/* Remove an entry from the "incomplete datagrams" queue, either * because we completed, reassembled and processed it, or because * it timed out. * * This is called _only_ from BH contexts, on packet reception * processing and from frag queue expiration timers. -DaveM */ static void ip_free(struct ipq *qp) { struct ipfrag *fp; /* Stop the timer for this entry. */ del_timer(&qp->timer); /* Remove this entry from the "incomplete datagrams" queue. */ if(qp->next) qp->next->pprev = qp->pprev; *qp->pprev = qp->next; /* Release all fragment data. */ fp = qp->fragments; while (fp) { struct ipfrag *xp = fp->next; frag_kfree_skb(fp->skb); frag_kfree_s(fp, sizeof(struct ipfrag)); fp = xp; } /* Release the IP header. */ frag_kfree_s(qp->iph, 64 + 8); /* Finally, release the queue descriptor itself. */ frag_kfree_s(qp, sizeof(struct ipq)); }
// 从当前host中删除掉一个给定的ip报文队列 static void ip_free(struct ipq * qp) { struct ipfrag *fp; struct ipfrag *xp; /* Stop the timer for this entry. */ del_timer(&qp->timer); /* Remove this entry from the "incomplete datagrams" queue. */ // 如果队列是host中的第一个队列 if (qp->prev == NULL) { this_host->ipqueue = qp->next; // 如果后面还有,则修改后面一个为第一个 if (this_host->ipqueue != NULL) this_host->ipqueue->prev = NULL; // 否则该删除的队列是最后一个,说明host已经没有队列了,删除host else rmthis_host(); } // 否则不是第一个 else { qp->prev->next = qp->next; // 如果不是最后一个,修改后一个的指针 if (qp->next != NULL) qp->next->prev = qp->prev; } /* Release all fragment data. */ // 将这一个队列中所有的fragments全部释放掉 fp = qp->fragments; while (fp != NULL) { xp = fp->next; // 释放ipfrag中的ksb frag_kfree_skb(fp->skb, FREE_READ); // 再释放ipfrag结构 frag_kfree_s(fp, sizeof(struct ipfrag)); fp = xp; } /* Release the IP header. */ frag_kfree_s(qp->iph, 64 + 8); /* Finally, release the queue descriptor itself. */ frag_kfree_s(qp, sizeof(struct ipq)); }
// 疑问: 这一个应该要修改this_host的 ip_frag_mem变量吧???? // 输入: // ip头 // 返回: // ip队列,这个ip队列已经被挂载到host上了 static struct ipq * ip_create(struct ip * iph) { struct ipq *qp; int ihlen; // 调用malloc,申请一个空间 qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC); if (qp == NULL) { // NETDEBUG(printk("IP: create: no memory left !\n")); nids_params.no_mem("ip_create"); return (NULL); } // 填充为0 memset(qp, 0, sizeof(struct ipq)); /* Allocate memory for the IP header (plus 8 octets for ICMP). */ // 多分配8字节,需要保存ip头以及头后面8字节,因为icmp的内容就是ip头+8字节 ihlen = iph->ip_hl * 4; qp->iph = (struct ip *) frag_kmalloc(64 + 8, GFP_ATOMIC); if (qp->iph == NULL) { //NETDEBUG(printk("IP: create: no memory left !\n")); nids_params.no_mem("ip_create"); frag_kfree_s(qp, sizeof(struct ipq)); return (NULL); } // 将ip头+8字节的内容保存在iph变量中。 // 到时候iph变量就能够直接作为icmp的内容,如果有必要发送icmp的话 memcpy(qp->iph, iph, ihlen + 8); // 队列长度=0, 头长度,碎片队列 qp->len = 0; qp->ihlen = ihlen; qp->fragments = NULL; // 挂载到当前host上 qp->hf = this_host; /* Start a timer for this entry. */ // jiffies函数返回当前时间,毫秒为单位 qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ // 设置关联 qp->timer.data = (unsigned long) qp; /* pointer to queue */ // 注册一个超时函数,当超时的时候,会回调这个函数 qp->timer.function = ip_expire; /* expire function */ // 将这个timer挂载到queue上 add_timer(&qp->timer); /* Add this entry to the queue. */ // 将这个队列挂载到当前host上 qp->prev = NULL; qp->next = this_host->ipqueue; if (qp->next != NULL) qp->next->prev = qp; this_host->ipqueue = qp; return (qp); }
/* Remove an entry from the "incomplete datagrams" queue, either because we completed, reassembled and processed it, or because it timed out. */ static void //! ip_free(struct ipq * qp) ip_free(struct ipq * qp,IP_THREAD_LOCAL_P ip_thread_local_p) { struct ipfrag *fp; struct ipfrag *xp; /* Stop the timer for this entry. */ //! del_timer(&qp->timer); del_timer(&qp->timer,ip_thread_local_p); /* Remove this entry from the "incomplete datagrams" queue. */ if (qp->prev == NULL) { //! this_host->ipqueue = qp->next; ip_thread_local_p->this_host->ipqueue = qp->next; //! if (this_host->ipqueue != NULL) if (ip_thread_local_p->this_host->ipqueue != NULL) //! this_host->ipqueue->prev = NULL; ip_thread_local_p->this_host->ipqueue->prev = NULL; else //! rmthis_host(); rmthis_host(ip_thread_local_p); } else { qp->prev->next = qp->next; if (qp->next != NULL) qp->next->prev = qp->prev; } /* Release all fragment data. */ fp = qp->fragments; while (fp != NULL) { xp = fp->next; //! frag_kfree_skb(fp->skb, FREE_READ); frag_kfree_skb(fp->skb, FREE_READ,ip_thread_local_p); //! frag_kfree_s(fp, sizeof(struct ipfrag)); frag_kfree_s(fp, sizeof(struct ipfrag),ip_thread_local_p); fp = xp; } /* Release the IP header. */ frag_kfree_s(qp->iph, 64 + 8, ip_thread_local_p); /* Finally, release the queue descriptor itself. */ //! frag_kfree_s(qp, sizeof(struct ipq)); frag_kfree_s(qp, sizeof(struct ipq),ip_thread_local_p); }
static void ip_free(struct ipq *qp) { struct ipfrag *fp; struct ipfrag *xp; /* * Stop the timer for this entry. */ del_timer(&qp->timer); /* Remove this entry from the "incomplete datagrams" queue. */ cli(); if (qp->prev == NULL) { ipqueue = qp->next; if (ipqueue != NULL) ipqueue->prev = NULL; } else { qp->prev->next = qp->next; if (qp->next != NULL) qp->next->prev = qp->prev; } /* Release all fragment data. */ fp = qp->fragments; while (fp != NULL) { xp = fp->next; IS_SKB(fp->skb); frag_kfree_skb(fp->skb,FREE_READ); frag_kfree_s(fp, sizeof(struct ipfrag)); fp = xp; } /* Release the IP header. */ frag_kfree_s(qp->iph, 64 + 8); /* Finally, release the queue descriptor itself. */ frag_kfree_s(qp, sizeof(struct ipq)); sti(); }
static void fq_free(struct frag_queue *fq) { struct ipv6_frag *fp, *back; del_timer(&fq->timer); for (fp = fq->fragments; fp; ) { frag_kfree_skb(fp->skb); back = fp; fp=fp->next; frag_kfree_s(back, sizeof(*back)); } fq->prev->next = fq->next; fq->next->prev = fq->prev; fq->prev = fq->next = NULL; frag_kfree_s(fq, sizeof(*fq)); }
/* Add an entry to the 'ipq' queue for a newly received IP datagram. We will (hopefully :-) receive all other fragments of this datagram in time, so we just create a queue for this datagram, in which we will insert the received fragments at their respective positions. */ static struct ipq * //! ip_create(struct ip * iph) ip_create(struct ip * iph,IP_THREAD_LOCAL_P ip_thread_local_p) { struct ipq *qp; int ihlen; //! qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC); qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC,ip_thread_local_p); if (qp == NULL) { // NETDEBUG(printk("IP: create: no memory left !\n")); nids_params.no_mem("ip_create"); return (NULL); } memset(qp, 0, sizeof(struct ipq)); /* Allocate memory for the IP header (plus 8 octets for ICMP). */ ihlen = iph->ip_hl * 4; qp->iph = (struct ip *) frag_kmalloc(64 + 8, GFP_ATOMIC, ip_thread_local_p); if (qp->iph == NULL) { //NETDEBUG(printk("IP: create: no memory left !\n")); nids_params.no_mem("ip_create"); //! frag_kfree_s(qp, sizeof(struct ipq)); frag_kfree_s(qp, sizeof(struct ipq),ip_thread_local_p); return (NULL); } memcpy(qp->iph, iph, ihlen + 8); qp->len = 0; qp->ihlen = ihlen; qp->fragments = NULL; //! qp->hf = this_host; qp->hf = ip_thread_local_p->this_host; /* Start a timer for this entry. */ //! qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ qp->timer.expires = jiffies(ip_thread_local_p) + IP_FRAG_TIME; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ //! add_timer(&qp->timer); add_timer(&qp->timer,ip_thread_local_p); /* Add this entry to the queue. */ qp->prev = NULL; //! qp->next = this_host->ipqueue; qp->next = ip_thread_local_p->this_host->ipqueue; if (qp->next != NULL) qp->next->prev = qp; //! this_host->ipqueue = qp; ip_thread_local_p->this_host->ipqueue = qp; return (qp); }
static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph, struct device *dev) { struct ipq *qp; int ihlen; qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC); if (qp == NULL) { NETDEBUG(printk("IP: create: no memory left !\n")); return(NULL); } memset(qp, 0, sizeof(struct ipq)); /* * Allocate memory for the IP header (plus 8 octets for ICMP). */ ihlen = iph->ihl * 4; qp->iph = (struct iphdr *) frag_kmalloc(64 + 8, GFP_ATOMIC); if (qp->iph == NULL) { NETDEBUG(printk("IP: create: no memory left !\n")); frag_kfree_s(qp, sizeof(struct ipq)); return(NULL); } memcpy(qp->iph, iph, ihlen + 8); qp->len = 0; qp->ihlen = ihlen; qp->fragments = NULL; qp->dev = dev; /* Start a timer for this entry. */ qp->timer.expires = jiffies + IP_FRAG_TIME; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ add_timer(&qp->timer); /* Add this entry to the queue. */ qp->prev = NULL; cli(); qp->next = ipqueue; if (qp->next != NULL) qp->next->prev = qp; ipqueue = qp; sti(); return(qp); }
/* Add an entry to the 'ipq' queue for a newly received IP datagram. * We will (hopefully :-) receive all other fragments of this datagram * in time, so we just create a queue for this datagram, in which we * will insert the received fragments at their respective positions. */ static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph) { struct ipq *qp; unsigned int hash; int ihlen; qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC); if (qp == NULL) goto out_nomem; /* Allocate memory for the IP header (plus 8 octets for ICMP). */ ihlen = iph->ihl * 4; qp->iph = (struct iphdr *) frag_kmalloc(64 + 8, GFP_ATOMIC); if (qp->iph == NULL) goto out_free; memcpy(qp->iph, iph, ihlen + 8); qp->len = 0; qp->ihlen = ihlen; qp->fragments = NULL; qp->dev = skb->dev; /* Initialize a timer for this entry. */ init_timer(&qp->timer); qp->timer.expires = 0; /* (to be set later) */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ /* Add this entry to the queue. */ hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); /* We are in a BH context, no locking necessary. -DaveM */ if((qp->next = ipq_hash[hash]) != NULL) qp->next->pprev = &qp->next; ipq_hash[hash] = qp; qp->pprev = &ipq_hash[hash]; return qp; out_free: frag_kfree_s(qp, sizeof(struct ipq)); out_nomem: NETDEBUG(printk(KERN_ERR "IP: create: no memory left !\n")); return(NULL); }
static void create_frag_entry(struct sk_buff *skb, __u8 *nhptr, struct frag_hdr *fhdr) { struct frag_queue *fq; struct ipv6hdr *hdr; fq = (struct frag_queue *) frag_kmalloc(sizeof(struct frag_queue), GFP_ATOMIC); if (fq == NULL) { ipv6_statistics.Ip6ReasmFails++; kfree_skb(skb); return; } memset(fq, 0, sizeof(struct frag_queue)); fq->id = fhdr->identification; hdr = skb->nh.ipv6h; ipv6_addr_copy(&fq->saddr, &hdr->saddr); ipv6_addr_copy(&fq->daddr, &hdr->daddr); /* init_timer has been done by the memset */ fq->timer.function = frag_expire; fq->timer.data = (long) fq; fq->timer.expires = jiffies + sysctl_ip6frag_time; reasm_queue(fq, skb, fhdr, nhptr); if (fq->fragments) { fq->prev = ipv6_frag_queue.prev; fq->next = &ipv6_frag_queue; fq->prev->next = fq; ipv6_frag_queue.prev = fq; add_timer(&fq->timer); } else frag_kfree_s(fq, sizeof(*fq)); }
/* Process an incoming IP datagram fragment. */ static char * ip_defrag(struct ip *iph, struct sk_buff *skb) { struct ipfrag *prev, *next, *tmp; struct ipfrag *tfp; struct ipq *qp; char *skb2; unsigned char *ptr; int flags, offset; int i, ihl, end; if (!hostfrag_find(iph) && skb) hostfrag_create(iph); /* Start by cleaning up the memory. */ if (this_host) if (this_host->ip_frag_mem > IPFRAG_HIGH_THRESH) ip_evictor(); /* Find the entry of this IP datagram in the "incomplete datagrams" queue. */ if (this_host) qp = ip_find(iph); else qp = 0; /* Is this a non-fragmented datagram? */ offset = ntohs(iph->ip_off); flags = offset & ~IP_OFFSET; offset &= IP_OFFSET; if (((flags & IP_MF) == 0) && (offset == 0)) { if (qp != NULL) ip_free(qp); /* Fragmented frame replaced by full unfragmented copy */ return 0; } /* ip_evictor() could have removed all queues for the current host */ if (!this_host) hostfrag_create(iph); offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ip_hl * 4; /* If the queue already existed, keep restarting its timer as long as we still are receiving fragments. Otherwise, create a fresh queue entry. */ if (qp != NULL) { /* ANK. If the first fragment is received, we should remember the correct IP header (with options) */ if (offset == 0) { qp->ihlen = ihl; memcpy(qp->iph, iph, ihl + 8); } del_timer(&qp->timer); qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ add_timer(&qp->timer); } else { /* If we failed to create it, then discard the frame. */ if ((qp = ip_create(iph)) == NULL) { kfree_skb(skb, FREE_READ); return NULL; } } /* Attempt to construct an oversize packet. */ if (ntohs(iph->ip_len) + (int) offset > 65535) { // NETDEBUG(printk("Oversized packet received from %s\n", int_ntoa(iph->ip_src.s_addr))); nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERSIZED, iph, 0); kfree_skb(skb, FREE_READ); return NULL; } /* Determine the position of this fragment. */ end = offset + ntohs(iph->ip_len) - ihl; /* Point into the IP datagram 'data' part. */ ptr = (unsigned char *)(skb->data + ihl); /* Is this the final fragment? */ if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us in the chain of fragments so far. We must know where to put this fragment, right? */ prev = NULL; for (next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /* We found where to put this one. Check for overlap with preceding fragment, and, if needed, align things so that any overlaps are eliminated. */ if (prev != NULL && offset < prev->end) { nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = prev->end - offset; offset += i; /* ptr into datagram */ ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. If we can merge fragments, do it. */ for (tmp = next; tmp != NULL; tmp = tfp) { tfp = tmp->next; if (tmp->offset >= end) break; /* no overlaps at all */ nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = end - next->offset; /* overlap is 'i' bytes */ tmp->len -= i; /* so reduce size of */ tmp->offset += i; /* next fragment */ tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet that it goes with. We never throw the new frag away, so the frag being dumped has always been charged for. */ if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; next = tfp; /* We have killed the original next frame */ frag_kfree_skb(tmp->skb, FREE_READ); frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* Insert this fragment in the chain of fragments. */ tfp = NULL; tfp = ip_frag_create(offset, end, skb, ptr); /* No memory to save the fragment - so throw the lot. If we failed the frag_create we haven't charged the queue. */ if (!tfp) { nids_params.no_mem("ip_defrag"); kfree_skb(skb, FREE_READ); return NULL; } /* From now on our buffer is charged to the queues. */ tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. Check if we now have a full IP datagram which we can bump up to the IP layer... */ if (ip_done(qp)) { skb2 = ip_glue(qp); /* glue together the fragments */ fprintf(stderr,"this is ipfragment.sd"); return (skb2); } return (NULL); }
/* Process an incoming IP datagram fragment. */ struct sk_buff *ip_defrag(struct sk_buff *skb) { struct iphdr *iph = skb->nh.iph; struct ipfrag *prev, *next, *tmp, *tfp; struct ipq *qp; unsigned char *ptr; int flags, offset; int i, ihl, end; ip_statistics.IpReasmReqds++; /* Start by cleaning up the memory. */ if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh) ip_evictor(); /* * Look for the entry for this IP datagram in the * "incomplete datagrams" queue. If found, the * timer is removed. */ qp = ip_find(iph, skb->dst); /* Is this a non-fragmented datagram? */ offset = ntohs(iph->frag_off); flags = offset & ~IP_OFFSET; offset &= IP_OFFSET; offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ihl * 4; /* * Check whether to create a fresh queue entry. If the * queue already exists, its timer will be restarted as * long as we continue to receive fragments. */ if (qp) { /* ANK. If the first fragment is received, * we should remember the correct IP header (with options) */ if (offset == 0) { /* Fragmented frame replaced by unfragmented copy? */ if ((flags & IP_MF) == 0) goto out_freequeue; qp->ihlen = ihl; memcpy(qp->iph, iph, (ihl + 8)); } } else { /* Fragmented frame replaced by unfragmented copy? */ if ((offset == 0) && ((flags & IP_MF) == 0)) goto out_skb; /* If we failed to create it, then discard the frame. */ qp = ip_create(skb, iph); if (!qp) goto out_freeskb; } /* Attempt to construct an oversize packet. */ if((ntohs(iph->tot_len) + ((int) offset)) > 65535) goto out_oversize; /* Determine the position of this fragment. */ end = offset + ntohs(iph->tot_len) - ihl; /* Is this the final fragment? */ if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us * in the chain of fragments so far. We must know where to put * this fragment, right? */ prev = NULL; for(next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /* Point into the IP datagram 'data' part. */ ptr = skb->data + ihl; /* We found where to put this one. Check for overlap with * preceding fragment, and, if needed, align things so that * any overlaps are eliminated. */ if ((prev != NULL) && (offset < prev->end)) { i = prev->end - offset; offset += i; /* ptr into datagram */ ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. * If we can merge fragments, do it. */ for (tmp = next; tmp != NULL; tmp = tfp) { tfp = tmp->next; if (tmp->offset >= end) break; /* no overlaps at all */ i = end - next->offset; /* overlap is 'i' bytes */ tmp->len -= i; /* so reduce size of */ tmp->offset += i; /* next fragment */ tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet * that it goes with. */ if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; /* We have killed the original next frame. */ next = tfp; frag_kfree_skb(tmp->skb); frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* * Create a fragment to hold this skb. * No memory to save the fragment? throw the lot ... */ tfp = ip_frag_create(offset, end, skb, ptr); if (!tfp) goto out_freeskb; /* Insert this fragment in the chain of fragments. */ tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. * Check if we now have a full IP datagram which we can * bump up to the IP layer... */ if (ip_done(qp)) { /* Glue together the fragments. */ skb = ip_glue(qp); /* Free the queue entry. */ out_freequeue: ip_free(qp); out_skb: return skb; } /* * The queue is still active ... reset its timer. */ out_timer: mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time); /* ~ 30 seconds */ out: return NULL; /* * Error exits ... we need to reset the timer if there's a queue. */ out_oversize: if (net_ratelimit()) printk(KERN_INFO "Oversized packet received from %d.%d.%d.%d\n", NIPQUAD(iph->saddr)); /* the skb isn't in a fragment, so fall through to free it */ out_freeskb: kfree_skb(skb); ip_statistics.IpReasmFails++; if (qp) goto out_timer; goto out; }
// 每重组一个ip碎片,就会更新对应ipq的timer // // static char * ip_defrag(struct ip *iph, struct sk_buff *skb) { struct ipfrag *prev, *next, *tmp; // 指向一个碎片 struct ipfrag *tfp; // 指向一个队列 struct ipq *qp; // 用来放返回值 char *skb2; // 用来进行字节操作 unsigned char *ptr; int flags, offset; int i, ihl, end; // 如果成功更新全局变量this_host, 并且skb是有内容的 if (!hostfrag_find(iph) && skb) // 生成一个碎片 hostfrag_create(iph); /* Start by cleaning up the memory. */ // 如果当前host不为空 if (this_host) // 如果大于上限 if (this_host->ip_frag_mem > IPFRAG_HIGH_THRESH) // 裁剪掉一些ip碎片,直到 ip_frag_mem < IPFRAG_LOW_THRESH ip_evictor(); /* Find the entry of this IP datagram in the "incomplete datagrams" queue. */ // 如果host存在 if (this_host) // 找到与这个ip头相关的ip队列 qp = ip_find(iph); else // 否则设置队列为空 qp = 0; /* Is this a non-fragmented datagram? */ // ip_off是一个16位的字段,高3位用来保存标志信息,低12位用来保存当前碎片的偏移 offset = ntohs(iph->ip_off); /* 先把ip_offset这个字段取出来 */ // 把高3位取出来 flags = offset & ~IP_OFFSET; // 把低13位取出来 offset &= IP_OFFSET; // IP_MF==0表示当前收到是碎片后面没有碎片了,并且当前收到碎片是第一个碎片, // 显然当前碎片虽在的ip报文仅仅有一个碎片 // 那么当前碎片(刚刚收到的碎片)并不需要重组,因此可以返回了 if (((flags & IP_MF) == 0) && (offset == 0)) { // 如果队列不为空就释放掉 if (qp != NULL) ip_free(qp); /* Fragmented frame replaced by full unfragmented copy */ return 0; } /* ip_evictor() could have removed all queues for the current host */ // 如果host全部被移出了,那么重新创建一个,针对当前ip头的host // 但是,这个host并不会包括任何东西,它是一个空的,没有ip队列 if (!this_host) hostfrag_create(iph); // 计算offset和头长度 // 这个offset是刚刚收到的这个碎片的offset offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ip_hl * 4; /* If the queue already existed, keep restarting its timer as long as we still are receiving fragments. Otherwise, create a fresh queue entry. */ // 如果队列存在 if (qp != NULL) { /* ANK. If the first fragment is received, we should remember the correct IP header (with options) */ // 如果偏移量为0,可能是该pi报文中的第一个碎片,因此要把前8字节保存下来 if (offset == 0) { // 保存头长度 qp->ihlen = ihl; // 拷贝头信息+8字节 memcpy(qp->iph, iph, ihl + 8); } // 停止计时 del_timer(&qp->timer); // 重新计时 qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ // 设置关联 qp->timer.data = (unsigned long) qp; /* pointer to queue */ // 注册回调函数 qp->timer.function = ip_expire; /* expire function */ // 添加计数器 add_timer(&qp->timer); } // 否则队列不存在 else { /* If we failed to create it, then discard the frame. */ // 试图创建一个 if ((qp = ip_create(iph)) == NULL) { // 如果创建队列失败,那么释放当前碎片的空间并返回 kfree_skb(skb, FREE_READ); return NULL; } } /* Attempt to construct an oversize packet. */ // 如果头+长度 超长, 释放空间 if (ntohs(iph->ip_len) + (int) offset > 65535) { // NETDEBUG(printk("Oversized packet received from %s\n", int_ntoa(iph->ip_src.s_addr))); nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERSIZED, iph, 0); kfree_skb(skb, FREE_READ); return NULL; } /* Determine the position of this fragment. */ // 刚刚收到的碎片分组 + 刚刚收到的碎片ip包大小 - 刚刚收到的碎片ip包头大小 // = 刚刚收到的分组的结尾 end = offset + ntohs(iph->ip_len) - ihl; /* Point into the IP datagram 'data' part. */ // 将指针,指向刚刚收到的碎片ip包的数据开头部分 // prt 指向肉 ptr = (unsigned char *)(skb->data + ihl); /* Is this the final fragment? */ // 如果这是最后一个碎片,那么,整个队列的长度,就是当前的end // 否则qp->len会在后面更改,因为会有重叠部分 if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us in the chain of fragments so far. We must know where to put this fragment, right? */ prev = NULL; // 给定一个offset,在所有的fragments中找到第一个 // 拥有不小于给定offset的offset的碎片,然后终止循环 // 由此可以猜测,这一个函数,其实是将某一个新来的碎片插入到 // 队列合适的位置,保证offset升序排列 // next 指向的是第一个不小于当前offset的碎片 // pre指向的是前一个碎片 for (next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /*-------------------------------------------------------------- 注意: next 指向的是第一个排在当前碎片后面的 碎片; pre 指向的是第一个排在当前碎片前面的 碎片。 next 有可能offset与当前碎片的offset一样 ----------------------------------------------------------------*/ /* We found where to put this one. Check for overlap with preceding fragment, and, if needed, align things so that any overlaps are eliminated. */ // 如果有排在当前碎片前面的分组,并且, 该分组的结束比当前分组的offset大 // 说明有重叠,应噶修正当前offset,以先来的为准 if (prev != NULL && offset < prev->end) { nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = prev->end - offset; // 将当前收到的碎片的offset增加i offset += i; /* ptr into datagram */ // 将当前收到的碎片的指正向后移动i ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. If we can merge fragments, do it. */ // 现在往后查看是否有重叠的 // 从next开始 for (tmp = next; tmp != NULL; tmp = tfp) { // temp总是等于next tfp = tmp->next; // 如果next的 offset >= 当前分组的end,那就没有问题 if (tmp->offset >= end) break; /* no overlaps at all */ // 否则警报 nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); // 记录当前的结束与下一个碎片的开始重叠多少 i = end - next->offset; /* overlap is 'i' bytes */ // 将next碎片的长度减少i tmp->len -= i; /* so reduce size of */ // 将next碎片的开始增加i tmp->offset += i; /* next fragment */ // 将指针也要向后移动i tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet that it goes with. We never throw the new frag away, so the frag being dumped has always been charged for. */ // 如果此时next碎片的长度小于0, 那么摘掉next节点 if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; // tfp原来就等于next->next,所以原来的next节点被摘掉了 next = tfp; /* We have killed the original "next" frame */ // 释放掉frag节点对应的内存 frag_kfree_skb(tmp->skb, FREE_READ); // 释放掉frag节点 frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* Insert this fragment in the chain of fragments. */ tfp = NULL; // offset是刚刚接收到的碎片偏移,按字节 // end 是刚刚接收到的碎片的结束字节 // skb 是传进来的一个内存空间,应该事先分配好 // prt 是指向这个碎片第一个数据的指针 tfp = ip_frag_create(offset, end, skb, ptr); /*--------------------------------------------------- 注意: ip_frag_create函数只是创建一个ip_frag,还没有吧 它挂载到队列中 -----------------------------------------------------*/ /* No memory to save the fragment - so throw the lot. If we failed the frag_create we haven't charged the queue. */ if (!tfp) { nids_params.no_mem("ip_defrag"); kfree_skb(skb, FREE_READ); return NULL; } /* From now on our buffer is charged to the queues. */ // 将刚刚创建的ip_frag挂载到队列中去了 tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. Check if we now have a full IP datagram which we can bump up to the IP layer... */ // 检查是否完整 if (ip_done(qp)) { skb2 = ip_glue(qp); /* glue together the fragments */ return (skb2); } // 如果没有完整,那么返回空,继续执行 return (NULL); }
/* * check if this fragment completes the packet * returns true on success */ static u8* reasm_frag(struct frag_queue *fq, struct sk_buff **skb_in) { struct ipv6_frag *fp; struct ipv6_frag *head = fq->fragments; struct ipv6_frag *tail = NULL; struct sk_buff *skb; __u32 offset = 0; __u32 payload_len; __u16 unfrag_len; __u16 copy; u8 *nhptr; for(fp = head; fp; fp=fp->next) { if (offset != fp->offset) return NULL; offset += fp->len; tail = fp; } /* * we know the m_flag arrived and we have a queue, * starting from 0, without gaps. * this means we have all fragments. */ /* Unfragmented part is taken from the first segment. (fixed --ANK (980728)) */ unfrag_len = (u8 *) (head->fhdr) - (u8 *) (head->skb->nh.ipv6h + 1); payload_len = (unfrag_len + tail->offset + (tail->skb->tail - (__u8 *) (tail->fhdr + 1))); if (payload_len > 65535) { if (net_ratelimit()) printk(KERN_DEBUG "reasm_frag: payload len = %d\n", payload_len); ipv6_statistics.Ip6ReasmFails++; fq_free(fq); return NULL; } if ((skb = dev_alloc_skb(sizeof(struct ipv6hdr) + payload_len))==NULL) { if (net_ratelimit()) printk(KERN_DEBUG "reasm_frag: no memory for reassembly\n"); ipv6_statistics.Ip6ReasmFails++; fq_free(fq); return NULL; } copy = unfrag_len + sizeof(struct ipv6hdr); skb->nh.ipv6h = (struct ipv6hdr *) skb->data; skb->dev = fq->dev; skb->protocol = __constant_htons(ETH_P_IPV6); skb->pkt_type = head->skb->pkt_type; memcpy(skb->cb, head->skb->cb, sizeof(skb->cb)); skb->dst = dst_clone(head->skb->dst); memcpy(skb_put(skb, copy), head->skb->nh.ipv6h, copy); nhptr = skb->nh.raw + fq->nhoffset; *nhptr = fq->nexthdr; skb->h.raw = skb->tail; skb->nh.ipv6h->payload_len = ntohs(payload_len); *skb_in = skb; /* * FIXME: If we don't have a checksum we ought to be able * to defragment and checksum in this pass. [AC] * Note that we don't really know yet whether the protocol * needs checksums at all. It might still be a good idea. -AK */ for(fp = fq->fragments; fp; ) { struct ipv6_frag *back; memcpy(skb_put(skb, fp->len), (__u8*)(fp->fhdr + 1), fp->len); frag_kfree_skb(fp->skb); back = fp; fp=fp->next; frag_kfree_s(back, sizeof(*back)); } del_timer(&fq->timer); fq->prev->next = fq->next; fq->next->prev = fq->prev; fq->prev = fq->next = NULL; frag_kfree_s(fq, sizeof(*fq)); ipv6_statistics.Ip6ReasmOKs++; return nhptr; }
static void reasm_queue(struct frag_queue *fq, struct sk_buff *skb, struct frag_hdr *fhdr, u8 *nhptr) { struct ipv6_frag *nfp, *fp, **bptr; nfp = (struct ipv6_frag *) frag_kmalloc(sizeof(struct ipv6_frag), GFP_ATOMIC); if (nfp == NULL) { kfree_skb(skb); return; } nfp->offset = ntohs(fhdr->frag_off) & ~0x7; nfp->len = (ntohs(skb->nh.ipv6h->payload_len) - ((u8 *) (fhdr + 1) - (u8 *) (skb->nh.ipv6h + 1))); if ((u32)nfp->offset + (u32)nfp->len >= 65536) { icmpv6_param_prob(skb,ICMPV6_HDR_FIELD, (u8*)&fhdr->frag_off); goto err; } if (fhdr->frag_off & __constant_htons(0x0001)) { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. * ... and would break our defragmentation algorithm 8) */ if (nfp->len & 0x7) { printk(KERN_DEBUG "fragment not rounded to 8bytes\n"); /* It is not in specs, but I see no reasons to send an error in this case. --ANK */ if (nfp->offset == 0) icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, &skb->nh.ipv6h->payload_len); goto err; } } nfp->skb = skb; nfp->fhdr = fhdr; nfp->next = NULL; bptr = &fq->fragments; for (fp = fq->fragments; fp; fp=fp->next) { if (nfp->offset <= fp->offset) break; bptr = &fp->next; } if (fp && fp->offset == nfp->offset) { if (nfp->len != fp->len) { printk(KERN_DEBUG "reasm_queue: dup with wrong len\n"); } /* duplicate. discard it. */ goto err; } atomic_add(skb->truesize, &ip6_frag_mem); /* All the checks are done, fragment is acepted. Only now we are allowed to update reassembly data! (fixed --ANK (980728)) */ /* iif always set to one of the last arrived segment */ fq->dev = skb->dev; fq->iif = skb->dev->ifindex; /* Last fragment */ if ((fhdr->frag_off & __constant_htons(0x0001)) == 0) fq->last_in |= LAST_IN; /* First fragment. nexthdr and nhptr are get from the first fragment. Moreover, nexthdr is UNDEFINED for all the fragments but the first one. (fixed --ANK (980728)) */ if (nfp->offset == 0) { fq->nexthdr = fhdr->nexthdr; fq->last_in |= FIRST_IN; fq->nhoffset = nhptr - skb->nh.raw; } *bptr = nfp; nfp->next = fp; return; err: frag_kfree_s(nfp, sizeof(*nfp)); kfree_skb(skb); }