double  gamma_cdf (double beta, double gamm, double pzero, double x)
{
  if      (x <= 0.0)
      return (pzero);
  else
      return (pzero + (1.0 - pzero) * gammap (gamm, x / beta));
}
Beispiel #2
0
Datei: gamma.c Projekt: amnh/poy5
/** [chi_pp p v]
 * Finds the percentage point [p] of the chi squared distribution of [v] degrees
 * of freedom.  The gamma is related to this distribution by the define below.
 *
 * Algorithm AS91: The Percentage Points of the chi^2 Distribution
 *      (translated to C, and removed goto's ~nrl) */
double chi_pp( double p, double v ){
    double ch,s1,s2,s3,s4,s5,s6;
    double e,aa,xx,c,g,x,p1,a,q,p2,t,ig,b;

    assert( v > 0.0 );
    if (p < 0.000002 || p > 0.999998)
        failwith("Chi^2 Percentage Points incorrect.1");

    e = 0.5e-6;         /** error term **/
    aa= 0.6931471805;
    xx = 0.5 * v;
    c  = xx - 1.0;
    g  = lngamma( xx );

    if( v < -1.24 * log(p) ){
        ch = pow(p * xx * exp ( g + xx * aa), 1.0/xx);
        if( ch - e < 0 ) return ch;
    } else if( v > 0.32) {
        x = point_normal( p );
        p1 = 0.222222 / v;
        ch = v * pow( x * sqrt( p1 ) + 1 - p1, 3.0) ;
        if (ch > 2.2 * v + 6)
            ch = -2.0 * (log(1-p) - c*log(0.5*ch)+g);
    } else {
        ch  = 0.4;
        a = log (1 - p);
        do{
            q  = ch;
            p1 = 1 + ch * (4.67 + ch);
            p2 = ch * (6.73 + ch * (6.66 + ch));
            t  = -0.5 + (4.67 + 2*ch)/p1 - (6.73 + ch*(13.32 + 3*ch))/p2;
            ch = ch - (1- exp( a + g + 0.5*ch+c*aa) * p2/p1)/t;
        } while( fabs( q/ch - 1) - 0.01 > 0.0 );
    }

    do{
        q  = ch;
        p1 = .5*ch;
        ig = gammap( p1, xx );
        if (ig < 0){ failwith("Chi^2 Percentage Points incorrect.2"); }
        p2 = p - ig;
        t  = p2 * exp( xx*aa + g + p1 - c*log(ch));
        b  = t / ch;
        a  = (0.5*t) - (b*c);
        /* Seven terms of the Taylor series */
        s1 = (210 + a*(140 + a*(105 + a*(84 + a*(70 + 60*a))))) / 420.0;
        s2 = (420 + a*(735 + a*(966 + a*(1141 + 1278*a)))) / 2520.0;
        s3 = (210 + a*(462 + a*(707 + 932*a))) / 2520.0;
        s4 = (252 + a*(672 + 1182*a) + c*(294 + a*(889 + 1740*a))) / 5040.0;
        s5 = ( 84 + 264*a + c*(175 + 606*a)) / 2520.0;
        s6 = (120 + c*(346 + 127*c)) / 5040.0;
        ch+= t*(1+0.5*t*s1-b*c*(s1-b*(s2-b*(s3-b*(s4-b*(s5-b*s6))))));
    } while( fabs(q / ch - 1.0) > e);

    return (ch);
}
Beispiel #3
0
Datei: gamma.c Projekt: amnh/poy5
/** [gamma_rates rates alpha beta cuts k]
 * calculates the rates into [rates] with percentage points [cuts] of [k]
 * categories and shape parameters [alpha] and [beta] */ 
void 
gamma_rates(double* rates,const double a,const double b,const double* cuts,const int k)
{
    double fac, *ingam;
    int j;
    fac = a*((double)k)/b;
    ingam = (double*) malloc( k * sizeof(double));
    CHECK_MEM(ingam);

    //calculate: rj = (A*k/B)*(I(bB,A+1)-I(aB,A+1))
    for(j=0;j<(k-1);j++){
        ingam[j] = gammap( cuts[j]*b, a+1 );
        //printf("LG: %f\tNL: %f\n", ingam[j], gamma_i( cuts[j]*b, a+1 ) );
    }
    rates[0]   = ingam[0] * fac;            //lower rate
    rates[k-1] = (1 - ingam[k-2]) * fac;    //upper rate
    for(j=1;j<k-1;j++)
        rates[j] = (ingam[j] - ingam[j-1]) * fac;
    free( ingam );
}
void Foam::varyingGammaTotalTemperatureFvPatchScalarField::updateCoeffs()
{
    if (updated())
    {
        return;
    }
    
    const fluidThermo& thermo = 
        this->patch().boundaryMesh().mesh().thisDb().lookupObject<fluidThermo>("thermophysicalProperties");
    
    const fvPatchVectorField& Up =
        patch().lookupPatchField<volVectorField, vector>(UName_);
    
    const fvsPatchField<scalar>& phip =
        patch().lookupPatchField<surfaceScalarField, scalar>(phiName_);
    
    const fvPatchField<scalar>& psip = 
        thermo.psi().boundaryField()[patch().index()];
    
    const fvPatchField<scalar>& pp =
        thermo.p().boundaryField()[patch().index()];
    
    const fvPatchField<scalar>& Tp =
        thermo.T().boundaryField()[patch().index()];
    
    scalarField gammap
    (
        thermo.gamma(pp, Tp, patch().index())
    );
    
    scalarField gM1ByG ((gammap - 1.0)/gammap);
    
    operator==
    (
        T0_/(1.0 + 0.5*psip*gM1ByG*(1.0 - pos(phip))*magSqr(Up))
    );
    
    fixedValueFvPatchScalarField::updateCoeffs();
}
Beispiel #5
0
/* gammacdf: cumulative distribution function for the gamma distribution.
 * @x: the x-value for evaluation.
 * @a: the first parameter.
 * @b: the second parameter.
 */
double gammacdf (double x, double a, double b) {
  /* return the value. */
  return gammap (a, x / b);
}
Beispiel #6
0
double cumchi(double df,double x)
{
	return gammap(df/2,x/2);
}