Beispiel #1
0
void gen_interupt(void)
{
    if (stop == 1)
    {
        vi_counter = 0; // debug
        dyna_stop();
    }

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_load)
        {
            savestates_load();
            return;
        }

        if (reset_hard_job)
        {
            reset_hard();
            reset_hard_job = 0;
            return;
        }
    }
   
    if (skip_jump)
    {
        unsigned int dest = skip_jump;
        skip_jump = 0;

        if (q->count > Count || (Count - q->count) < 0x80000000)
            next_interupt = q->count;
        else
            next_interupt = 0;
        
        last_addr = dest;
        generic_jump_to(dest);
        return;
    } 

    switch(q->type)
    {
        case SPECIAL_INT:
            if (Count > 0x10000000) return;
            remove_interupt_event();
            add_interupt_event_count(SPECIAL_INT, 0);
            return;
            break;
        case VI_INT:
            if(vi_counter < 60)
            {
                if (vi_counter == 0)
                    cheat_apply_cheats(ENTRY_BOOT);
                vi_counter++;
            }
            else
            {
                cheat_apply_cheats(ENTRY_VI);
            }
            gfx.updateScreen();
#ifdef WITH_LIRC
            lircCheckInput();
#endif
            SDL_PumpEvents();

            refresh_stat();

            // if paused, poll for input events
            if(rompause)
            {
                osd_render();  // draw Paused message in case gfx.updateScreen didn't do it
                VidExt_GL_SwapBuffers();
                while(rompause)
                {
                    SDL_Delay(10);
                    SDL_PumpEvents();
#ifdef WITH_LIRC
                    lircCheckInput();
#endif //WITH_LIRC
                }
            }

            new_vi();
            if (vi_register.vi_v_sync == 0) vi_register.vi_delay = 500000;
            else vi_register.vi_delay = ((vi_register.vi_v_sync + 1)*1500);
            next_vi += vi_register.vi_delay;
            if (vi_register.vi_status&0x40) vi_field=1-vi_field;
            else vi_field=0;

            remove_interupt_event();
            add_interupt_event_count(VI_INT, next_vi);
    
            MI_register.mi_intr_reg |= 0x08;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case COMPARE_INT:
            remove_interupt_event();
            Count+=2;
            add_interupt_event_count(COMPARE_INT, Compare);
            Count-=2;
    
            Cause = (Cause | 0x8000) & 0xFFFFFF83;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case CHECK_INT:
            remove_interupt_event();
            break;
    
        case SI_INT:
#ifdef WITH_LIRC
            lircCheckInput();
#endif //WITH_LIRC
            SDL_PumpEvents();
            PIF_RAMb[0x3F] = 0x0;
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x02;
            si_register.si_stat |= 0x1000;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case PI_INT:
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x10;
            pi_register.read_pi_status_reg &= ~3;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case AI_INT:
            if (ai_register.ai_status & 0x80000000) // full
            {
                unsigned int ai_event = get_event(AI_INT);
                remove_interupt_event();
                ai_register.ai_status &= ~0x80000000;
                ai_register.current_delay = ai_register.next_delay;
                ai_register.current_len = ai_register.next_len;
                add_interupt_event_count(AI_INT, ai_event+ai_register.next_delay);
         
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            else
            {
                remove_interupt_event();
                ai_register.ai_status &= ~0x40000000;

                //-------
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            break;

        case SP_INT:
            remove_interupt_event();
            sp_register.sp_status_reg |= 0x203;
            // sp_register.sp_status_reg |= 0x303;
    
            if (!(sp_register.sp_status_reg & 0x40)) return; // !intr_on_break
            MI_register.mi_intr_reg |= 0x01;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case DP_INT:
            remove_interupt_event();
            dpc_register.dpc_status &= ~2;
            dpc_register.dpc_status |= 0x81;
            MI_register.mi_intr_reg |= 0x20;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;

        case HW2_INT:
            // Hardware Interrupt 2 -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS, and SR, set IM2
            Status = (Status & ~0x00380000) | 0x1000;
            Cause = (Cause | 0x1000) & 0xFFFFFF83;
            /* the exception_general() call below will jump to the interrupt vector (0x80000180) and setup the
             * interpreter or dynarec
             */
            break;

        case NMI_INT:
            // Non Maskable Interrupt -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
            Status = (Status & ~0x00380000) | 0x00500004;
            Cause  = 0x00000000;
            // simulate the soft reset code which would run from the PIF ROM
            r4300_reset_soft();
            // clear all interrupts, reset interrupt counters back to 0
            Count = 0;
            vi_counter = 0;
            init_interupt();
            // clear the audio status register so that subsequent write_ai() calls will work properly
            ai_register.ai_status = 0;
            // set ErrorEPC with the last instruction address
            ErrorEPC = PC->addr;
            // reset the r4300 internal state
            if (r4300emu != CORE_PURE_INTERPRETER)
            {
                // clear all the compiled instruction blocks and re-initialize
                free_blocks();
                init_blocks();
            }
            // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
            if(delay_slot==1 || delay_slot==3)
            {
                ErrorEPC-=4;
            }
            delay_slot = 0;
            dyna_interp = 0;
            // set next instruction address to reset vector
            last_addr = 0xa4000040;
            generic_jump_to(0xa4000040);
            return;

        default:
            DebugMessage(M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", q->type);
            remove_interupt_event();
            break;
    }

#ifdef NEW_DYNAREC
    if (r4300emu == CORE_DYNAREC) {
        EPC = pcaddr;
        pcaddr = 0x80000180;
        Status |= 2;
        Cause &= 0x7FFFFFFF;
        pending_exception=1;
    } else {
        exception_general();
    }
#else
    exception_general();
#endif

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_save)
        {
            savestates_save();
            return;
        }
    }
}
Beispiel #2
0
void r4300_execute(void)
{
#if (defined(DYNAREC) && defined(PROFILE_R4300))
    unsigned int i;
#endif

    current_instruction_table = cached_interpreter_table;

    delay_slot=0;
    stop = 0;
    rompause = 0;

    /* clear instruction counters */
#if defined(COUNT_INSTR)
    memset(instr_count, 0, 131*sizeof(instr_count[0]));
#endif

    last_addr = 0xa4000040;
    next_interupt = 624999;
    init_interupt();

    if (r4300emu == CORE_PURE_INTERPRETER)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Pure Interpreter");
        r4300emu = CORE_PURE_INTERPRETER;
        pure_interpreter();
    }
#if defined(DYNAREC)
    else if (r4300emu >= 2)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Dynamic Recompiler");
        r4300emu = CORE_DYNAREC;
        init_blocks();

#ifdef NEW_DYNAREC
        new_dynarec_init();
        new_dyna_start();
        new_dynarec_cleanup();
#else
        dyna_start(dynarec_setup_code);
        PC++;
#endif
#if defined(PROFILE_R4300)
        pfProfile = fopen("instructionaddrs.dat", "ab");
        for (i=0; i<0x100000; i++)
            if (invalid_code[i] == 0 && blocks[i] != NULL && blocks[i]->code != NULL && blocks[i]->block != NULL)
            {
                unsigned char *x86addr;
                int mipsop;
                // store final code length for this block
                mipsop = -1; /* -1 == end of x86 code block */
                x86addr = blocks[i]->code + blocks[i]->code_length;
                if (fwrite(&mipsop, 1, 4, pfProfile) != 4 ||
                    fwrite(&x86addr, 1, sizeof(char *), pfProfile) != sizeof(char *))
                    DebugMessage(M64MSG_ERROR, "Error writing R4300 instruction address profiling data");
            }
        fclose(pfProfile);
        pfProfile = NULL;
#endif
        free_blocks();
    }
#endif
    else /* if (r4300emu == CORE_INTERPRETER) */
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Cached Interpreter");
        r4300emu = CORE_INTERPRETER;
        init_blocks();
        jump_to(UINT32_C(0xa4000040));

        /* Prevent segfault on failed jump_to */
        if (!actual->block)
            return;

        last_addr = PC->addr;
        while (!stop)
        {
#ifdef COMPARE_CORE
            if (PC->ops == cached_interpreter_table.FIN_BLOCK && (PC->addr < 0x80000000 || PC->addr >= 0xc0000000))
                virtual_to_physical_address(PC->addr, 2);
            CoreCompareCallback();
#endif
#ifdef DBG
            if (g_DebuggerActive) update_debugger(PC->addr);
#endif
            PC->ops();
        }

        free_blocks();
    }

    DebugMessage(M64MSG_INFO, "R4300 emulator finished.");

    /* print instruction counts */
#if defined(COUNT_INSTR)
    if (r4300emu == CORE_DYNAREC)
        instr_counters_print();
#endif
}
Beispiel #3
0
int main(int argc, char *argv[])
{
  FILE *parameterfile = NULL;
  int c, j, i, ix = 0, isample = 0, op_id = 0;
  char * filename = NULL;
  char datafilename[50];
  char parameterfilename[50];
  char conf_filename[50];
  char * input_filename = NULL;
  double plaquette_energy;
  struct stout_parameters params_smear;
  spinor **s, *s_;

#ifdef _KOJAK_INST
#pragma pomp inst init
#pragma pomp inst begin(main)
#endif
  

#if (defined SSE || defined SSE2 || SSE3)
  signal(SIGILL, &catch_ill_inst);
#endif

  DUM_DERI = 8;
  DUM_MATRIX = DUM_DERI + 5;
  NO_OF_SPINORFIELDS = DUM_MATRIX + 2;

  verbose = 0;
  g_use_clover_flag = 0;

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vVf:o:")) != -1) {
    switch (c) {
      case 'f':
        input_filename = calloc(200, sizeof(char));
        strcpy(input_filename, optarg);
        break;
      case 'o':
        filename = calloc(200, sizeof(char));
        strcpy(filename, optarg);
        break;
      case 'v':
        verbose = 1;
        break;
      case 'V':
        fprintf(stdout,"%s %s\n",PACKAGE_STRING,git_hash);
        exit(0);
        break;
      case 'h':
      case '?':
      default:
        usage();
        break;
    }
  }
  if (input_filename == NULL) {
    input_filename = "invert.input";
  }
  if (filename == NULL) {
    filename = "output";
  }

  /* Read the input file */
  if( (j = read_input(input_filename)) != 0) {
    fprintf(stderr, "Could not find input file: %s\nAborting...\n", input_filename);
    exit(-1);
  }

  /* this DBW2 stuff is not needed for the inversion ! */
  if (g_dflgcr_flag == 1) {
    even_odd_flag = 0;
  }
  g_rgi_C1 = 0;
  if (Nsave == 0) {
    Nsave = 1;
  }

  if (g_running_phmc) {
    NO_OF_SPINORFIELDS = DUM_MATRIX + 8;
  }

  tmlqcd_mpi_init(argc, argv);

  g_dbw2rand = 0;

  /* starts the single and double precision random number */
  /* generator                                            */
  start_ranlux(rlxd_level, random_seed);

  /* we need to make sure that we don't have even_odd_flag = 1 */
  /* if any of the operators doesn't use it                    */
  /* in this way even/odd can still be used by other operators */
  for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0;

#ifndef MPI
  g_dbw2rand = 0;
#endif

#ifdef _GAUGE_COPY
  j = init_gauge_field(VOLUMEPLUSRAND, 1);
#else
  j = init_gauge_field(VOLUMEPLUSRAND, 0);
#endif
  if (j != 0) {
    fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n");
    exit(-1);
  }
  j = init_geometry_indices(VOLUMEPLUSRAND);
  if (j != 0) {
    fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n");
    exit(-1);
  }
  if (no_monomials > 0) {
    if (even_odd_flag) {
      j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag);
    }
    else {
      j = init_monomials(VOLUMEPLUSRAND, even_odd_flag);
    }
    if (j != 0) {
      fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n");
      exit(-1);
    }
  }
  if (even_odd_flag) {
    j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS);
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS);
  }
  if (j != 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(-1);
  }

  if (g_running_phmc) {
    j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if (j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n");
      exit(-1);
    }
  }

  g_mu = g_mu1;
  if (g_cart_id == 0) {
    /*construct the filenames for the observables and the parameters*/
    strcpy(datafilename, filename);
    strcat(datafilename, ".data");
    strcpy(parameterfilename, filename);
    strcat(parameterfilename, ".para");

    parameterfile = fopen(parameterfilename, "w");
    write_first_messages(parameterfile, 1);
    fclose(parameterfile);
  }

  /* define the geometry */
  geometry();

  /* define the boundary conditions for the fermion fields */
  boundary(g_kappa);

  phmc_invmaxev = 1.;

  init_operators();

  /* this could be maybe moved to init_operators */
#ifdef _USE_HALFSPINOR
  j = init_dirac_halfspinor();
  if (j != 0) {
    fprintf(stderr, "Not enough memory for halffield! Aborting...\n");
    exit(-1);
  }
  if (g_sloppy_precision_flag == 1) {
    j = init_dirac_halfspinor32();
    if (j != 0)
    {
      fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n");
      exit(-1);
    }
  }
#  if (defined _PERSISTENT)
  if (even_odd_flag)
    init_xchange_halffield();
#  endif
#endif

  for (j = 0; j < Nmeas; j++) {
    sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore);
    if (g_cart_id == 0) {
      printf("#\n# Trying to read gauge field from file %s in %s precision.\n",
            conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double"));
      fflush(stdout);
    }
    if( (i = read_gauge_field(conf_filename)) !=0) {
      fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename);
      exit(-2);
    }


    if (g_cart_id == 0) {
      printf("# Finished reading gauge field.\n");
      fflush(stdout);
    }
#ifdef MPI
    xchange_gauge();
#endif

    /*compute the energy of the gauge field*/
    plaquette_energy = measure_gauge_action();

    if (g_cart_id == 0) {
      printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc));
      fflush(stdout);
    }

    if (use_stout_flag == 1){
      params_smear.rho = stout_rho;
      params_smear.iterations = stout_no_iter;
      if (stout_smear((su3_tuple*)(g_gauge_field[0]), &params_smear, (su3_tuple*)(g_gauge_field[0])) != 0)
        exit(1) ;
      g_update_gauge_copy = 1;
      g_update_gauge_energy = 1;
      g_update_rectangle_energy = 1;
      plaquette_energy = measure_gauge_action();

      if (g_cart_id == 0) {
        printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
        fflush(stdout);
      }
    }

    if (reweighting_flag == 1) {
      reweighting_factor(reweighting_samples, nstore);
    }

    /* Compute minimal eigenvalues, if wanted */
    if (compute_evs != 0) {
      eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision,
                  0, compute_evs, nstore, even_odd_flag);
    }
    if (phmc_compute_evs != 0) {
#ifdef MPI
      MPI_Finalize();
#endif
      return(0);
    }

    /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/

    if(compute_modenumber != 0 || compute_topsus !=0){
      
      s_ = calloc(no_sources_z2*VOLUMEPLUSRAND+1, sizeof(spinor));
      s  = calloc(no_sources_z2, sizeof(spinor*));
      if(s_ == NULL) { 
	printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); 
      }
      if(s == NULL) { 
	printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); 
      }
      
      
      for(i = 0; i < no_sources_z2; i++) {
#if (defined SSE3 || defined SSE2 || defined SSE)
        s[i] = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE)+i*VOLUMEPLUSRAND;
#else
        s[i] = s_+i*VOLUMEPLUSRAND;
#endif
	
        z2_random_spinor_field(s[i], VOLUME);
	
/* 	what is this here needed for?? */
/*         spinor *aux_,*aux; */
/* #if ( defined SSE || defined SSE2 || defined SSE3 ) */
/*         aux_=calloc(VOLUMEPLUSRAND+1, sizeof(spinor)); */
/*         aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE); */
/* #else */
/*         aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor)); */
/*         aux = aux_; */
/* #endif */
	
        if(g_proc_id == 0) {
          printf("source %d \n", i);
        }
	
        if(compute_modenumber != 0){
          mode_number(s[i], mstarsq);
        }
	
        if(compute_topsus !=0) {
          top_sus(s[i], mstarsq);
        }
      }
      free(s);
      free(s_);
    }


    /* move to operators as well */
    if (g_dflgcr_flag == 1) {
      /* set up deflation blocks */
      init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z);

      /* the can stay here for now, but later we probably need */
      /* something like init_dfl_solver called somewhere else  */
      /* create set of approximate lowest eigenvectors ("global deflation subspace") */

      /*       g_mu = 0.; */
      /*       boundary(0.125); */
      generate_dfl_subspace(g_N_s, VOLUME);
      /*       boundary(g_kappa); */
      /*       g_mu = g_mu1; */

      /* Compute little Dirac operators */
      /*       alt_block_compute_little_D(); */
      if (g_debug_level > 0) {
        check_projectors();
        check_local_D();
      }
      if (g_debug_level > 1) {
        check_little_D_inversion();
      }

    }
    if(SourceInfo.type == 1) {
      index_start = 0;
      index_end = 1;
    }

    g_precWS=NULL;
    if(use_preconditioning == 1){
      /* todo load fftw wisdom */
#if (defined HAVE_FFTW ) && !( defined MPI)
      loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX);
#else
      use_preconditioning=0;
#endif
    }

    if (g_cart_id == 0) {
      fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/
    }
    for(op_id = 0; op_id < no_operators; op_id++) {
      boundary(operator_list[op_id].kappa);
      g_kappa = operator_list[op_id].kappa; 
      g_mu = 0.;

      if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){
        printf("# Using preconditioning with treelevel preconditioning operator: %s \n",
              precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver]));
        /* initial preconditioning workspace */
        operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS));
        spinorPrecWS_Init(operator_list[op_id].precWS,
                  operator_list[op_id].kappa,
                  operator_list[op_id].mu/2./operator_list[op_id].kappa,
                  -(0.5/operator_list[op_id].kappa-4.),
                  PRECWSOPERATORSELECT[operator_list[op_id].solver]);
        g_precWS = operator_list[op_id].precWS;

        if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) {
          fitPrecParams(op_id);
        }
      }

      for(isample = 0; isample < no_samples; isample++) {
        for (ix = index_start; ix < index_end; ix++) {
          if (g_cart_id == 0) {
            fprintf(stdout, "#\n"); /*Indicate starting of new index*/
          }
          /* we use g_spinor_field[0-7] for sources and props for the moment */
          /* 0-3 in case of 1 flavour  */
          /* 0-7 in case of 2 flavours */
          prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location);
          operator_list[op_id].inverter(op_id, index_start);
        }
      }


      if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){
        /* free preconditioning workspace */
        spinorPrecWS_Free(operator_list[op_id].precWS);
        free(operator_list[op_id].precWS);
      }

      if(operator_list[op_id].type == OVERLAP){
        free_Dov_WS();
      }

    }
    nstore += Nsave;
  }

#ifdef MPI
  MPI_Finalize();
#endif
  free_blocks();
  free_dfl_subspace();
  free_gauge_field();
  free_geometry_indices();
  free_spinor_field();
  free_moment_field();
  free_chi_spinor_field();
  return(0);
#ifdef _KOJAK_INST
#pragma pomp inst end(main)
#endif
}
Beispiel #4
0
int main(int argc, char *argv[])
{

  FILE *parameterfile = NULL;
  int c, j;
  char * filename = NULL;
  char datafilename[50];
  char parameterfilename[50];
  char conf_filename[50];
  char * input_filename = NULL;
  char * xlfmessage = NULL;
  char * gaugelfn = NULL;
  char * gaugecksum = NULL;
  double plaquette_energy;

#ifdef _KOJAK_INST
#pragma pomp inst init
#pragma pomp inst begin(main)
#endif

#ifdef HAVE_LIBLEMON
  MPI_File fh;
  LemonWriter *lemonWriter;
  paramsXlfInfo *xlfInfo;
  paramsPropagatorFormat *propagatorFormat;
#endif

#if (defined SSE || defined SSE2 || SSE3)
  signal(SIGILL, &catch_ill_inst);
#endif

  DUM_DERI = 6;
  /* DUM_DERI + 2 is enough (not 7) */
  DUM_SOLVER = DUM_DERI + 3;
  DUM_MATRIX = DUM_SOLVER + 8;
  /* DUM_MATRIX + 2 is enough (not 6) */
  NO_OF_SPINORFIELDS = DUM_MATRIX + 2;

  verbose = 0;
  g_use_clover_flag = 0;

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?f:o:")) != -1) {
    switch (c) {
      case 'f':
        input_filename = calloc(200, sizeof(char));
        strcpy(input_filename, optarg);
        break;
      case 'o':
        filename = calloc(200, sizeof(char));
        strcpy(filename, optarg);
        break;
      case 'h':
      case '?':
      default:
        usage();
        break;
    }
  }
  if (input_filename == NULL) {
    input_filename = "hmc.input";
  }
  if (filename == NULL) {
    filename = "output";
  }

  /* Read the input file */
  read_input(input_filename);
  if (solver_flag == 12 && even_odd_flag == 1) {
    even_odd_flag = 0;
    if (g_proc_id == 0) {
      fprintf(stderr, "CGMMS works only without even/odd! Forcing!\n");
    }
  }

  /* this DBW2 stuff is not needed for the inversion ! */
  if (g_dflgcr_flag == 1) {
    even_odd_flag = 0;
  }
  g_rgi_C1 = 0;
  if (Nsave == 0) {
    Nsave = 1;
  }

  if(g_running_phmc) {
    NO_OF_SPINORFIELDS = DUM_MATRIX + 8;
  }

  mpi_init(argc, argv);

  g_dbw2rand = 0;

  /* starts the single and double precision random number */
  /* generator                                            */
  start_ranlux(rlxd_level, random_seed);

#ifndef MPI
  g_dbw2rand = 0;
#endif

#ifdef _GAUGE_COPY
  j = init_gauge_field(VOLUMEPLUSRAND, 1);
#else
  j = init_gauge_field(VOLUMEPLUSRAND, 0);
#endif
  if(j != 0) {
    fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n");
    exit(-1);
  }
  j = init_geometry_indices(VOLUMEPLUSRAND);
  if(j != 0) {
    fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n");
    exit(-1);
  }
  if(no_monomials > 0) {
    if(even_odd_flag) {
      j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag);
    }
    else {
      j = init_monomials(VOLUMEPLUSRAND, even_odd_flag);
    }
    if(j != 0) {
      fprintf(stderr, "Not enough memory for monomial pseudo fermion  fields! Aborting...\n");
      exit(0);
    }
  }
  if(even_odd_flag) {
    j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS);
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS);
  }
  if(j != 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(-1);
  }

  if(g_running_phmc) {
    j = init_chi_up_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if(j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi_up fields! Aborting...\n");
      exit(0);
    }
    j = init_chi_dn_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if(j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi_dn fields! Aborting...\n");
      exit(0);
    }
  }

  g_mu = g_mu1;
  if(g_proc_id == 0) {
    /*construct the filenames for the observables and the parameters*/
    strcpy(datafilename, filename);
    strcat(datafilename, ".data");
    strcpy(parameterfilename, filename);
    strcat(parameterfilename, ".para");

    parameterfile = fopen(parameterfilename, "w");
    write_first_messages(parameterfile, 1);
    fclose(parameterfile);
  }

  /* this is for the extra masses of the CGMMS */
  if (solver_flag == 12 && g_no_extra_masses > 0) {
    if ((parameterfile = fopen("extra_masses.input", "r")) != NULL) {
      for (j = 0; j < g_no_extra_masses; j++) {
        fscanf(parameterfile, "%lf", &g_extra_masses[j]);
        if (g_proc_id == 0 && g_debug_level > 0) {
          printf("# g_extra_masses[%d] = %lf\n", j, g_extra_masses[j]);
        }
      }
      fclose(parameterfile);
    }
    else {
      fprintf(stderr, "Could not open file extra_masses.input!\n");
      g_no_extra_masses = 0;
    }
  }

  /* define the geometry */
  geometry();

  /* define the boundary conditions for the fermion fields */
  boundary(g_kappa);

  phmc_invmaxev = 1.;


#ifdef _USE_HALFSPINOR
  j = init_dirac_halfspinor();
  if (j != 0) {
    fprintf(stderr, "Not enough memory for halffield! Aborting...\n");
    exit(-1);
  }
  if (g_sloppy_precision_flag == 1) {
    j = init_dirac_halfspinor32();
    if (j != 0) {
      fprintf(stderr, "Not enough memory for 32-Bit halffield! Aborting...\n");
      exit(-1);
    }
  }
#  if (defined _PERSISTENT)
  if (even_odd_flag) {
    init_xchange_halffield();
  }
#  endif
#endif

  for (j = 0; j < Nmeas; j++) {
    sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore);
    if (g_proc_id == 0) {
      printf("Reading Gauge field from file %s\n", conf_filename);
      fflush(stdout);
    }
#ifdef HAVE_LIBLEMON
    read_lemon_gauge_field_parallel(conf_filename, &gaugecksum, &xlfmessage, &gaugelfn);
#else /* HAVE_LIBLEMON */
    if (xlfmessage != (char*)NULL)
      free(xlfmessage);
    if (gaugelfn != (char*)NULL)
      free(gaugelfn);
    if (gaugecksum != (char*)NULL)
      free(gaugecksum);
    read_lime_gauge_field(conf_filename);
    xlfmessage = read_message(conf_filename, "xlf-info");
    gaugelfn = read_message(conf_filename, "ildg-data-lfn");
    gaugecksum = read_message(conf_filename, "scidac-checksum");
    printf("%s \n", gaugecksum);
#endif /* HAVE_LIBLEMON */
    if (g_proc_id == 0) {
      printf("done!\n");
      fflush(stdout);
    }
    /*     unit_g_gauge_field(); */
#ifdef MPI
    xchange_gauge(g_gauge_field);
#endif

    /*compute the energy of the gauge field*/
    plaquette_energy = measure_gauge_action();

    if (g_proc_id == 0) {
      printf("The plaquette value is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
      fflush(stdout);
    }

    if (use_stout_flag == 1) {
      if (stout_smear_gauge_field(stout_rho , stout_no_iter) != 0) {
        exit(1) ;
      }
      plaquette_energy = measure_gauge_action();

      if (g_proc_id == 0) {
        printf("The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
        fflush(stdout);
      }
    }

	/* Compute minimal eigenvalues, necessary for overlap! */
	if (compute_evs != 0)
		eigenvalues(&no_eigenvalues, max_solver_iterations, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag);
	else {
		compute_evs = 1;
		no_eigenvalues = 1;
		eigenvalues(&no_eigenvalues, max_solver_iterations, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag);
		no_eigenvalues = 0;
		compute_evs = 0;
	}

	if (phmc_compute_evs != 0) {
#ifdef MPI
		MPI_Finalize();
#endif
		return (0);
	}

	/* here we can do something */
	ov_n_cheby = (-log(delta))/(2*sqrt(ev_minev));
	printf("// Degree of cheby polynomial: %d\n", ov_n_cheby);
//    g_mu = 0.;
	ov_check_locality();
//	ov_check_ginsparg_wilson_relation_strong();
//	ov_compare_4x4("overlap.mat");
//	ov_compare_12x12("overlap.mat");
//	ov_save_12x12("overlap.mat");
//	ov_check_operator(1,0,0,0);

    nstore += Nsave;
  }
#ifdef MPI
  MPI_Finalize();
#endif

  free_blocks();
  free_dfl_subspace();
  free_gauge_field();
  free_geometry_indices();
  free_spinor_field();
  free_moment_field();
  if (g_running_phmc) {
    free_chi_up_spinor_field();
    free_chi_dn_spinor_field();
  }
  return(0);
#ifdef _KOJAK_INST
#pragma pomp inst end(main)
#endif
}
Beispiel #5
0
int main(int argc, char *argv[])
{
  FILE *parameterfile = NULL;
  int j, i, ix = 0, isample = 0, op_id = 0;
  char datafilename[206];
  char parameterfilename[206];
  char conf_filename[50];
  char * input_filename = NULL;
  char * filename = NULL;
  double plaquette_energy;
  struct stout_parameters params_smear;

#ifdef _KOJAK_INST
#pragma pomp inst init
#pragma pomp inst begin(main)
#endif

#if (defined SSE || defined SSE2 || SSE3)
  signal(SIGILL, &catch_ill_inst);
#endif

  DUM_DERI = 8;
  DUM_MATRIX = DUM_DERI + 5;
  NO_OF_SPINORFIELDS = DUM_MATRIX + 4;

  //4 extra fields (corresponding to DUM_MATRIX+0..5) for deg. and ND matrix mult.  
  NO_OF_SPINORFIELDS_32 = 6;

  verbose = 0;
  g_use_clover_flag = 0;


  process_args(argc,argv,&input_filename,&filename);
  set_default_filenames(&input_filename, &filename);

  init_parallel_and_read_input(argc, argv, input_filename);

  /* this DBW2 stuff is not needed for the inversion ! */
  if (g_dflgcr_flag == 1) {
    even_odd_flag = 0;
  }
  g_rgi_C1 = 0;
  if (Nsave == 0) {
    Nsave = 1;
  }

  if (g_running_phmc) {
    NO_OF_SPINORFIELDS = DUM_MATRIX + 8;
  }

  tmlqcd_mpi_init(argc, argv);

  g_dbw2rand = 0;

  /* starts the single and double precision random number */
  /* generator                                            */
  start_ranlux(rlxd_level, random_seed^nstore);

  /* we need to make sure that we don't have even_odd_flag = 1 */
  /* if any of the operators doesn't use it                    */
  /* in this way even/odd can still be used by other operators */
  for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0;

#ifndef TM_USE_MPI
  g_dbw2rand = 0;
#endif

#ifdef _GAUGE_COPY
  j = init_gauge_field(VOLUMEPLUSRAND, 1);
  j += init_gauge_field_32(VOLUMEPLUSRAND, 1);
#else
  j = init_gauge_field(VOLUMEPLUSRAND, 0);
  j += init_gauge_field_32(VOLUMEPLUSRAND, 0);  
#endif
 
  if (j != 0) {
    fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n");
    exit(-1);
  }
  j = init_geometry_indices(VOLUMEPLUSRAND);
  if (j != 0) {
    fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n");
    exit(-1);
  }
  if (no_monomials > 0) {
    if (even_odd_flag) {
      j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag);
    }
    else {
      j = init_monomials(VOLUMEPLUSRAND, even_odd_flag);
    }
    if (j != 0) {
      fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n");
      exit(-1);
    }
  }
  if (even_odd_flag) {
    j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS);
    j += init_spinor_field_32(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS_32);   
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS);
    j += init_spinor_field_32(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS_32);   
  }
  if (j != 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(-1);
  }

  if (g_running_phmc) {
    j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if (j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n");
      exit(-1);
    }
  }

  g_mu = g_mu1;

  if (g_cart_id == 0) {
    /*construct the filenames for the observables and the parameters*/
    strncpy(datafilename, filename, 200);
    strcat(datafilename, ".data");
    strncpy(parameterfilename, filename, 200);
    strcat(parameterfilename, ".para");

    parameterfile = fopen(parameterfilename, "w");
    write_first_messages(parameterfile, "invert", git_hash);
    fclose(parameterfile);
  }

  /* define the geometry */
  geometry();

  /* define the boundary conditions for the fermion fields */
  boundary(g_kappa);

  phmc_invmaxev = 1.;

  init_operators();

  /* list and initialize measurements*/
  if(g_proc_id == 0) {
    printf("\n");
    for(int j = 0; j < no_measurements; j++) {
      printf("# measurement id %d, type = %d\n", j, measurement_list[j].type);
    }
  }
  init_measurements();  

  /* this could be maybe moved to init_operators */
#ifdef _USE_HALFSPINOR
  j = init_dirac_halfspinor();
  if (j != 0) {
    fprintf(stderr, "Not enough memory for halffield! Aborting...\n");
    exit(-1);
  }
  /* for mixed precision solvers, the 32 bit halfspinor field must always be there */
  j = init_dirac_halfspinor32();
  if (j != 0)
  {
    fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n");
    exit(-1);
  }
#  if (defined _PERSISTENT)
  if (even_odd_flag)
    init_xchange_halffield();
#  endif
#endif

  for (j = 0; j < Nmeas; j++) {
    sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore);
    if (g_cart_id == 0) {
      printf("#\n# Trying to read gauge field from file %s in %s precision.\n",
            conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double"));
      fflush(stdout);
    }
    if( (i = read_gauge_field(conf_filename,g_gauge_field)) !=0) {
      fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename);
      exit(-2);
    }


    if (g_cart_id == 0) {
      printf("# Finished reading gauge field.\n");
      fflush(stdout);
    }
#ifdef TM_USE_MPI
    xchange_gauge(g_gauge_field);
#endif
    /*Convert to a 32 bit gauge field, after xchange*/
    convert_32_gauge_field(g_gauge_field_32, g_gauge_field, VOLUMEPLUSRAND);
    /*compute the energy of the gauge field*/
    plaquette_energy = measure_plaquette( (const su3**) g_gauge_field);

    if (g_cart_id == 0) {
      printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc));
      fflush(stdout);
    }

    if (use_stout_flag == 1){
      params_smear.rho = stout_rho;
      params_smear.iterations = stout_no_iter;
/*       if (stout_smear((su3_tuple*)(g_gauge_field[0]), &params_smear, (su3_tuple*)(g_gauge_field[0])) != 0) */
/*         exit(1) ; */
      g_update_gauge_copy = 1;
      plaquette_energy = measure_plaquette( (const su3**) g_gauge_field);

      if (g_cart_id == 0) {
        printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
        fflush(stdout);
      }
    }

    /* if any measurements are defined in the input file, do them here */
    measurement * meas;
    for(int imeas = 0; imeas < no_measurements; imeas++){
      meas = &measurement_list[imeas];
      if (g_proc_id == 0) {
        fprintf(stdout, "#\n# Beginning online measurement.\n");
      }
      meas->measurefunc(nstore, imeas, even_odd_flag);
    }

    if (reweighting_flag == 1) {
      reweighting_factor(reweighting_samples, nstore);
    }

    /* Compute minimal eigenvalues, if wanted */
    if (compute_evs != 0) {
      eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision,
                  0, compute_evs, nstore, even_odd_flag);
    }
    if (phmc_compute_evs != 0) {
#ifdef TM_USE_MPI
      MPI_Finalize();
#endif
      return(0);
    }

    /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/
    if(compute_modenumber != 0 || compute_topsus !=0){
      invert_compute_modenumber(); 
    }

    //  set up blocks if Deflation is used 
    if (g_dflgcr_flag) 
      init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z);
    
    if(SourceInfo.type == SRC_TYPE_VOL || SourceInfo.type == SRC_TYPE_PION_TS || SourceInfo.type == SRC_TYPE_GEN_PION_TS) {
      index_start = 0;
      index_end = 1;
    }

    g_precWS=NULL;
    if(use_preconditioning == 1){
      /* todo load fftw wisdom */
#if (defined HAVE_FFTW ) && !( defined TM_USE_MPI)
      loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX);
#else
      use_preconditioning=0;
#endif
    }

    if (g_cart_id == 0) {
      fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/
    }
    for(op_id = 0; op_id < no_operators; op_id++) {
      boundary(operator_list[op_id].kappa);
      g_kappa = operator_list[op_id].kappa; 
      g_mu = operator_list[op_id].mu;
      g_c_sw = operator_list[op_id].c_sw;
      // DFLGCR and DFLFGMRES
      if(operator_list[op_id].solver == DFLGCR || operator_list[op_id].solver == DFLFGMRES) {
        generate_dfl_subspace(g_N_s, VOLUME, reproduce_randomnumber_flag);
      }

      if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){
        printf("# Using preconditioning with treelevel preconditioning operator: %s \n",
              precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver]));
        /* initial preconditioning workspace */
        operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS));
        spinorPrecWS_Init(operator_list[op_id].precWS,
                  operator_list[op_id].kappa,
                  operator_list[op_id].mu/2./operator_list[op_id].kappa,
                  -(0.5/operator_list[op_id].kappa-4.),
                  PRECWSOPERATORSELECT[operator_list[op_id].solver]);
        g_precWS = operator_list[op_id].precWS;

        if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) {
          fitPrecParams(op_id);
        }
      }

      for(isample = 0; isample < no_samples; isample++) {
        for (ix = index_start; ix < index_end; ix++) {
          if (g_cart_id == 0) {
            fprintf(stdout, "#\n"); /*Indicate starting of new index*/
          }
          /* we use g_spinor_field[0-7] for sources and props for the moment */
          /* 0-3 in case of 1 flavour  */
          /* 0-7 in case of 2 flavours */
          prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location, random_seed);
          //randmize initial guess for eigcg if needed-----experimental
          if( (operator_list[op_id].solver == INCREIGCG) && (operator_list[op_id].solver_params.eigcg_rand_guess_opt) ){ //randomize the initial guess
              gaussian_volume_source( operator_list[op_id].prop0, operator_list[op_id].prop1,isample,ix,0); //need to check this
          } 
          operator_list[op_id].inverter(op_id, index_start, 1);
        }
      }


      if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){
        /* free preconditioning workspace */
        spinorPrecWS_Free(operator_list[op_id].precWS);
        free(operator_list[op_id].precWS);
      }

      if(operator_list[op_id].type == OVERLAP){
        free_Dov_WS();
      }

    }
    nstore += Nsave;
  }

#ifdef TM_USE_OMP
  free_omp_accumulators();
#endif
  free_blocks();
  free_dfl_subspace();
  free_gauge_field();
  free_gauge_field_32();
  free_geometry_indices();
  free_spinor_field();
  free_spinor_field_32();  
  free_moment_field();
  free_chi_spinor_field();
  free(filename);
  free(input_filename);
  free(SourceInfo.basename);
  free(PropInfo.basename);
#ifdef TM_USE_QUDA
  _endQuda();
#endif
#ifdef TM_USE_MPI
  MPI_Barrier(MPI_COMM_WORLD);
  MPI_Finalize();
#endif
  return(0);
#ifdef _KOJAK_INST
#pragma pomp inst end(main)
#endif
}
Beispiel #6
0
static void
free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	blkptr_t *bp;
	dmu_buf_impl_t *subdb;
	uint64_t start, end, dbstart, dbend, i;
	int epbs, shift;

	/*
	 * There is a small possibility that this block will not be cached:
	 *   1 - if level > 1 and there are no children with level <= 1
	 *   2 - if this block was evicted since we read it from
	 *	 dmu_tx_hold_free().
	 */
	if (db->db_state != DB_CACHED)
		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);

	dbuf_release_bp(db);
	bp = db->db.db_data;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
	shift = (db->db_level - 1) * epbs;
	dbstart = db->db_blkid << epbs;
	start = blkid >> shift;
	if (dbstart < start) {
		bp += start - dbstart;
	} else {
		start = dbstart;
	}
	dbend = ((db->db_blkid + 1) << epbs) - 1;
	end = (blkid + nblks - 1) >> shift;
	if (dbend <= end)
		end = dbend;

	ASSERT3U(start, <=, end);

	if (db->db_level == 1) {
		FREE_VERIFY(db, start, end, tx);
		free_blocks(dn, bp, end-start+1, tx);
	} else {
		for (i = start; i <= end; i++, bp++) {
			if (BP_IS_HOLE(bp))
				continue;
			rw_enter(&dn->dn_struct_rwlock, RW_READER);
			VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
			    i, TRUE, FALSE, FTAG, &subdb));
			rw_exit(&dn->dn_struct_rwlock);
			ASSERT3P(bp, ==, subdb->db_blkptr);

			free_children(subdb, blkid, nblks, tx);
			dbuf_rele(subdb, FTAG);
		}
	}

	/* If this whole block is free, free ourself too. */
	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
		if (!BP_IS_HOLE(bp))
			break;
	}
	if (i == 1 << epbs) {
		/* didn't find any non-holes */
		bzero(db->db.db_data, db->db.db_size);
		free_blocks(dn, db->db_blkptr, 1, tx);
	} else {
		/*
		 * Partial block free; must be marked dirty so that it
		 * will be written out.
		 */
		ASSERT(db->db_dirtycnt > 0);
	}

	DB_DNODE_EXIT(db);
	arc_buf_freeze(db->db_buf);
}
Beispiel #7
0
int main(int argc, char *argv[]) {
  int i;
  bool ast = false;
  int g = 0;
  int numfps = 0;
  int files[argc];

  for (i=1; i < argc; i++) {
    if (strcmp(argv[i], "--version") == 0) {
      printf("stmd %s", VERSION);
      printf(" - standard markdown converter (c) 2014 John MacFarlane\n");
      exit(0);
    } else if ((strcmp(argv[i], "--help") == 0) ||
               (strcmp(argv[i], "-h") == 0)) {
      print_usage();
      exit(0);
    } else if (strcmp(argv[i], "--ast") == 0) {
      ast = true;
    } else if (*argv[i] == '-') {
      print_usage();
      exit(1);
    } else { // treat as file argument
      files[g] = i;
      g++;
    }
  }

  numfps = g;
  bstring s = NULL;
  bstring html;
  g = 0;
  block * cur = make_document();
  int linenum = 1;
  extern int errno;
  FILE * fp = NULL;

  if (numfps == 0) {
    // read from stdin
    while ((s = bgets((bNgetc) fgetc, stdin, '\n'))) {
      check(incorporate_line(s, linenum, &cur) == 0,
          "error incorporating line %d", linenum);
      bdestroy(s);
      linenum++;
    }
  } else {
    // iterate over input file pointers
    for (g=0; g < numfps; g++) {

      fp = fopen(argv[files[g]], "r");
      if (fp == NULL) {
        fprintf(stderr, "Error opening file %s: %s\n",
                argv[files[g]], strerror(errno));
        exit(1);
      }

      while ((s = bgets((bNgetc) fgetc, fp, '\n'))) {
        check(incorporate_line(s, linenum, &cur) == 0,
            "error incorporating line %d", linenum);
        bdestroy(s);
        linenum++;
      }
      fclose(fp);
    }
  }

  while (cur != cur->top) {
    finalize(cur, linenum);
    cur = cur->parent;
  }
  check(cur == cur->top, "problems finalizing open containers");
  finalize(cur, linenum);
  process_inlines(cur, cur->attributes.refmap);
  if (ast) {
    print_blocks(cur, 0);
  } else {
    check(blocks_to_html(cur, &html, false) == 0, "could not format as HTML");
    printf("%s", html->data);
    bdestroy(html);
  }
  free_blocks(cur);
  return 0;
error:
  return -1;
}
Beispiel #8
0
Carrier::~Carrier ()
{
    destroy_blocks(m_reps, 1 + item_dim());
    free_blocks(m_reps);
}