Beispiel #1
0
static THD_FUNCTION(frame_thread, arg) {
    (void)arg;
    while(true) {
        chBSemWait(&frame_thread_sem);
        frame_process();
    }
}
Beispiel #2
0
void
segmentAndClassify (typename pcl::rec_3d_framework::GlobalNNPipeline<DistT, PointT, FeatureT> & global)
{
  //get point cloud from the kinect, segment it and classify it
  OpenNIFrameSource::OpenNIFrameSource camera;
  OpenNIFrameSource::PointCloudPtr frame;

  pcl::visualization::PCLVisualizer vis ("kinect");

  //keyboard callback to stop getting frames and finalize application
  boost::function<void
  (const pcl::visualization::KeyboardEvent&)> keyboard_cb = boost::bind (&OpenNIFrameSource::OpenNIFrameSource::onKeyboardEvent, &camera, _1);
  vis.registerKeyboardCallback (keyboard_cb);
  size_t previous_cluster_size = 0;
  size_t previous_categories_size = 0;

  float Z_DIST_ = 1.25f;
  float text_scale = 0.015f;

  while (camera.isActive ())
  {
    pcl::ScopeTime frame_process ("Global frame processing ------------- ");
    frame = camera.snap ();

    pcl::PointCloud<pcl::PointXYZ>::Ptr xyz_points (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::copyPointCloud (*frame, *xyz_points);

    //Step 1 -> Segment
    pcl::apps::DominantPlaneSegmentation<pcl::PointXYZ> dps;
    dps.setInputCloud (xyz_points);
    dps.setMaxZBounds (Z_DIST_);
    dps.setObjectMinHeight (0.005);
    dps.setMinClusterSize (1000);
    dps.setWSize (9);
    dps.setDistanceBetweenClusters (0.1f);

    std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters;
    std::vector<pcl::PointIndices> indices;
    dps.setDownsamplingSize (0.02f);
    dps.compute_fast (clusters);
    dps.getIndicesClusters (indices);
    Eigen::Vector4f table_plane_;
    Eigen::Vector3f normal_plane_ = Eigen::Vector3f (table_plane_[0], table_plane_[1], table_plane_[2]);
    dps.getTableCoefficients (table_plane_);

    vis.removePointCloud ("frame");
    vis.addPointCloud<OpenNIFrameSource::PointT> (frame, "frame");

    for (size_t i = 0; i < previous_cluster_size; i++)
    {
      std::stringstream cluster_name;
      cluster_name << "cluster_" << i;
      vis.removePointCloud (cluster_name.str ());

      cluster_name << "_ply_model_";
      vis.removeShape (cluster_name.str ());
    }

    for (size_t i = 0; i < previous_categories_size; i++)
    {
      std::stringstream cluster_text;
      cluster_text << "cluster_" << i << "_text";
      vis.removeText3D (cluster_text.str ());
    }

    previous_categories_size = 0;
    float dist_ = 0.03f;

    for (size_t i = 0; i < clusters.size (); i++)
    {
      std::stringstream cluster_name;
      cluster_name << "cluster_" << i;
      pcl::visualization::PointCloudColorHandlerRandom<pcl::PointXYZ> random_handler (clusters[i]);
      vis.addPointCloud<pcl::PointXYZ> (clusters[i], random_handler, cluster_name.str ());

      global.setInputCloud (xyz_points);
      global.setIndices (indices[i].indices);
      global.classify ();

      std::vector < std::string > categories;
      std::vector<float> conf;

      global.getCategory (categories);
      global.getConfidence (conf);

      std::string category = categories[0];
      Eigen::Vector4f centroid;
      pcl::compute3DCentroid (*xyz_points, indices[i].indices, centroid);
      for (size_t kk = 0; kk < categories.size (); kk++)
      {

        pcl::PointXYZ pos;
        pos.x = centroid[0] + normal_plane_[0] * static_cast<float> (kk + 1) * dist_;
        pos.y = centroid[1] + normal_plane_[1] * static_cast<float> (kk + 1) * dist_;
        pos.z = centroid[2] + normal_plane_[2] * static_cast<float> (kk + 1) * dist_;

        std::ostringstream prob_str;
        prob_str.precision (1);
        prob_str << categories[kk] << " [" << conf[kk] << "]";

        std::stringstream cluster_text;
        cluster_text << "cluster_" << previous_categories_size << "_text";
        vis.addText3D (prob_str.str (), pos, text_scale, 1, 0, 1, cluster_text.str (), 0);
        previous_categories_size++;
      }
    }

    previous_cluster_size = clusters.size ();

    vis.spinOnce ();
  }
}