); endom = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 511 case CURVE_511187: ASSIGN(CURVE_511187, PRIME_511187); plain = 1; break; #endif #if defined(EP_PLAIN) && FP_PRIME == 521 case NIST_P521: ASSIGN(NIST_P521, NIST_521); plain = 1; break; #endif #if defined(EP_ENDOM) && FP_PRIME == 638 case BN_P638: ASSIGNK(BN_P638, BN_638); endom = 1; break; case B12_P638: ASSIGNK(B12_P638, B12_638); endom = 1; break; #endif #if defined(EP_SUPER) && FP_PRIME == 1536 case SS_P1536: ASSIGN(SS_P1536, SS_1536); super = 1; break; #endif default: (void)str; THROW(ERR_NO_VALID); break; } /* Do not generate warnings. */ (void)endom; (void)plain; (void)beta; fp_zero(g->z); fp_set_dig(g->z, 1); g->norm = 1; #if defined(EP_PLAIN) if (plain) { ep_curve_set_plain(a, b, g, r, h); core_get()->ep_id = param; } #endif #if defined(EP_ENDOM) if (endom) { ep_curve_set_endom(b, g, r, h, beta, lamb); core_get()->ep_id = param; } #endif #if defined(EP_SUPER) if (super) { ep_curve_set_super(a, b, g, r, h); core_get()->ep_id = param; } #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(a); fp_free(b); fp_free(beta); bn_free(lamb); ep_free(g); bn_free(r); bn_free(h); } }
/** * Doubles a point represented in affine coordinates on an ordinary prime * elliptic curve. * * @param[out] r - the result. * @param[out] s - the slope. * @param[in] p - the point to double. */ static void ep_dbl_basic_imp(ep_t r, fp_t s, const ep_t p) { fp_t t0, t1, t2; fp_null(t0); fp_null(t1); fp_null(t2); TRY { fp_new(t0); fp_new(t1); fp_new(t2); /* t0 = 1/2 * y1. */ fp_dbl(t0, p->y); fp_inv(t0, t0); /* t1 = 3 * x1^2 + a. */ fp_sqr(t1, p->x); fp_copy(t2, t1); fp_dbl(t1, t1); fp_add(t1, t1, t2); switch (ep_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fp_add_dig(t1, t1, (dig_t)1); break; #if FP_RDC != MONTY case OPT_DIGIT: fp_add_dig(t1, t1, ep_curve_get_a()[0]); break; #endif default: fp_add(t1, t1, ep_curve_get_a()); break; } /* t1 = (3 * x1^2 + a)/(2 * y1). */ fp_mul(t1, t1, t0); if (s != NULL) { fp_copy(s, t1); } /* t2 = t1^2. */ fp_sqr(t2, t1); /* x3 = t1^2 - 2 * x1. */ fp_dbl(t0, p->x); fp_sub(t0, t2, t0); /* y3 = t1 * (x1 - x3) - y1. */ fp_sub(t2, p->x, t0); fp_mul(t1, t1, t2); fp_sub(r->y, t1, p->y); fp_copy(r->x, t0); fp_copy(r->z, p->z); r->norm = 1; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); } }