Beispiel #1
0
/* S1 * u - P1 * round(P^-1 S u). K non-zero coords in u given by ind */
static GEN
get_trace(GEN ind, trace_data *T)
{
  long i, j, l, K = lg(ind)-1;
  GEN z, s, v;

  s = gel(T->S1, ind[1]);
  if (K == 1) return s;

  /* compute s = S1 u */
  for (j=2; j<=K; j++) s = gadd(s, gel(T->S1, ind[j]));

  /* compute v := - round(P^1 S u) */
  l = lg(s);
  v = cgetg(l, t_VECSMALL);
  for (i=1; i<l; i++)
  {
    double r, t = 0.;
    /* quick approximate computation */
    for (j=1; j<=K; j++) t += T->PinvSdbl[ ind[j] ][i];
    r = floor(t + 0.5);
    if (fabs(t + 0.5 - r) < 0.0001)
    { /* dubious, compute exactly */
      z = gen_0;
      for (j=1; j<=K; j++) z = addii(z, ((GEN**)T->dPinvS)[ ind[j] ][i]);
      v[i] = - itos( diviiround(z, T->d) );
    }
    else
      v[i] = - (long)r;
  }
  return gadd(s, ZM_zc_mul(T->P1, v));
} 
Beispiel #2
0
/* g in Z[X] potentially defines a subfield of Q[X]/f. It is a subfield iff A
 * (cf subfield) was a block system; then there
 * exists h in Q[X] such that f | g o h. listdelta determines h s.t f | g o h
 * in Fp[X] (cf chinese_retrieve_pol). Try to lift it; den is a
 * multiplicative bound for denominator of lift. */
static GEN
embedding(GEN g, GEN DATA, primedata *S, GEN den, GEN listdelta)
{
  GEN TR, w0_Q, w0, w1_Q, w1, wpow, h0, gp, T, q2, q, maxp, a, p = S->p;
  long rt;
  pari_sp av;

  T   = gel(DATA,1); rt = brent_kung_optpow(degpol(T), 2);
  maxp= gel(DATA,7);
  gp = derivpol(g); av = avma;
  w0 = chinese_retrieve_pol(DATA, S, listdelta);
  w0_Q = centermod(gmul(w0,den), p);
  h0 = FpXQ_inv(FpX_FpXQ_compo(gp,w0, T,p), T,p); /* = 1/g'(w0) mod (T,p) */
  wpow = NULL; q = sqri(p);
  for(;;)
  {/* Given g,w0,h0 in Z[x], s.t. h0.g'(w0) = 1 and g(w0) = 0 mod (T,p), find
    * [w1,h1] satisfying the same conditions mod p^2, [w1,h1] = [w0,h0] (mod p)
    * (cf. Dixon: J. Austral. Math. Soc., Series A, vol.49, 1990, p.445) */
    if (DEBUGLEVEL>1)
      fprintferr("lifting embedding mod p^k = %Z^%ld\n",p, Z_pval(q,p));

    /* w1 := w0 - h0 g(w0) mod (T,q) */
    if (wpow)
      a = FpX_FpXQV_compo(g,wpow, T,q);
    else
      a = FpX_FpXQ_compo(g,w0, T,q); /* first time */
    /* now, a = 0 (p) */
    a = gmul(gneg(h0), gdivexact(a, p));
    w1 = gadd(w0, gmul(p, FpX_rem(a, T,p)));

    w1_Q = centermod(gmul(w1, remii(den,q)), q);
    if (gequal(w1_Q, w0_Q) || cmpii(q,maxp) > 0)
    {
      GEN G = gcmp1(den)? g: RgX_rescale(g,den);
      if (gcmp0(RgX_RgXQ_compo(G, w1_Q, T))) break;
    }
    if (cmpii(q, maxp) > 0)
    {
      if (DEBUGLEVEL) fprintferr("coeff too big for embedding\n");
      return NULL;
    }
    gerepileall(av, 5, &w1,&h0,&w1_Q,&q,&p);
    q2 = sqri(q);
    wpow = FpXQ_powers(w1, rt, T, q2);
    /* h0 := h0 * (2 - h0 g'(w1)) mod (T,q)
     *     = h0 + h0 * (1 - h0 g'(w1)) */
    a = gmul(gneg(h0), FpX_FpXQV_compo(gp, FpXV_red(wpow,q),T,q));
    a = ZX_Z_add(FpX_rem(a, T,q), gen_1); /* 1 - h0 g'(w1) = 0 (p) */
    a = gmul(h0, gdivexact(a, p));
    h0 = gadd(h0, gmul(p, FpX_rem(a, T,p)));
    w0 = w1; w0_Q = w1_Q; p = q; q = q2;
  }
  TR = gel(DATA,5);
  if (!gcmp0(TR)) w1_Q = translate_pol(w1_Q, TR);
  return gdiv(w1_Q,den);
}
Beispiel #3
0
/* return P(X + c) using destructive Horner, optimize for c = 1,-1 */
GEN
translate_pol(GEN P, GEN c)
{
  pari_sp av = avma, lim;
  GEN Q, *R;
  long i, k, n;

  if (!signe(P) || gcmp0(c)) return gcopy(P);
  Q = shallowcopy(P);
  R = (GEN*)(Q+2); n = degpol(P);
  lim = stack_lim(av, 2);
  if (gcmp1(c))
  {
    for (i=1; i<=n; i++)
    {
      for (k=n-i; k<n; k++) R[k] = gadd(R[k], R[k+1]);
      if (low_stack(lim, stack_lim(av,2)))
      {
        if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL(1), i = %ld/%ld", i,n);
        Q = gerepilecopy(av, Q); R = (GEN*)Q+2;
      }
    }
  }
  else if (gcmp_1(c))
  {
    for (i=1; i<=n; i++)
    {
      for (k=n-i; k<n; k++) R[k] = gsub(R[k], R[k+1]);
      if (low_stack(lim, stack_lim(av,2)))
      {
        if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL(-1), i = %ld/%ld", i,n);
        Q = gerepilecopy(av, Q); R = (GEN*)Q+2;
      }
    }
  }
  else
  {
    for (i=1; i<=n; i++)
    {
      for (k=n-i; k<n; k++) R[k] = gadd(R[k], gmul(c, R[k+1]));
      if (low_stack(lim, stack_lim(av,2)))
      {
        if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL, i = %ld/%ld", i,n);
        Q = gerepilecopy(av, Q); R = (GEN*)Q+2;
      }
    }
  }
  return gerepilecopy(av, Q);
}
Beispiel #4
0
/* return C in Z[X]/(p,T), C[ D[1] ] = 1, C[ D[i] ] = 0 otherwise. H is the
 * list of degree 1 polynomials X - D[i]  (come directly from factorization) */
static GEN
interpol(GEN H, GEN T, GEN p)
{
  long i, m = lg(H);
  GEN X = pol_x[0],d,p1,p2,a;

  p1=pol_1[0]; p2=gen_1; a = gneg(constant_term(gel(H,1))); /* = D[1] */
  for (i=2; i<m; i++)
  {
    d = constant_term(gel(H,i)); /* -D[i] */
    p1 = FpXQX_mul(p1,gadd(X,d), T,p);
    p2 = Fq_mul(p2, gadd(a,d), T,p);
  }
  return FqX_Fq_mul(p1,Fq_inv(p2, T,p), T,p);
}
Beispiel #5
0
static GEN
bound_for_coeff(long m, GEN rr, GEN *maxroot)
{
  long i,r1, lrr=lg(rr);
  GEN p1,b1,b2,B,M, C = matpascal(m-1);

  for (r1=1; r1 < lrr; r1++)
    if (typ(rr[r1]) != t_REAL) break;
  r1--;

  rr = gabs(rr,0); *maxroot = vecmax(rr);
  for (i=1; i<lrr; i++)
    if (gcmp(gel(rr,i), gen_1) < 0) gel(rr,i) = gen_1;
  for (b1=gen_1,i=1; i<=r1; i++) b1 = gmul(b1, gel(rr,i));
  for (b2=gen_1    ; i<lrr; i++) b2 = gmul(b2, gel(rr,i));
  B = gmul(b1, gsqr(b2)); /* Mahler measure */
  M = cgetg(m+2, t_VEC); gel(M,1) = gel(M,2) = gen_0; /* unused */
  for (i=1; i<m; i++)
  {
    p1 = gadd(gmul(gcoeff(C, m, i+1), B),/* binom(m-1, i)   */
              gcoeff(C, m, i));          /* binom(m-1, i-1) */
    gel(M,i+2) = ceil_safe(p1);
  }
  return M;
}
Beispiel #6
0
static GEN
init_traces(GEN ff, GEN T, GEN p)
{
  long N = degpol(T),i,j,k, r = lg(ff);
  GEN Frob = FpXQ_matrix_pow(FpXQ_pow(pol_x[varn(T)],p, T,p), N,N, T,p);
  GEN y,p1,p2,Trk,pow,pow1;

  k = degpol(ff[r-1]); /* largest degree in modular factorization */
  pow = cgetg(k+1, t_VEC);
  gel(pow,1) = gen_0; /* dummy */
  gel(pow,2) = Frob;
  pow1= cgetg(k+1, t_VEC); /* 1st line */
  for (i=3; i<=k; i++)
    gel(pow,i) = FpM_mul(gel(pow,i-1), Frob, p);
  gel(pow1,1) = gen_0; /* dummy */
  for (i=2; i<=k; i++)
  {
    p1 = cgetg(N+1, t_VEC);
    gel(pow1,i) = p1; p2 = gel(pow,i);
    for (j=1; j<=N; j++) gel(p1,j) = gcoeff(p2,1,j);
  }
  
  /* Trk[i] = line 1 of x -> x + x^p + ... + x^{p^(i-1)} */
  Trk = pow; /* re-use (destroy) pow */
  gel(Trk,1) = vec_ei(N,1);
  for (i=2; i<=k; i++)
    gel(Trk,i) = gadd(gel(Trk,i-1), gel(pow1,i));
  y = cgetg(r, t_VEC);
  for (i=1; i<r; i++) y[i] = Trk[degpol(ff[i])];
  return y;
}
Beispiel #7
0
// mMul memory-wise
matrix* mMul(matrix a, matrix b){
    int i, j, k;
    matrix* resultMatrix;
    uint8_t factor;
    uint8_t *aVector, *bVector, *resVector;

    // Check dimension correctness
    if(a.nColumns != b.nRows){
        printf("mMul : Error in Matrix dimensions. Cannot continue\n");
        exit(1);
    }

    resultMatrix = mCreate(a.nRows, b.nColumns);

    for(i = 0; i < resultMatrix->nRows; i++){
        aVector = a.data[i];
        resVector = resultMatrix->data[i];
        for(j = 0; j < a.nColumns; j++){
            factor = aVector[j];
            if(factor != 0x00){
                bVector = b.data[j];
                for(k = 0; k < b.nColumns; k++){
                    resVector[k] = gadd(resVector[k], gmul(factor, bVector[k]));
                } 
            }
        }
    }
    return resultMatrix;
}
Beispiel #8
0
int galoisTest(){
    uint8_t a,b,c;
    int isOk = true;
    
    // Addition :
    a = 0x01; b = 0x0A; c = 0x0B;
    if((gadd(a,b) != c)){
        printf("Galois addition failed\n");
        isOk = false;
    }
    
    // Multiplication :
    if((gmul(a,b) != b) || (gmul(0x02, 0x02)!=0x04) ){
        printf("Galois multiplication failed\n");
        isOk = false;
    }
    
    // Division :
    if((gdiv(b,a) != b) || (gdiv(0x02, 0x02)!=0x01)){
        printf("Galois division failed\n");
        isOk = false;
    }
    
    return isOk;
}
Beispiel #9
0
static void
bestlift_init(long a, GEN nf, GEN pr, GEN C, nflift_t *L)
{
  const long D = 100;
  const double alpha = ((double)D-1) / D; /* LLL parameter */
  const long d = degpol(nf[1]);
  pari_sp av = avma;
  GEN prk, PRK, B, GSmin, pk;
  pari_timer ti;

  TIMERstart(&ti);
  if (!a) a = (long)bestlift_bound(C, d, alpha, pr_norm(pr));

  for (;; avma = av, a<<=1)
  {
    if (DEBUGLEVEL>2) fprintferr("exponent: %ld\n",a);
    PRK = prk = idealpows(nf, pr, a);
    pk = gcoeff(prk,1,1);
    /* reduce size first, "scramble" matrix */
    PRK = lllintpartial_ip(PRK);
    /* now floating point reduction is fast */
    PRK = lllint_fp_ip(PRK, 4);
    PRK = lllint_i(PRK, D, 0, NULL, NULL, &B);
    if (!PRK) { PRK = prk; GSmin = pk; } /* nf = Q */
    else
    {
      pari_sp av2 = avma;
      GEN S = invmat( get_R(PRK) ), BB = GS_norms(B, DEFAULTPREC);
      GEN smax = gen_0;
      long i, j;
      for (i=1; i<=d; i++)
      {
        GEN s = gen_0;
        for (j=1; j<=d; j++)
          s = gadd(s, gdiv( gsqr(gcoeff(S,i,j)), gel(BB,j)));
        if (gcmp(s, smax) > 0) smax = s;
      }
      GSmin = gerepileupto(av2, ginv(gmul2n(smax, 2)));
    }
    if (gcmp(GSmin, C) >= 0) break;
  }
  if (DEBUGLEVEL>2)
    fprintferr("for this exponent, GSmin = %Z\nTime reduction: %ld\n",
      GSmin, TIMER(&ti));
  L->k = a;
  L->den = L->pk = pk;
  L->prk = PRK;
  L->iprk = ZM_inv(PRK, pk);
  L->GSmin= GSmin;
  L->prkHNF = prk;
  init_proj(L, gel(nf,1), gel(pr,1));
}
Beispiel #10
0
/* || L ||_p^p in dimension n (L may be a scalar) */
static GEN
normlp(GEN L, long p, long n)
{
  long i,l, t = typ(L);
  GEN z;

  if (!is_vec_t(t)) return gmulsg(n, gpowgs(L, p));

  l = lg(L); z = gen_0;
  /* assert(n == l-1); */
  for (i=1; i<l; i++)
    z = gadd(z, gpowgs(gel(L,i), p));
  return z;
}
Beispiel #11
0
/* log N_{F_P/Q_p}(x) / deg_F P */
static GEN
vtilde_i(GEN K, GEN x, GEN T, GEN deg, GEN ell, long prec)
{
  GEN L, N, cx;
  if (typ(x) != t_POL) x = nf_to_scalar_or_alg(K, x);
  x = Q_primitive_part(x,&cx);
  N = RgXQ_norm(x, T);
  L = Qp_log(cvtop(N,ell,prec));
  if (cx)
  {
    Q_pvalrem(cx, ell, &cx);
    if (!isint1(cx))
      L = gadd(L, gmulsg(degpol(T), Qp_log(cvtop(cx,ell,prec))));
  }
  return gdiv(L, deg);
}
Beispiel #12
0
/* Find h in Fp[X] such that h(a[i]) = listdelta[i] for all modular factors
 * ff[i], where a[i] is a fixed root of ff[i] in Fq = Z[Y]/(p,T) [namely the
 * first one in FpX_factorff_irred output]. Let f = ff[i], A the given root,
 * then h mod f is Tr_Fq/Fp ( h(A) f(X)/(X-A)f'(A) ), most of the expression
 * being precomputed. The complete h is recovered via chinese remaindering */
static GEN
chinese_retrieve_pol(GEN DATA, primedata *S, GEN listdelta)
{
  GEN interp, bezoutC, h, pol = FpX_red(gel(DATA,1), S->p);
  long i, l;
  interp = gel(DATA,9);
  bezoutC= gel(DATA,6);

  h = NULL; l = lg(interp);
  for (i=1; i<l; i++)
  { /* h(firstroot[i]) = listdelta[i] */
    GEN t = FqX_Fq_mul(gel(interp,i), gel(listdelta,i), S->T,S->p);
    t = poltrace(t, (GEN)S->Trk[i], S->p);
    t = gmul(t, gel(bezoutC,i));
    h = h? gadd(h,t): t;
  }
  return FpX_rem(FpX_red(h, S->p), pol, S->p);
}
Beispiel #13
0
GEN
vecsum(GEN v)
{
  pari_sp av = avma;
  long i, l;
  GEN p;
  if (!is_vec_t(typ(v)))
    pari_err_TYPE("vecsum", v);
  l = lg(v);
  if (l == 1) return gen_0;
  p = gel(v,1);
  if (l == 2) return gcopy(p);
  for (i=2; i<l; i++)
  {
    p = gadd(p, gel(v,i));
    if (gc_needed(av, 2))
    {
      if (DEBUGMEM>1) pari_warn(warnmem,"sum");
      p = gerepileupto(av, p);
    }
  }
  return gerepileupto(av, p);
}
Beispiel #14
0
void
init_test(void)	  /* void */
{
  GEN p1;
  GEN p2;	  /* vec */
  p = pol_x(fetch_user_var("p"));
  d = pol_x(fetch_user_var("d"));
  f = pol_x(fetch_user_var("f"));
  /*allocatemem(800000000); */
  p = stoi(65537);
  d = gadd(genrand(powis(gen_2, 7)), powis(gen_2, 7));
  p1 = gaddgs(d, 1);
  {
    long x;
    p2 = cgetg(gtos(p1)+1, t_VEC);
    for (x = 1; gcmpsg(x, p1) <= 0; ++x)
      gel(p2, x) = genrand(p);
  }
  f = p2;
  gel(f, 1) = gen_1;
  f = gtopoly(f, -1);
  return;
}
inline uchar rs_round( void )
{
    uchar sum;

    sum = gadd(0,gmul(l_shift[0],0));
    l_shift[0] = l_shift[1];
    sum = gadd(sum,gmul(l_shift[1],1));
    l_shift[1] = l_shift[2];
    sum = gadd(sum,gmul(l_shift[2],2));
    l_shift[2] = l_shift[3];
    sum = gadd(sum,gmul(l_shift[3],3));
    l_shift[3] = l_shift[4];
    sum = gadd(sum,gmul(l_shift[4],4));
    l_shift[4] = l_shift[5];
    sum = gadd(sum,gmul(l_shift[5],5));
    l_shift[5] = l_shift[6];
    sum = gadd(sum,gmul(l_shift[6],6));
    l_shift[6] = l_shift[7];
    sum = gadd(sum,gmul(l_shift[7],7));
    l_shift[7] = l_shift[8];
    sum = gadd(sum,gmul(l_shift[8],8));
    l_shift[8] = l_shift[9];
    sum = gadd(sum,gmul(l_shift[9],9));
    l_shift[9] = l_shift[10];
    sum = gadd(sum,gmul(l_shift[10],10));
    l_shift[10] = l_shift[11];
    sum = gadd(sum,gmul(l_shift[11],11));
    l_shift[11] = l_shift[12];
    sum = gadd(sum,gmul(l_shift[12],12));
    l_shift[12] = l_shift[13];
    sum = gadd(sum,gmul(l_shift[13],13));
    l_shift[13] = l_shift[14];
    sum = gadd(sum,gmul(l_shift[14],14));
    l_shift[14] = l_shift[15];
    sum = gadd(sum,gmul(l_shift[15],15));
    l_shift[15] = 0;
    return sum;
}
Beispiel #16
0
GEN gadde(GEN *x, GEN y)
{
  *x=gadd(*x,y);
  return *x;
}
Beispiel #17
0
/* d = requested degree for subfield. Return DATA, valid for given pol, S and d
 * If DATA != NULL, translate pol [ --> pol(X+1) ] and update DATA
 * 1: polynomial pol
 * 2: p^e (for Hensel lifts) such that p^e > max(M),
 * 3: Hensel lift to precision p^e of DATA[4]
 * 4: roots of pol in F_(p^S->lcm),
 * 5: number of polynomial changes (translations)
 * 6: Bezout coefficients associated to the S->ff[i]
 * 7: Hadamard bound for coefficients of h(x) such that g o h = 0 mod pol.
 * 8: bound M for polynomials defining subfields x PD->den
 * 9: *[i] = interpolation polynomial for S->ff[i] [= 1 on the first root
      S->firstroot[i], 0 on the others] */
static void
compute_data(blockdata *B)
{
  GEN ffL, roo, pe, p1, p2, fk, fhk, MM, maxroot, pol;
  primedata *S = B->S;
  GEN p = S->p, T = S->T, ff = S->ff, DATA = B->DATA;
  long i, j, l, e, N, lff = lg(ff);

  if (DEBUGLEVEL>1) fprintferr("Entering compute_data()\n\n");
  pol = B->PD->pol; N = degpol(pol);
  roo = B->PD->roo;
  if (DATA) /* update (translate) an existing DATA */
  {
    GEN Xm1 = gsub(pol_x[varn(pol)], gen_1);
    GEN TR = addis(gel(DATA,5), 1);
    GEN mTR = negi(TR), interp, bezoutC;

    gel(DATA,5) = TR;
    pol = translate_pol(gel(DATA,1), gen_m1);
    l = lg(roo); p1 = cgetg(l, t_VEC);
    for (i=1; i<l; i++) gel(p1,i) = gadd(TR, gel(roo,i));
    roo = p1;

    fk = gel(DATA,4); l = lg(fk);
    for (i=1; i<l; i++) gel(fk,i) = gsub(Xm1, gel(fk,i));

    bezoutC = gel(DATA,6); l = lg(bezoutC);
    interp  = gel(DATA,9);
    for (i=1; i<l; i++)
    {
      if (degpol(interp[i]) > 0) /* do not turn pol_1[0] into gen_1 */
      {
        p1 = translate_pol(gel(interp,i), gen_m1);
        gel(interp,i) = FpXX_red(p1, p);
      }
      if (degpol(bezoutC[i]) > 0)
      {
        p1 = translate_pol(gel(bezoutC,i), gen_m1);
        gel(bezoutC,i) = FpXX_red(p1, p);
      }
    }
    ff = cgetg(lff, t_VEC); /* copy, don't overwrite! */
    for (i=1; i<lff; i++)
      gel(ff,i) = FpX_red(translate_pol((GEN)S->ff[i], mTR), p);
  }
  else
  {
    DATA = cgetg(10,t_VEC);
    fk = S->fk;
    gel(DATA,5) = gen_0;
    gel(DATA,6) = shallowcopy(S->bezoutC);
    gel(DATA,9) = shallowcopy(S->interp);
  }
  gel(DATA,1) = pol;
  MM = gmul2n(bound_for_coeff(B->d, roo, &maxroot), 1);
  gel(DATA,8) = MM;
  e = logint(shifti(vecmax(MM),20), p, &pe); /* overlift 2^20 [for d-1 test] */
  gel(DATA,2) = pe;
  gel(DATA,4) = roots_from_deg1(fk);

  /* compute fhk = hensel_lift_fact(pol,fk,T,p,pe,e) in 2 steps
   * 1) lift in Zp to precision p^e */
  ffL = hensel_lift_fact(pol, ff, NULL, p, pe, e);
  fhk = NULL;
  for (l=i=1; i<lff; i++)
  { /* 2) lift factorization of ff[i] in Qp[X] / T */
    GEN F, L = gel(ffL,i);
    long di = degpol(L);
    F = cgetg(di+1, t_VEC);
    for (j=1; j<=di; j++) F[j] = fk[l++];
    L = hensel_lift_fact(L, F, T, p, pe, e);
    fhk = fhk? shallowconcat(fhk, L): L;
  }
  gel(DATA,3) = roots_from_deg1(fhk);

  p1 = mulsr(N, gsqrt(gpowgs(utoipos(N-1),N-1),DEFAULTPREC));
  p2 = gpowgs(maxroot, B->size + N*(N-1)/2);
  p1 = gdiv(gmul(p1,p2), gsqrt(B->PD->dis,DEFAULTPREC));
  gel(DATA,7) = mulii(shifti(ceil_safe(p1), 1), B->PD->den);

  if (DEBUGLEVEL>1) {
    fprintferr("f = %Z\n",DATA[1]);
    fprintferr("p = %Z, lift to p^%ld\n", p, e);
    fprintferr("2 * Hadamard bound * ind = %Z\n",DATA[7]);
    fprintferr("2 * M = %Z\n",DATA[8]);
  }
  if (B->DATA) {
    DATA = gclone(DATA);
    if (isclone(B->DATA)) gunclone(B->DATA);
  }
  B->DATA = DATA;
}