Beispiel #1
0
PIPE_ALIGN_STACK
static boolean
test_printf(unsigned verbose, FILE *fp,
            const struct printf_test_case *testcase)
{
   struct gallivm_state *gallivm;
   LLVMValueRef test;
   test_printf_t test_printf_func;
   boolean success = TRUE;

   gallivm = gallivm_create("test_module", LLVMGetGlobalContext());

   test = add_printf_test(gallivm);

   gallivm_compile_module(gallivm);

   test_printf_func = (test_printf_t) gallivm_jit_function(gallivm, test);

   gallivm_free_ir(gallivm);

   test_printf_func(0);

   gallivm_destroy(gallivm);

   return success;
}
Beispiel #2
0
PIPE_ALIGN_STACK
static boolean
test_one(unsigned verbose,
         FILE *fp,
         struct lp_type src_type,
         struct lp_type dst_type)
{
   LLVMContextRef context;
   struct gallivm_state *gallivm;
   LLVMValueRef func = NULL;
   conv_test_ptr_t conv_test_ptr;
   boolean success;
   const unsigned n = LP_TEST_NUM_SAMPLES;
   int64_t cycles[LP_TEST_NUM_SAMPLES];
   double cycles_avg = 0.0;
   unsigned num_srcs;
   unsigned num_dsts;
   double eps;
   unsigned i, j;

   if ((src_type.width >= dst_type.width && src_type.length > dst_type.length) ||
       (src_type.width <= dst_type.width && src_type.length < dst_type.length)) {
      return TRUE;
   }

   /* Known failures
    * - fixed point 32 -> float 32
    * - float 32 -> signed normalised integer 32
    */
   if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) ||
       (!src_type.floating && dst_type.floating && src_type.fixed && src_type.width == dst_type.width)) {
      return TRUE;
   }

   /* Known failures
    * - fixed point 32 -> float 32
    * - float 32 -> signed normalised integer 32
    */
   if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) ||
       (!src_type.floating && dst_type.floating && src_type.fixed && src_type.width == dst_type.width)) {
      return TRUE;
   }

   if(verbose >= 1)
      dump_conv_types(stderr, src_type, dst_type);

   if (src_type.length > dst_type.length) {
      num_srcs = 1;
      num_dsts = src_type.length/dst_type.length;
   }
   else if (src_type.length < dst_type.length) {
      num_dsts = 1;
      num_srcs = dst_type.length/src_type.length;
   }
   else  {
      num_dsts = 1;
      num_srcs = 1;
   }

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   eps = MAX2(lp_const_eps(src_type), lp_const_eps(dst_type));
   if (dst_type.norm && dst_type.sign && src_type.sign && !src_type.floating) {
      /*
       * This is quite inaccurate due to shift being used.
       * I don't think it's possible to hit such conversions with
       * llvmpipe though.
       */
      eps *= 2;
   }

   context = LLVMContextCreate();
   gallivm = gallivm_create("test_module", context);

   func = add_conv_test(gallivm, src_type, num_srcs, dst_type, num_dsts);

   gallivm_compile_module(gallivm);

   conv_test_ptr = (conv_test_ptr_t)gallivm_jit_function(gallivm, func);

   gallivm_free_ir(gallivm);

   success = TRUE;
   for(i = 0; i < n && success; ++i) {
      unsigned src_stride = src_type.length*src_type.width/8;
      unsigned dst_stride = dst_type.length*dst_type.width/8;
      PIPE_ALIGN_VAR(LP_MIN_VECTOR_ALIGN) uint8_t src[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      PIPE_ALIGN_VAR(LP_MIN_VECTOR_ALIGN) uint8_t dst[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      double fref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      uint8_t ref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      int64_t start_counter = 0;
      int64_t end_counter = 0;

      for(j = 0; j < num_srcs; ++j) {
         random_vec(src_type, src + j*src_stride);
         read_vec(src_type, src + j*src_stride, fref + j*src_type.length);
      }

      for(j = 0; j < num_dsts; ++j) {
         write_vec(dst_type, ref + j*dst_stride, fref + j*dst_type.length);
      }

      start_counter = rdtsc();
      conv_test_ptr(src, dst);
      end_counter = rdtsc();

      cycles[i] = end_counter - start_counter;

      for(j = 0; j < num_dsts; ++j) {
         if(!compare_vec_with_eps(dst_type, dst + j*dst_stride, ref + j*dst_stride, eps))
            success = FALSE;
      }

      if (!success || verbose >= 3) {
         if(verbose < 1)
            dump_conv_types(stderr, src_type, dst_type);
         if (success) {
            fprintf(stderr, "PASS\n");
         }
         else {
            fprintf(stderr, "MISMATCH\n");
         }

         for(j = 0; j < num_srcs; ++j) {
            fprintf(stderr, "  Src%u: ", j);
            dump_vec(stderr, src_type, src + j*src_stride);
            fprintf(stderr, "\n");
         }

#if 1
         fprintf(stderr, "  Ref: ");
         for(j = 0; j < src_type.length*num_srcs; ++j)
            fprintf(stderr, " %f", fref[j]);
         fprintf(stderr, "\n");
#endif

         for(j = 0; j < num_dsts; ++j) {
            fprintf(stderr, "  Dst%u: ", j);
            dump_vec(stderr, dst_type, dst + j*dst_stride);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Ref%u: ", j);
            dump_vec(stderr, dst_type, ref + j*dst_stride);
            fprintf(stderr, "\n");
         }
      }
   }

   /*
    * Unfortunately the output of cycle counter is not very reliable as it comes
    * -- sometimes we get outliers (due IRQs perhaps?) which are
    * better removed to avoid random or biased data.
    */
   {
      double sum = 0.0, sum2 = 0.0;
      double avg, std;
      unsigned m;

      for(i = 0; i < n; ++i) {
         sum += cycles[i];
         sum2 += cycles[i]*cycles[i];
      }

      avg = sum/n;
      std = sqrtf((sum2 - n*avg*avg)/n);

      m = 0;
      sum = 0.0;
      for(i = 0; i < n; ++i) {
         if(fabs(cycles[i] - avg) <= 4.0*std) {
            sum += cycles[i];
            ++m;
         }
      }

      cycles_avg = sum/m;

   }

   if(fp)
      write_tsv_row(fp, src_type, dst_type, cycles_avg, success);

   gallivm_destroy(gallivm);
   LLVMContextDispose(context);

   return success;
}
Beispiel #3
0
PIPE_ALIGN_STACK
static boolean
test_one(unsigned verbose,
         FILE *fp,
         const struct pipe_blend_state *blend,
         struct lp_type type)
{
   struct gallivm_state *gallivm;
   LLVMValueRef func = NULL;
   blend_test_ptr_t blend_test_ptr;
   boolean success;
   const unsigned n = LP_TEST_NUM_SAMPLES;
   int64_t cycles[LP_TEST_NUM_SAMPLES];
   double cycles_avg = 0.0;
   unsigned i, j;
   const unsigned stride = lp_type_width(type)/8;

   if(verbose >= 1)
      dump_blend_type(stdout, blend, type);

   gallivm = gallivm_create("test_module");

   func = add_blend_test(gallivm, blend, type);

   gallivm_compile_module(gallivm);

   blend_test_ptr = (blend_test_ptr_t)gallivm_jit_function(gallivm, func);

   gallivm_free_ir(gallivm);

   success = TRUE;

   {
      uint8_t *src, *src1, *dst, *con, *res, *ref;
      src = align_malloc(stride, stride);
      src1 = align_malloc(stride, stride);
      dst = align_malloc(stride, stride);
      con = align_malloc(stride, stride);
      res = align_malloc(stride, stride);
      ref = align_malloc(stride, stride);

      for(i = 0; i < n && success; ++i) {
         int64_t start_counter = 0;
         int64_t end_counter = 0;

         random_vec(type, src);
         random_vec(type, src1);
         random_vec(type, dst);
         random_vec(type, con);

         {
            double fsrc[LP_MAX_VECTOR_LENGTH];
            double fsrc1[LP_MAX_VECTOR_LENGTH];
            double fdst[LP_MAX_VECTOR_LENGTH];
            double fcon[LP_MAX_VECTOR_LENGTH];
            double fref[LP_MAX_VECTOR_LENGTH];

            read_vec(type, src, fsrc);
            read_vec(type, src1, fsrc1);
            read_vec(type, dst, fdst);
            read_vec(type, con, fcon);

            for(j = 0; j < type.length; j += 4)
               compute_blend_ref(blend, fsrc + j, fsrc1 + j, fdst + j, fcon + j, fref + j);

            write_vec(type, ref, fref);
         }

         start_counter = rdtsc();
         blend_test_ptr(src, src1, dst, con, res);
         end_counter = rdtsc();

         cycles[i] = end_counter - start_counter;

         if(!compare_vec(type, res, ref)) {
            success = FALSE;

            if(verbose < 1)
               dump_blend_type(stderr, blend, type);
            fprintf(stderr, "MISMATCH\n");

            fprintf(stderr, "  Src: ");
            dump_vec(stderr, type, src);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Src1: ");
            dump_vec(stderr, type, src1);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Dst: ");
            dump_vec(stderr, type, dst);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Con: ");
            dump_vec(stderr, type, con);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Res: ");
            dump_vec(stderr, type, res);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Ref: ");
            dump_vec(stderr, type, ref);
            fprintf(stderr, "\n");
         }
      }
      align_free(src);
      align_free(src1);
      align_free(dst);
      align_free(con);
      align_free(res);
      align_free(ref);
   }

   /*
    * Unfortunately the output of cycle counter is not very reliable as it comes
    * -- sometimes we get outliers (due IRQs perhaps?) which are
    * better removed to avoid random or biased data.
    */
   {
      double sum = 0.0, sum2 = 0.0;
      double avg, std;
      unsigned m;

      for(i = 0; i < n; ++i) {
         sum += cycles[i];
         sum2 += cycles[i]*cycles[i];
      }

      avg = sum/n;
      std = sqrtf((sum2 - n*avg*avg)/n);

      m = 0;
      sum = 0.0;
      for(i = 0; i < n; ++i) {
         if(fabs(cycles[i] - avg) <= 4.0*std) {
            sum += cycles[i];
            ++m;
         }
      }

      cycles_avg = sum/m;

   }

   if(fp)
      write_tsv_row(fp, blend, type, cycles_avg, success);

   gallivm_destroy(gallivm);

   return success;
}