void GenericReconCartesianGrappaGadget::perform_calib(IsmrmrdReconBit &recon_bit, ReconObjType &recon_obj, size_t e) { size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); hoNDArray<std::complex<float> > &src = recon_obj.ref_calib_; hoNDArray<std::complex<float> > &dst = recon_obj.ref_calib_dst_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); size_t dstCHA = dst.get_size(3); recon_obj.unmixing_coeff_.create(RO, E1, E2, srcCHA, ref_N, ref_S, ref_SLC); recon_obj.gfactor_.create(RO, E1, E2, 1, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.unmixing_coeff_); Gadgetron::clear(recon_obj.gfactor_); if (acceFactorE1_[e] <= 1 && acceFactorE2_[e] <= 1) { Gadgetron::conjugate(recon_obj.coil_map_, recon_obj.unmixing_coeff_); } else { // allocate buffer for kernels size_t kRO = grappa_kSize_RO.value(); size_t kNE1 = grappa_kSize_E1.value(); size_t kNE2 = grappa_kSize_E2.value(); size_t convKRO(1), convKE1(1), convKE2(1); bool fitItself = this->downstream_coil_compression.value(); if (E2 > 1) { std::vector<int> kE1, oE1; std::vector<int> kE2, oE2; grappa3d_kerPattern(kE1, oE1, kE2, oE2, convKRO, convKE1, convKE2, (size_t) acceFactorE1_[e], (size_t) acceFactorE2_[e], kRO, kNE1, kNE2, fitItself); } else { std::vector<int> kE1, oE1; Gadgetron::grappa2d_kerPattern(kE1, oE1, convKRO, convKE1, (size_t) acceFactorE1_[e], kRO, kNE1, fitItself); recon_obj.kernelIm_.create(RO, E1, 1, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); } recon_obj.kernel_.create(convKRO, convKE1, convKE2, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.kernel_); Gadgetron::clear(recon_obj.kernelIm_); long long num = ref_N * ref_S * ref_SLC; long long ii; // only allow this for loop openmp if num>1 and 2D recon #pragma omp parallel for default(none) private(ii) shared(src, dst, recon_obj, e, num, ref_N, ref_S, ref_RO, ref_E1, ref_E2, RO, E1, E2, dstCHA, srcCHA, convKRO, convKE1, convKE2, kRO, kNE1, kNE2, fitItself) if(num>1) for (ii = 0; ii < num; ii++) { size_t slc = ii / (ref_N * ref_S); size_t s = (ii - slc * ref_N * ref_S) / (ref_N); size_t n = ii - slc * ref_N * ref_S - s * ref_N; std::stringstream os; os << "n" << n << "_s" << s << "_slc" << slc << "_encoding_" << e; std::string suffix = os.str(); std::complex<float> *pSrc = &(src(0, 0, 0, 0, n, s, slc)); hoNDArray<std::complex<float> > ref_src(ref_RO, ref_E1, ref_E2, srcCHA, pSrc); std::complex<float> *pDst = &(dst(0, 0, 0, 0, n, s, slc)); hoNDArray<std::complex<float> > ref_dst(ref_RO, ref_E1, ref_E2, dstCHA, pDst); // ----------------------------------- if (E2 > 1) { hoNDArray<std::complex<float> > ker(convKRO, convKE1, convKE2, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); if (fitItself) { Gadgetron::grappa3d_calib_convolution_kernel(ref_src, ref_dst, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], grappa_reg_lamda.value(), grappa_calib_over_determine_ratio.value(), kRO, kNE1, kNE2, ker); } else { Gadgetron::grappa3d_calib_convolution_kernel(ref_src, ref_src, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], grappa_reg_lamda.value(), grappa_calib_over_determine_ratio.value(), kRO, kNE1, kNE2, ker); } //if (!debug_folder_full_path_.empty()) //{ // gt_exporter_.export_array_complex(ker, debug_folder_full_path_ + "convKer3D_" + suffix); //} hoNDArray<std::complex<float> > coilMap(RO, E1, E2, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray<std::complex<float> > unmixC(RO, E1, E2, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor(RO, E1, E2, 1, &(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc))); Gadgetron::grappa3d_unmixing_coeff(ker, coilMap, (size_t) acceFactorE1_[e], (size_t) acceFactorE2_[e], unmixC, gFactor); //if (!debug_folder_full_path_.empty()) //{ // gt_exporter_.export_array_complex(unmixC, debug_folder_full_path_ + "unmixC_3D_" + suffix); //} //if (!debug_folder_full_path_.empty()) //{ // gt_exporter_.export_array(gFactor, debug_folder_full_path_ + "gFactor_3D_" + suffix); //} } else { hoNDArray<std::complex<float> > acsSrc(ref_RO, ref_E1, srcCHA, const_cast< std::complex<float> *>(ref_src.begin())); hoNDArray<std::complex<float> > acsDst(ref_RO, ref_E1, dstCHA, const_cast< std::complex<float> *>(ref_dst.begin())); hoNDArray<std::complex<float> > convKer(convKRO, convKE1, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); hoNDArray<std::complex<float> > kIm(RO, E1, srcCHA, dstCHA, &(recon_obj.kernelIm_(0, 0, 0, 0, 0, n, s, slc))); if (fitItself) { Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)acceFactorE1_[e], grappa_reg_lamda.value(), kRO, kNE1, convKer); } else { Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsSrc, (size_t)acceFactorE1_[e], grappa_reg_lamda.value(), kRO, kNE1, convKer); } Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); /*if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(convKer, debug_folder_full_path_ + "convKer_" + suffix); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "kIm_" + suffix); }*/ hoNDArray<std::complex<float> > coilMap(RO, E1, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray<std::complex<float> > unmixC(RO, E1, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor; Gadgetron::grappa2d_unmixing_coeff(kIm, coilMap, (size_t) acceFactorE1_[e], unmixC, gFactor); memcpy(&(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc)), gFactor.begin(), gFactor.get_number_of_bytes()); /*if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(unmixC, debug_folder_full_path_ + "unmixC_" + suffix); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array(gFactor, debug_folder_full_path_ + "gFactor_" + suffix); }*/ } // ----------------------------------- } } }
void GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(hoNDArray< std::complex<float> >& kspace, hoNDArray< std::complex<float> >& kerIm, hoNDArray< std::complex<float> >& ref2DT, hoNDArray< std::complex<float> >& coilMap2DT, hoNDArray< std::complex<float> >& res, size_t e) { try { bool print_iter = this->spirit_print_iter.value(); size_t RO = kspace.get_size(0); size_t E1 = kspace.get_size(1); size_t E2 = kspace.get_size(2); size_t CHA = kspace.get_size(3); size_t N = kspace.get_size(4); size_t S = kspace.get_size(5); size_t SLC = kspace.get_size(6); size_t ref_N = kerIm.get_size(4); size_t ref_S = kerIm.get_size(5); hoNDArray< std::complex<float> > kspaceLinear(kspace); res = kspace; // detect whether random sampling is used bool use_random_sampling = false; std::vector<long long> sampled_step_size; long long n, e1; for (n=0; n<(long long)N; n++) { long long prev_sampled_line = -1; for (e1=0; e1<(long long)E1; e1++) { if(std::abs(kspace(RO/2, e1, 0, 0, 0, 0, 0))>0 && std::abs(kspace(RO/2, e1, 0, CHA-1, 0, 0, 0))>0) { if(prev_sampled_line>0) { sampled_step_size.push_back(e1 - prev_sampled_line); } prev_sampled_line = e1; } } } if(sampled_step_size.size()>4) { size_t s; for (s=2; s<sampled_step_size.size()-1; s++) { if(sampled_step_size[s]!=sampled_step_size[s-1]) { use_random_sampling = true; break; } } } if(use_random_sampling) { GDEBUG_STREAM("SPIRIT Non linear, random sampling is detected ... "); } Gadgetron::GadgetronTimer timer(false); boost::shared_ptr< hoNDArray< std::complex<float> > > coilMap; bool hasCoilMap = false; if (coilMap2DT.get_size(0) == RO && coilMap2DT.get_size(1) == E1 && coilMap2DT.get_size(3)==CHA) { if (ref_N < N) { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, coilMap2DT.begin())); } else { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, ref_N, coilMap2DT.begin())); } hasCoilMap = true; } hoNDArray<float> gFactor; float gfactorMedian = 0; float smallest_eigen_value(0); // ----------------------------------------------------- // estimate gfactor // ----------------------------------------------------- // mean over N hoNDArray< std::complex<float> > meanKSpace; if(calib_mode_[e]==ISMRMRD_interleaved) { Gadgetron::compute_averaged_data_N_S(kspace, true, true, true, meanKSpace); } else { Gadgetron::compute_averaged_data_N_S(ref2DT, true, true, true, meanKSpace); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(meanKSpace, debug_folder_full_path_ + "spirit_nl_2DT_meanKSpace"); } hoNDArray< std::complex<float> > acsSrc(meanKSpace.get_size(0), meanKSpace.get_size(1), CHA, meanKSpace.begin()); hoNDArray< std::complex<float> > acsDst(meanKSpace.get_size(0), meanKSpace.get_size(1), CHA, meanKSpace.begin()); double grappa_reg_lamda = 0.0005; size_t kRO = 5; size_t kE1 = 4; hoNDArray< std::complex<float> > convKer; hoNDArray< std::complex<float> > kIm(RO, E1, CHA, CHA); Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)this->acceFactorE1_[e], grappa_reg_lamda, kRO, kE1, convKer); Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); hoNDArray< std::complex<float> > unmixC; if(hasCoilMap) { Gadgetron::grappa2d_unmixing_coeff(kIm, *coilMap, (size_t)acceFactorE1_[e], unmixC, gFactor); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array(gFactor, debug_folder_full_path_ + "spirit_nl_2DT_gFactor"); hoNDArray<float> gfactorSorted(gFactor); std::sort(gfactorSorted.begin(), gfactorSorted.begin()+RO*E1); gfactorMedian = gFactor((RO*E1 / 2)); GDEBUG_STREAM("SPIRIT Non linear, the median gfactor is found to be : " << gfactorMedian); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "spirit_nl_2DT_kIm"); hoNDArray< std::complex<float> > complexIm; // compute linear solution as the initialization if(use_random_sampling) { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear spirit recon ... "); this->perform_spirit_unwrapping(kspace, kerIm, kspaceLinear); if (this->perform_timing.value()) timer.stop(); } else { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear recon ... "); //size_t ref2DT_RO = ref2DT.get_size(0); //size_t ref2DT_E1 = ref2DT.get_size(1); //// mean over N //hoNDArray< std::complex<float> > meanKSpace; //Gadgetron::sum_over_dimension(ref2DT, meanKSpace, 4); //if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(meanKSpace, debug_folder_full_path_ + "spirit_nl_2DT_meanKSpace"); } //hoNDArray< std::complex<float> > acsSrc(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); //hoNDArray< std::complex<float> > acsDst(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); //double grappa_reg_lamda = 0.0005; //size_t kRO = 5; //size_t kE1 = 4; //hoNDArray< std::complex<float> > convKer; //hoNDArray< std::complex<float> > kIm(RO, E1, CHA, CHA); //Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)this->acceFactorE1_[e], grappa_reg_lamda, kRO, kE1, convKer); //Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); //if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "spirit_nl_2DT_kIm"); Gadgetron::hoNDFFT<float>::instance()->ifft2c(kspace, complex_im_recon_buf_); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(complex_im_recon_buf_, debug_folder_full_path_ + "spirit_nl_2DT_aliasedImage"); hoNDArray< std::complex<float> > resKSpace(RO, E1, CHA, N); hoNDArray< std::complex<float> > aliasedImage(RO, E1, CHA, N, complex_im_recon_buf_.begin()); Gadgetron::grappa2d_image_domain_unwrapping_aliased_image(aliasedImage, kIm, resKSpace); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(resKSpace, debug_folder_full_path_ + "spirit_nl_2DT_linearImage"); Gadgetron::hoNDFFT<float>::instance()->fft2c(resKSpace); memcpy(kspaceLinear.begin(), resKSpace.begin(), resKSpace.get_number_of_bytes()); Gadgetron::apply_unmix_coeff_aliased_image(aliasedImage, unmixC, complexIm); if (this->perform_timing.value()) timer.stop(); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kspaceLinear, debug_folder_full_path_ + "spirit_nl_2DT_kspaceLinear"); if(hasCoilMap) { if(N>=spirit_reg_minimal_num_images_for_noise_floor.value()) { // estimate the noise level if(use_random_sampling) { Gadgetron::hoNDFFT<float>::instance()->ifft2c(kspaceLinear, complex_im_recon_buf_); hoNDArray< std::complex<float> > complexLinearImage(RO, E1, CHA, N, complex_im_recon_buf_.begin()); Gadgetron::coil_combine(complexLinearImage, *coilMap, 2, complexIm); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(complexIm, debug_folder_full_path_ + "spirit_nl_2DT_linearImage_complexIm"); // if N is sufficiently large, we can estimate the noise floor by the smallest eigen value hoMatrix< std::complex<float> > data; data.createMatrix(RO*E1, N, complexIm.begin(), false); hoNDArray< std::complex<float> > eigenVectors, eigenValues, eigenVectorsPruned; // compute eigen hoNDKLT< std::complex<float> > klt; klt.prepare(data, (size_t)1, (size_t)0); klt.eigen_value(eigenValues); if (this->verbose.value()) { GDEBUG_STREAM("SPIRIT Non linear, computes eigen values for all 2D kspaces ... "); eigenValues.print(std::cout); for (size_t i = 0; i<eigenValues.get_size(0); i++) { GDEBUG_STREAM(i << " = " << eigenValues(i)); } } smallest_eigen_value = std::sqrt( std::abs(eigenValues(N - 1).real()) / (RO*E1) ); GDEBUG_STREAM("SPIRIT Non linear, the smallest eigen value is : " << smallest_eigen_value); } } // perform nonlinear reconstruction { boost::shared_ptr<hoNDArray< std::complex<float> > > ker(new hoNDArray< std::complex<float> >(RO, E1, CHA, CHA, ref_N, kerIm.begin())); boost::shared_ptr<hoNDArray< std::complex<float> > > acq(new hoNDArray< std::complex<float> >(RO, E1, CHA, N, kspace.begin())); hoNDArray< std::complex<float> > kspaceInitial(RO, E1, CHA, N, kspaceLinear.begin()); hoNDArray< std::complex<float> > res2DT(RO, E1, CHA, N, res.begin()); if (this->spirit_data_fidelity_lamda.value() > 0) { GDEBUG_STREAM("Start the NL SPIRIT data fidelity iteration - regularization strength : " << this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value() << " - wavelet name : " << this->spirit_reg_name.value() ); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); if(spirit_reg_estimate_noise_floor.value() && std::abs(smallest_eigen_value)>0) { solver.scale_factor_ = smallest_eigen_value; solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value() * gfactorMedian; GDEBUG_STREAM("SPIRIT Non linear, eigen value is used to derive the regularization strength : " << solver.proximal_strength_ratio_ << " - smallest eigen value : " << solver.scale_factor_); } else { solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); } boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTDataFidelityOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); // image reg term hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dims); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; wav3DOperator.select_wavelet(this->spirit_reg_name.value()); if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT with data fidelity ... "); solver.solve(*acq, res2DT); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_data_fidelity_res"); } else { GDEBUG_STREAM("Start the NL SPIRIT iteration with regularization strength : "<< this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value() << " - wavelet name : " << this->spirit_reg_name.value() ); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); if(spirit_reg_estimate_noise_floor.value() && std::abs(smallest_eigen_value)>0) { solver.scale_factor_ = smallest_eigen_value; solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value() * gfactorMedian; GDEBUG_STREAM("SPIRIT Non linear, eigen value is used to derive the regularization strength : " << solver.proximal_strength_ratio_ << " - smallest eigen value : " << solver.scale_factor_); } else { solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); } boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); spirit.no_null_space_ = true; spirit.use_non_centered_fft_ = false; // image reg term std::vector<size_t> dim; acq->get_dimensions(dim); hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dim); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; wav3DOperator.select_wavelet(this->spirit_reg_name.value()); if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; // set call back solverCallBack cb; cb.solver_ = &solver; solver.call_back_ = &cb; hoNDArray< std::complex<float> > b(kspaceInitial); Gadgetron::clear(b); if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT ... "); solver.solve(b, res2DT); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res"); spirit.restore_acquired_kspace(kspace, res2DT); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res_restored"); } } } catch (...) { GADGET_THROW("Errors happened in GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(...) ... "); } }
void MultiChannelCartesianGrappaReconGadget::perform_calib(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); hoNDArray< std::complex<float> >& src = recon_obj.ref_calib_; hoNDArray< std::complex<float> >& dst = recon_obj.ref_calib_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); size_t dstCHA = dst.get_size(3); recon_obj.unmixing_coeff_.create(RO, E1, E2, srcCHA, ref_N, ref_S, ref_SLC); recon_obj.gfactor_.create(RO, E1, E2, 1, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.unmixing_coeff_); Gadgetron::clear(recon_obj.gfactor_); if (acceFactorE1_[e] <= 1 && acceFactorE2_[e] <= 1) { Gadgetron::conjugate(recon_obj.coil_map_, recon_obj.unmixing_coeff_); } else { // allocate buffer for kernels size_t kRO = grappa_kSize_RO.value(); size_t kNE1 = grappa_kSize_E1.value(); size_t kNE2 = grappa_kSize_E2.value(); size_t convKRO(1), convKE1(1), convKE2(1); if (E2 > 1) { std::vector<int> kE1, oE1; std::vector<int> kE2, oE2; bool fitItself = true; grappa3d_kerPattern(kE1, oE1, kE2, oE2, convKRO, convKE1, convKE2, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], kRO, kNE1, kNE2, fitItself); } else { std::vector<int> kE1, oE1; bool fitItself = true; Gadgetron::grappa2d_kerPattern(kE1, oE1, convKRO, convKE1, (size_t)acceFactorE1_[e], kRO, kNE1, fitItself); recon_obj.kernelIm_.create(RO, E1, 1, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); } recon_obj.kernel_.create(convKRO, convKE1, convKE2, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.kernel_); Gadgetron::clear(recon_obj.kernelIm_); long long num = ref_N*ref_S*ref_SLC; long long ii; #pragma omp parallel for default(none) private(ii) shared(src, dst, recon_obj, e, num, ref_N, ref_S, ref_RO, ref_E1, ref_E2, RO, E1, E2, dstCHA, srcCHA, convKRO, convKE1, convKE2, kRO, kNE1, kNE2) if(num>1) for (ii = 0; ii < num; ii++) { size_t slc = ii / (ref_N*ref_S); size_t s = (ii - slc*ref_N*ref_S) / (ref_N); size_t n = ii - slc*ref_N*ref_S - s*ref_N; std::stringstream os; os << "n" << n << "_s" << s << "_slc" << slc << "_encoding_" << e; std::string suffix = os.str(); std::complex<float>* pSrc = &(src(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > ref_src(ref_RO, ref_E1, ref_E2, srcCHA, pSrc); std::complex<float>* pDst = &(dst(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > ref_dst(ref_RO, ref_E1, ref_E2, dstCHA, pDst); // ----------------------------------- if (E2 > 1) { hoNDArray< std::complex<float> > ker(convKRO, convKE1, convKE2, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); Gadgetron::grappa3d_calib_convolution_kernel(ref_src, ref_dst, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], grappa_reg_lamda.value(), grappa_calib_over_determine_ratio.value(), kRO, kNE1, kNE2, ker); hoNDArray< std::complex<float> > coilMap(RO, E1, E2, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > unmixC(RO, E1, E2, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor(RO, E1, E2, 1, &(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc))); Gadgetron::grappa3d_unmixing_coeff(ker, coilMap, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], unmixC, gFactor); } else { hoNDArray< std::complex<float> > acsSrc(ref_RO, ref_E1, srcCHA, const_cast< std::complex<float>*>(ref_src.begin())); hoNDArray< std::complex<float> > acsDst(ref_RO, ref_E1, dstCHA, const_cast< std::complex<float>*>(ref_dst.begin())); hoNDArray< std::complex<float> > convKer(convKRO, convKE1, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > kIm(RO, E1, srcCHA, dstCHA, &(recon_obj.kernelIm_(0, 0, 0, 0, 0, n, s, slc))); Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)acceFactorE1_[e], grappa_reg_lamda.value(), kRO, kNE1, convKer); Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); hoNDArray< std::complex<float> > coilMap(RO, E1, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > unmixC(RO, E1, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor; Gadgetron::grappa2d_unmixing_coeff(kIm, coilMap, (size_t)acceFactorE1_[e], unmixC, gFactor); memcpy(&(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc)), gFactor.begin(), gFactor.get_number_of_bytes()); } // ----------------------------------- } } } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::perform_calib(...) ... "); } }